

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(1H-1,2,3-Benzotriazol-1-vl)-2-(4methoxyphenyl)ethanone

Abdullah M. Asiri,^{a,b}* Nader E. Abo-Dya,^c Muhammad Nadeem Arshad,^b Khalid A. Alamry^{a,b} and Muhammad Shafiq^d*

^aChemistry Department, Faculty of Science, King Abdulaziz University PO Box 80203, Jeddah 21589, Saudi Arabia, ^bCenter of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University PO Box 80203, Jeddah 21589, Saudi Arabia, ^cDepartment of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt, and ^dDepartment of Chemistry, Government College University, Faisalabad 38040, Pakistan Correspondence e-mail: aasiri2@kau.edu.sa, hafizshafique@hotmail.com

Received 14 October 2012; accepted 22 October 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.109; data-to-parameter ratio = 14.9.

In the title compound, $C_{15}H_{13}N_3O_2$, the dihedral angle between the benzotriazole ring system (r.m.s. deviation = 0.0124 Å) and the benzene ring is 76.21 (3)°. The methoxy C atom deviates from its benzene ring plane by 0.063 (2)Å. In the crystal, inversion dimers linked by pairs of $C-H \cdots O$ hydrogen bonds generate $R_2^2(12)$ loops.

Related literature

For chemical background, see: Katritzky et al. (1996a,b, 2005, 2010). For a related structure, see: Selvarathy Grace et al. (2012). For related literature, see: Zou et al. (2006).

Experimental

Crystal data C15H13N3O2 $M_r = 267.28$

Monoclinic, $P2_1/c$ a = 5.4209 (1) Å

b = 24.4894 (5) Å
c = 10.0555 (2) Å
$\beta = 98.552 \ (2)^{\circ}$
V = 1320.07 (4) Å ³
Z = 4

Data collection

Agilent SuperNova (Dual, Cu at	6122 measured reflections
zero, Atlas CCD) diffractometer	2707 independent reflections
Absorption correction: multi-scan	2340 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Agilent, 2012)	$R_{\rm int} = 0.019$
$T_{\min} = 0.784, T_{\max} = 0.889$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	182 parameters
$wR(F^2) = 0.109$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$
2707 reflections	$\Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5-H5\cdots O1^{i}$	0.93	2.40	3.1912 (16)	143
Symmetry code: (i) -	$-r - v \perp 1 - 2$	v ⊥ 1		

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and X-SEED (Barbour, 2001).

The authors thank the Deanship of Scientific Research at King Abdulaziz University for support of this research via Research Group Track of grant No. (3-102/428).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6975).

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Katritzky, A. R., Abo-Dya, N. E., Tala, S. R., Ghazvini-Zadeh, E. H., Bajaj, K. & El-Feky, S. A. (2010). Synlett, pp. 1337-1340.
- Katritzky, A. R., Soleiman, M. & Yang, B. (1996a). Heteroat. Chem. 7, 365-367.
- Katritzky, A. R., Suzuki, K. & Wang, Z. (2005). Synlett, pp. 1656-1665.
- Katritzky, A. R., Yang, B. & Qian, Y. (1996b). Synlett, pp. 701-702.
- Selvarathy Grace, P., Jebas, S. R., Ravindran Durai Nayagam, B. & Schollmeyer, D. (2012). Acta Cryst. E68, 01132.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zou, X., Wang, X., Cheng, C., Kong, L. & Mao, H. (2006). Tetrahedron Lett. 47, 3767-3771.

Cu $K\alpha$ radiation $\mu = 0.75 \text{ mm}^{-3}$

 $0.34 \times 0.17 \times 0.16 \text{ mm}$

T = 296 K

supporting information

Acta Cryst. (2012). E68, o3221 [doi:10.1107/S1600536812043759]

1-(1H-1,2,3-Benzotriazol-1-yl)-2-(4-methoxyphenyl)ethanone

Abdullah M. Asiri, Nader E. Abo-Dya, Muhammad Nadeem Arshad, Khalid A. Alamry and Muhammad Shafiq

S1. Comment

N-Acylbenzotriazoles are mild, regioselective and regiospecific reagents for *N*-, *O*-, *C*-, and *S*-acylation (Katritzky *et al.*, 2010), & (Katritzky *et al.*, 1996*a*). The title compound was previously converted into of a 1,3-diarylacetone (Katritzky *et al.*, 2005) and an aryl benzyl sulfoxide (Katritzky *et al.*, 1996*b*).

The title coompound is related in structure with 1-benzyl-1*H*-benzotriazole (Selvarathy Grace *et al.*, 2012). The benzotriazole ring is almost planer with r.m.s. deviation of fitted non-hydrogen atoms (C1—C6/N1/N2/N3) is 0.0124 Å. The oxygen atom of carbonyl group is displaced at 0.0724 (2) Å with respect to benzotriazole. The methoxy benzene ring (C9—C14) is orientedted at dihedral angle of 76.21 (3)° with respect to benzotriazole rings. The C—H…O type weak hydrogen bonding interaction results in dimers about inversion center and generate twelve membered ring motif $R_2^2(12)$ (Table. 1, Fig. 2).

S2. Experimental

A solution of thionyl chloride (0.4 ml, 5.5 mmol) and benzotriazole (1.79 g., 15 mmol) in methylene chloride (30 ml) was stirred at 293 K for 30 minutes. 2-(4-methoxypheny)acetic acid (0.83 g., 5 mmol) was then added and the heterogeneous mixture was stirred for 2 hr. The solid was filtered and methylene chloride (50mL) was added to the filtrate. The organic layer was extracted with saturated Na₂CO₃ (3 × 15 ml), brine (2 × 5 ml) and dried over anhyd. Na₂SO₄. Evaporation of methylene chloride solution afforded colourless prisms (1.21 g., 90% yield).

S3. Refinement

All the C—H and H-atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic, C—H = 0.97 Å for methylene & C—H = 0.96 Å for methyl groups. H-atoms were refined as riding with $U_{iso}(H) = kU_{eq}(C, N)$, where k = 1.2 for aromatic & methylene and k = 1.5 for methyl H-atoms.

Figure 1

The molecular structure of (I) with 50% displacement ellipsoids.

Figure 2

Unit cell packing diagram showing intermolecular hydrogen bonds, drawn using dashed lines. Hydrogen atoms not involved in bonding have been omitted for clarity.

1-(1H-1,2,3-Benzotriazol-1-yl)-2-(4-methoxyphenyl)ethanone

Crystal data	
$C_{15}H_{13}N_3O_2$	F(000) = 560
$M_r = 267.28$	$D_{\rm x} = 1.345 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
Hall symbol: -P 2ybc	Cell parameters from 3661 reflections
a = 5.4209 (1) Å	$\theta = 4.4 - 76.0^{\circ}$
b = 24.4894 (5) Å	$\mu=0.75~\mathrm{mm^{-1}}$
c = 10.0555 (2) Å	T = 296 K
$\beta = 98.552 \ (2)^{\circ}$	Prismatic, colorless
V = 1320.07 (4) Å ³	$0.34 \times 0.17 \times 0.16 \text{ mm}$
Z = 4	

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas CCD) diffractometer	$T_{\min} = 0.784, T_{\max} = 0.889$ 6122 measured reflections 2707 independent reflections
Radiation source: SuperNova (Cu) X-ray	2340 reflections with $I > 2\sigma(I)$
Source	$R_{\rm int}=0.019$
Mirror monochromator	$\theta_{\rm max} = 76.2^\circ, \ \theta_{\rm min} = 4.8^\circ$
ω scans	$h = -6 \rightarrow 4$
Absorption correction: multi-scan	$k = -29 \rightarrow 30$
(CrysAlis PRO; Agilent, 2012)	$l = -12 \rightarrow 12$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.109$	neighbouring sites
S = 1.08	H-atom parameters constrained
2707 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0527P)^2 + 0.1534P]$
182 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Lambda/\sigma)_{\rm max} \leq 0.001$

Special details

direct methods

Primary atom site location: structure-invariant

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Ζ	$U_{ m iso}^{*}/U_{ m eq}$	
01	0.2197 (2)	0.47488 (5)	0.37631 (10)	0.0750 (3)	
O2	0.5718 (2)	0.24790 (4)	0.49538 (12)	0.0737 (3)	
N1	0.17264 (19)	0.52715 (4)	0.19212 (9)	0.0463 (2)	
N2	0.2345 (2)	0.54066 (5)	0.06808 (11)	0.0581 (3)	
N3	0.1096 (2)	0.58305 (5)	0.02364 (12)	0.0640 (3)	
C1	-0.0418 (2)	0.59893 (5)	0.11725 (13)	0.0517 (3)	
C2	-0.2135 (3)	0.64152 (6)	0.11304 (15)	0.0647 (4)	
H2	-0.2396	0.6657	0.0410	0.078*	
C3	-0.3418 (3)	0.64602 (7)	0.21992 (16)	0.0680 (4)	
H3	-0.4572	0.6741	0.2207	0.082*	
C4	-0.3036 (3)	0.60952 (6)	0.32785 (15)	0.0639 (4)	
H4	-0.3955	0.6139	0.3982	0.077*	
C5	-0.1351 (3)	0.56739 (6)	0.33368 (13)	0.0538 (3)	
H5	-0.1104	0.5431	0.4056	0.065*	
C6	-0.0036 (2)	0.56326 (5)	0.22524 (11)	0.0445 (3)	

C7	0.2792 (2)	0.48237 (5)	0.26753 (12)	0.0482 (3)
C8	0.4576 (2)	0.44711 (5)	0.20553 (13)	0.0522 (3)
H8A	0.6154	0.4661	0.2081	0.063*
H8B	0.3910	0.4401	0.1122	0.063*
C9	0.5001 (2)	0.39358 (5)	0.28009 (12)	0.0463 (3)
C10	0.7140 (2)	0.38340 (6)	0.36909 (14)	0.0553 (3)
H10	0.8398	0.4096	0.3802	0.066*
C11	0.7477 (2)	0.33526 (6)	0.44275 (14)	0.0559 (3)
H11	0.8941	0.3294	0.5020	0.067*
C12	0.5628 (2)	0.29645 (5)	0.42717 (13)	0.0501 (3)
C13	0.3460 (2)	0.30573 (6)	0.33780 (14)	0.0548 (3)
H13	0.2207	0.2795	0.3265	0.066*
C14	0.3161 (2)	0.35371 (5)	0.26571 (13)	0.0515 (3)
H14	0.1698	0.3595	0.2063	0.062*
C15	0.7849 (3)	0.23650 (8)	0.59061 (19)	0.0839 (5)
H15A	0.9308	0.2370	0.5469	0.126*
H15B	0.7676	0.2011	0.6293	0.126*
H15C	0.8010	0.2637	0.6602	0.126*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
01	0.1114 (9)	0.0677 (7)	0.0547 (6)	0.0257 (6)	0.0415 (6)	0.0192 (5)
O2	0.0810 (7)	0.0529 (6)	0.0814 (7)	-0.0002 (5)	-0.0071 (6)	0.0172 (5)
N1	0.0552 (5)	0.0463 (5)	0.0402 (5)	-0.0011 (4)	0.0166 (4)	0.0041 (4)
N2	0.0705 (7)	0.0606 (7)	0.0485 (6)	0.0056 (5)	0.0264 (5)	0.0127 (5)
N3	0.0781 (8)	0.0648 (7)	0.0534 (6)	0.0118 (6)	0.0244 (6)	0.0174 (5)
C1	0.0591 (7)	0.0498 (7)	0.0473 (6)	-0.0008 (5)	0.0118 (5)	0.0039 (5)
C2	0.0755 (9)	0.0577 (8)	0.0610 (8)	0.0103 (7)	0.0102 (7)	0.0080 (7)
C3	0.0720 (9)	0.0591 (9)	0.0735 (10)	0.0127 (7)	0.0128 (7)	-0.0067 (7)
C4	0.0719 (9)	0.0647 (9)	0.0591 (8)	0.0034 (7)	0.0230 (7)	-0.0109 (7)
C5	0.0671 (8)	0.0536 (7)	0.0432 (6)	-0.0022 (6)	0.0168 (6)	-0.0032 (5)
C6	0.0509 (6)	0.0425 (6)	0.0409 (6)	-0.0059 (5)	0.0092 (5)	-0.0029 (5)
C7	0.0583 (7)	0.0450 (6)	0.0438 (6)	-0.0031 (5)	0.0160 (5)	0.0044 (5)
C8	0.0561 (7)	0.0517 (7)	0.0525 (7)	-0.0008(5)	0.0203 (5)	0.0058 (5)
C9	0.0460 (6)	0.0478 (6)	0.0475 (6)	0.0016 (5)	0.0149 (5)	0.0007 (5)
C10	0.0427 (6)	0.0570 (8)	0.0664 (8)	-0.0075 (5)	0.0089 (5)	0.0013 (6)
C11	0.0431 (6)	0.0616 (8)	0.0608 (8)	0.0038 (5)	0.0007 (5)	0.0016 (6)
C12	0.0540 (6)	0.0449 (6)	0.0513 (7)	0.0041 (5)	0.0075 (5)	-0.0001 (5)
C13	0.0527 (7)	0.0493 (7)	0.0603 (7)	-0.0088 (5)	0.0008 (6)	0.0007 (6)
C14	0.0473 (6)	0.0539 (7)	0.0514 (6)	-0.0020 (5)	0.0011 (5)	0.0014 (5)
C15	0.0787 (10)	0.0842 (12)	0.0863 (11)	0.0217 (9)	0.0046 (9)	0.0308 (10)

Geometric parameters (Å, °)

01	1.1997 (14)	С7—С8	1.4997 (18)
O2—C12	1.3700 (16)	C8—C9	1.5106 (17)
O2—C15	1.414 (2)	C8—H8A	0.9700

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C6	1,3785 (16)	C8—H8B	0.9700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—N2	1.3792 (13)	C9—C10	1.3783 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C7	1.4075 (16)	C9—C14	1.3879 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—N3	1.2829 (16)	C10—C11	1.3898 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C1	1 3928 (17)	C10—H10	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1 - C6	1.3920(17) 1.3849(17)	C_{11} C_{12}	1 3732 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C2	1 394 (2)	C11—H11	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2 = C_3$	1 368 (2)	C12-C13	1 3878 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2 = C_3$	0.0300	$C_{12} = C_{13}$	1.3775(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2 = 112$	1 308 (2)	C13 H13	0.0300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_3 = U_4$	0.0300		0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{3}	0.9300	C_{14} H_{15}	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4 = C3	1.373(2)	C15 H15P	0.9000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4 - H4	0.9300 1 2024 (17)		0.9000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5C6	1.3924 (17)	Стэ—птэс	0.9000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—Н5	0.9300		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—O2—C15	118.34 (13)	С9—С8—Н8А	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—N1—N2	109.58 (10)	C7—C8—H8B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—N1—C7	127.83 (10)	C9—C8—H8B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—N1—C7	122.59 (10)	H8A—C8—H8B	108.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—N2—N1	108.80 (10)	C10—C9—C14	117.56 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—N3—C1	108.91 (10)	C10—C9—C8	122.04 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C1-N3	108.63 (11)	C14—C9—C8	120.32 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C1-C2	121.12 (12)	C9—C10—C11	122.05 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C1—C2	130.24 (12)	C9—C10—H10	119.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C1	116.83 (13)	C11—C10—H10	119.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—H2	121.6	C12—C11—C10	119.37 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—H2	121.6	C12—C11—H11	120.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4	121.63 (14)	C10—C11—H11	120.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—Н3	119.2	02-C12-C11	124.94 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C3—H3	119.2	02-C12-C13	115.46 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5-C4-C3	122.31 (13)	$C_{11} - C_{12} - C_{13}$	119.60 (12)
C3 $-C4 - H4$ 118.8C14 $-C13 - H13$ 119.9C4 $-C5 - C6$ 115.84 (13)C12 $-C13 - H13$ 119.9C4 $-C5 - H5$ 122.1C13 $-C14 - C9$ 121.25 (12)C6 $-C5 - H5$ 122.1C13 $-C14 - H14$ 119.4N1 $-C6 - C1$ 104.08 (10)C9 $-C14 - H14$ 119.4N1 $-C6 - C5$ 133.61 (12)O2 $-C15 - H15A$ 109.5C1 $-C6 - C5$ 122.28 (12)O2 $-C15 - H15B$ 109.5O1 $-C7 - N1$ 117.76 (11)H15A $-C15 - H15B$ 109.5O1 $-C7 - C8$ 124.65 (12)O2 $-C15 - H15C$ 109.5N1 $-C7 - C8$ 117.59 (10)H15A $-C15 - H15C$ 109.5C7 $-C8 - C9$ 110.69 (10)H15B $-C15 - H15C$ 109.5C7 $-C8 - H8A$ 109.5C6 $-N1 - C7 - O1$ $-2.9 (2)$ C6 $-N1 - N2 - N3$ 0.65 (15)C6 $-N1 - C7 - O1$ $-2.9 (2)$ C7 $-N1 - N2 - N3$ $-179.84 (12)$ N2 $-N1 - C7 - O1$ $177.64 (13)$	C5-C4-H4	118.8	C14-C13-C12	120.17(12)
C3C4C1110.5C1C1110.5C4C5C6115.84 (13)C12C13H13119.9C4C5H5122.1C13C14C9121.25 (12)C6C5H5122.1C13C14H14119.4N1C6C1104.08 (10)C9C14H14119.4N1C6C5133.61 (12)O2C15H15B109.5C1C6C5122.28 (12)O2C15H15B109.5O1C7N1117.76 (11)H15AC15H15C109.5O1C7C8124.65 (12)O2C15H15C109.5N1C7C8117.59 (10)H15AC15H15C109.5C7C8110.69 (10)H15BC15H15C109.5C7C8H8AH09.5H15CH15CH15CH15CC6N1N2N2N1C7QQC6N1N2N3-179.84 (12)N2N1C7QQ	C3—C4—H4	118.8	C14-C13-H13	119.9
C4 $-$ C5 $-$ H5122.1C13 $-$ C14 $-$ C9121.25 (12)C6 $-$ C5 $-$ H5122.1C13 $-$ C14 $-$ H14119.4N1 $-$ C6 $-$ C1104.08 (10)C9 $-$ C14 $-$ H14119.4N1 $-$ C6 $-$ C5133.61 (12)02 $-$ C15 $-$ H15A109.5C1 $-$ C6 $-$ C5122.28 (12)02 $-$ C15 $-$ H15B109.5O1 $-$ C7 $-$ N1117.76 (11)H15A $-$ C15 $-$ H15B109.5O1 $-$ C7 $-$ C8124.65 (12)02 $-$ C15 $-$ H15C109.5N1 $-$ C7 $-$ C8117.59 (10)H15A $-$ C15 $-$ H15C109.5C7 $-$ C8 $-$ C9110.69 (10)H15B $-$ C15 $-$ H15C109.5C7 $-$ C8 $-$ H8A109.5C6 $-$ N1 $-$ C7 $-$ O1 $-$ 2.9 (2)C7 $-$ N1 $-$ N2 $-$ N30.65 (15)C6 $-$ N1 $-$ C7 $-$ O1 $-$ 2.9 (2)C7 $-$ N1 $-$ N2 $-$ N3 $-$ 179.84 (12)N2 $-$ N1 $-$ C7 $-$ O1 $-$ 2.9 (2)	C4-C5-C6	115.84 (13)	C12—C13—H13	119.9
C1C3H22.1C13C14C14H21.25 (12)C6—C5—H5122.1C13—C14—H14119.4N1—C6—C1104.08 (10)C9—C14—H14119.4N1—C6—C5133.61 (12)O2—C15—H15A109.5C1—C6—C5122.28 (12)O2—C15—H15B109.5O1—C7—N1117.76 (11)H15A—C15—H15B109.5O1—C7—C8124.65 (12)O2—C15—H15C109.5N1—C7—C8117.59 (10)H15A—C15—H15C109.5C7—C8—C9110.69 (10)H15B—C15—H15C109.5C7—C8—H8A109.5C6—N1—C7—O1-2.9 (2)C7—N1—N2—N3-179.84 (12)N2—N1—C7—O1177.64 (13)	C4—C5—H5	122.1	C_{13} C_{14} C_{9}	121.25(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—С5—Н5	122.1	C_{13} C_{14} H_{14}	119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1 - C6 - C1	104.08 (10)	C9-C14-H14	119.4
N1-C0-C3155.01 (12) $02-C15-H15A$ 109.5 C1-C6-C5122.28 (12) $02-C15-H15B$ 109.5 O1-C7-N1117.76 (11)H15A-C15-H15B 109.5 O1-C7-C8124.65 (12) $02-C15-H15C$ 109.5 N1-C7-C8117.59 (10)H15A-C15-H15C 109.5 C7-C8-C9110.69 (10)H15B-C15-H15C 109.5 C7-C8-H8A109.5 109.5 109.5 C6-N1-N2-N3 $0.65 (15)$ C6-N1-C7-O1 $-2.9 (2)$ C7-N1-N2-N3 $-179.84 (12)$ N2-N1-C7-O1 $177.64 (13)$	N1 = C6 = C5	133.61(12)	$O_2 C_{15} H_{15}$	100 5
C1 - C0 - C3 $122.26 (12)$ $02 - C15 - H15B$ 109.5 $O1 - C7 - N1$ $117.76 (11)$ $H15A - C15 - H15B$ 109.5 $O1 - C7 - C8$ $124.65 (12)$ $O2 - C15 - H15C$ 109.5 $N1 - C7 - C8$ $117.59 (10)$ $H15A - C15 - H15C$ 109.5 $C7 - C8 - C9$ $110.69 (10)$ $H15B - C15 - H15C$ 109.5 $C7 - C8 - H8A$ 109.5 $C6 - N1 - C7 - O1$ $-2.9 (2)$ $C7 - N1 - N2 - N3$ $-179.84 (12)$ $N2 - N1 - C7 - O1$ $177.64 (13)$	C1 - C6 - C5	133.01(12) 122.28(12)	O_2 C_{15} H_{15B}	109.5
O1-C7-C8 $124.65(12)$ $O2-C15-H15C$ 109.5 $N1-C7-C8$ $124.65(12)$ $O2-C15-H15C$ 109.5 $C7-C8-C9$ $117.59(10)$ $H15A-C15-H15C$ 109.5 $C7-C8-H8A$ 109.5 109.5 109.5 $C6-N1-N2-N3$ $0.65(15)$ $C6-N1-C7-O1$ $-2.9(2)$ $C7-N1-N2-N3$ $-179.84(12)$ $N2-N1-C7-O1$ $177.64(13)$	C1 = C0 = C3	122.26(12) 117.76(11)	H15A C15 H15B	109.5
01-07-03 $124.05(12)$ $02-013-0130$ 109.5 $N1-07-08$ $117.59(10)$ $H15A-015-H15C$ 109.5 $07-08-09$ $110.69(10)$ $H15B-015-H15C$ 109.5 $0.65(15)$ $0.65(15)$ $0.6-N1-07-01$ $-2.9(2)$ $0.7-N1-N2-N3$ $-179.84(12)$ $N2-N1-07-01$ $177.64(13)$	$\begin{array}{c} 01 \\ 01 \\ 01 \\ 07 \\ 08 \\ 08 \\ 08 \\ 08 \\ 08 \\ 08 \\ 08$	117.70(11) 124.65(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
N1-C7-C8 117.39 (10) H13A-C13-H13C 109.5 C7-C8-C9 110.69 (10) H15B-C15-H15C 109.5 C7-C8-H8A 109.5 -2.9 (2) C7-N1-N2-N3 -179.84 (12) N2-N1-C7-O1 -2.9 (2)	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	124.03(12) 117 50(10)	$U_2 = U_1 = \Pi_1 U_1$	109.5
C7-C8-H8A 109.5 C6-N1-N2-N3 0.65 (15) C7-N1-N2-N3 -179.84 (12) N2-N1-C7-O1 177.64 (13)	$\begin{array}{ccc} 1 & 1 & - & - & - & - & - & - & - & - &$	11/.37(10)	H15A - C15 - H15C	109.5
C7-Co-noA 109.3 C6-N1-N2-N3 0.65 (15) C7-N1-N2-N3 -179.84 (12) N2-N1-C7-O1 177.64 (13)	$C_{1} = C_{0} = C_{0}$	110.09 (10)	птэв—стэ—птэс	109.3
C6-N1-N2-N30.65 (15)C6-N1-C7-O1-2.9 (2)C7-N1-N2-N3-179.84 (12)N2-N1-C7-O1177.64 (13)	U/U0ПОА	107.5		
C7—N1—N2—N3 –179.84 (12) N2—N1—C7—O1 177.64 (13)	C6—N1—N2—N3	0.65 (15)	C6—N1—C7—O1	-2.9 (2)
	C7—N1—N2—N3	-179.84 (12)	N2—N1—C7—O1	177.64 (13)

N1—N2—N3—C1	-0.39 (16)	C6—N1—C7—C8	176.55 (11)
N2—N3—C1—C6	0.00 (16)	N2—N1—C7—C8	-2.87 (17)
N2—N3—C1—C2	-178.46 (15)	O1—C7—C8—C9	14.73 (19)
C6—C1—C2—C3	-0.3 (2)	N1—C7—C8—C9	-164.72 (11)
N3—C1—C2—C3	178.03 (15)	C7—C8—C9—C10	-103.08 (14)
C1—C2—C3—C4	-0.3 (2)	C7—C8—C9—C14	73.62 (15)
C2—C3—C4—C5	0.4 (3)	C14—C9—C10—C11	-0.1 (2)
C3—C4—C5—C6	0.1 (2)	C8—C9—C10—C11	176.70 (12)
N2—N1—C6—C1	-0.62 (13)	C9-C10-C11-C12	-0.1 (2)
C7—N1—C6—C1	179.91 (12)	C15—O2—C12—C11	0.8 (2)
N2—N1—C6—C5	177.24 (13)	C15—O2—C12—C13	-178.41 (14)
C7—N1—C6—C5	-2.2 (2)	C10-C11-C12-O2	-178.87 (13)
N3-C1-C6-N1	0.38 (14)	C10-C11-C12-C13	0.3 (2)
C2-C1-C6-N1	179.01 (13)	O2—C12—C13—C14	178.92 (12)
N3—C1—C6—C5	-177.78 (12)	C11—C12—C13—C14	-0.3 (2)
C2-C1-C6-C5	0.8 (2)	C12—C13—C14—C9	0.1 (2)
C4—C5—C6—N1	-178.29 (13)	C10-C9-C14-C13	0.06 (19)
C4—C5—C6—C1	-0.75 (19)	C8—C9—C14—C13	-176.78 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C5—H5…O1 ⁱ	0.93	2.40	3.1912 (16)	143

Symmetry code: (i) -x, -y+1, -z+1.