

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Chloromethylsulfinyl-2-nitrobenzene

Sabrina Benmebarek,^a Mhamed Boudraa,^a Sofiane Bouacida^{a,b}* and Jean-Claude Daran^c

^aUnité de Recherche de Chimie de l'Environnement et Moléculaire, Structurale (CHEMS), Université Mentouri-Constantine, 25000 Algeria, ^bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, and ^cLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France Correspondence e-mail: bouacida_sofiane@yahoo.fr

Received 13 October 2012; accepted 20 October 2012

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.002 Å; R factor = 0.026; wR factor = 0.071; data-to-parameter ratio = 18.4.

In the title compound, $C_7H_6CINO_3S$, the nitro group forms a dihedral angle of 2.7 (4)° with the benzene ring. The bondangle sum at the S atom is 303.7°. In the crystal, molecules are linked by weak C-H···O hydrogen bonds, forming layers lying parallel to (101).

Related literature

For the biological and pharmacological activity of sulfoxides, see, for example: Melzig *et al.* (2009); Huang *et al.* (2010). For related structures, see: Yan (2010); Kobayashi *et al.* (2003).

Experimental

Crystal data

 $\begin{array}{l} C_7 H_6 \text{CINO}_3 \text{S} \\ M_r = 219.65 \\ \text{Monoclinic, } P2_1/c \\ a = 12.2394 \ (5) \text{ Å} \\ b = 5.5009 \ (2) \text{ Å} \\ c = 14.5537 \ (11) \text{ Å} \\ \beta = 116.631 \ (4)^\circ \end{array}$

V = 875.92 (9) Å³ Z = 4Mo K α radiation $\mu = 0.65 \text{ mm}^{-1}$ T = 180 K $0.23 \times 0.20 \times 0.18 \text{ mm}$ 10209 measured reflections

 $R_{\rm int} = 0.024$

2172 independent reflections

1799 reflections with $I > 2\sigma(I)$

Data collection

```
Agilent Xcalibur (Eos, Gemini
ultra) diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
T_{min} = 0.900, T_{max} = 1.000
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	118 parameters
$wR(F^2) = 0.071$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
2172 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4\cdots O12^{i}$ $C7-H7A\cdots O1^{ii}$ $C7-H7B\cdots O1^{iii}$	0.95	2.44	3.384 (2)	173
	0.99	2.36	3.2478 (18)	149
	0.99	2.50	3.332 (2)	142

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 2, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) x, y - 1, z.

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *DIAMOND* (Brandenburg & Berndt, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri-Constantine, Algeria. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique and ANDRU (l'Agence Nationale pour le Développement de la Recherche Universitaire) for financial support *via* the PNR programm.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6974).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Huang, J.-Y., Li, S.-J. & Wang, Y.-G. (2010). J. Carbohydr. Chem. 29, 142-153.
- Kobayashi, K., Sato, A., Sakamoto, S. & Yamaguchi, K. (2003). J. Am. Chem. Soc. 125, 3035–3045.
- Melzig, L., Rauhut, C. B. & Knochel, P. (2009). Chem. Commun. pp. 3536–3538.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yan, Z. (2010). Acta Cryst. E66, 03311.

supporting information

Acta Cryst. (2012). E68, o3207 [doi:10.1107/S1600536812043553]

1-Chloromethylsulfinyl-2-nitrobenzene

Sabrina Benmebarek, Mhamed Boudraa, Sofiane Bouacida and Jean-Claude Daran

S1. Comment

The use of sulfoxides as pharmaceutical has shown promise in recent years (e.g. Melzig *et al.*, 2009 and Huang *et al.* 2010). As part of our ongoing studies on the synthesis, structures and biological activity of organometallic sulfanilamide complexes we have synthesized and determined the crystal structure of the title compound (I). The molecular geometry and the atom-numbering scheme are shown in Fig 1. In the crystal structure of the title compound, there are two pairs of molecules enantiomers in the unit cell. In each molecule, the nitro group forms a dihedral angle of 2.7 (4)° with the phenyl ring very different to that found in 2-(methylsulfinyl)benzamide (25.6°) (Yan, 2010) and in benzamide (26.31°) (Kobayashi *et al.*, 2003). The crystal packing is stabilized by weak C—H···O hydrogen bonds (Fig. 2) forming non-interacting layers parallel to (-101) planes.

S2. Experimental

O-chloronitrobenzene (1.60 g, 10 mmol) and thioacetic acid (0.80 g, 10 mmol) were dissolved in 75 ml aqua ethanol solution (25 ml water + 50 ml ethanol) and refluxed for 3 h under continuous stirring. Then the obtained product was evaporated at room temperature to dryness. The residue was diluted in 50 ml pure ethanol. After few days, orange bocks were recovered, as the solvent slowly evaporated.

S3. Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: C_{aryl} — $H_{aryl} = 0.95$ Å and $C_{methylene}$ — $H_{methylene} = 0.99$ Å. $U_{iso}(H_{aryl}/_{methylene}) = 1.2U_{eq}(C_{aryl}/C_{methylene})$.

Figure 1

Drawing of asymetric unit of, (I), with displacement ellipsoids drawn at the 50% probability level.

Figure 2

Diagram packing of (I) viwed via b axis showing alterning layers parallel to (-101) planes.

1-Chloromethylsulfinyl-2-nitrobenzene

Crystal data	
C ₇ H ₆ ClNO ₃ S	F(000) = 448
$M_r = 219.65$	$D_{\rm x} = 1.666 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6334 reflections
a = 12.2394 (5) Å	$\theta = 3.3 - 29.2^{\circ}$
b = 5.5009 (2) Å	$\mu = 0.65 \text{ mm}^{-1}$
c = 14.5537 (11) Å	T = 180 K
$\beta = 116.631 \ (4)^{\circ}$	Block, orange
$V = 875.92 (9) \text{ Å}^3$	$0.23 \times 0.20 \times 0.18 \text{ mm}$
Z = 4	
Data collection	
Agilent Xcalibur (Eos, Gemini ultra)	10209 measured reflections
diffractometer	2172 independent reflections
Graphite monochromator	1799 reflections with $I > 2\sigma(I)$
Detector resolution: 16.1978 pixels mm ⁻¹	$R_{\rm int} = 0.024$
ω scans	$\theta_{\rm max} = 29.2^\circ, \ \theta_{\rm min} = 3.7^\circ$
Absorption correction: multi-scan	$h = -16 \rightarrow 15$
(CrysAlis PRO; Agilent, 2011)	$k = -7 \rightarrow 7$
$T_{\min} = 0.900, \ T_{\max} = 1.000$	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.026$ wR(F^2) = 0.071	Hydrogen site location: inferred from neighbouring sites
S = 1.05	H-atom parameters constrained
2172 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0401P)^2 + 0.1537P]$
118 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant direct methods	$\Delta ho_{ m max} = 0.35$ e Å ⁻³ $\Delta ho_{ m min} = -0.31$ e Å ⁻³

Special details

Experimental. Absorption correction: Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent, 2011)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	1.06418 (4)	0.73513 (8)	0.59930 (3)	0.03956 (13)	
S1	0.81710 (3)	0.81595 (6)	0.57165 (3)	0.02049 (10)	
01	0.85724 (9)	1.04534 (18)	0.63222 (8)	0.0286 (2)	
011	0.71137 (9)	0.42553 (19)	0.45234 (7)	0.0271 (2)	
012	0.58622 (10)	0.15605 (19)	0.45752 (8)	0.0312 (3)	
N1	0.65255 (10)	0.3330 (2)	0.49290 (9)	0.0204 (2)	
C1	0.73727 (13)	0.7493 (3)	0.71720 (11)	0.0256 (3)	
H1	0.7829	0.8934	0.7453	0.031*	
C2	0.67575 (14)	0.6385 (3)	0.76600 (11)	0.0298 (3)	
H2	0.6802	0.7065	0.8276	0.036*	
C3	0.60801 (13)	0.4300 (3)	0.72587 (11)	0.0290 (3)	
H3	0.5672	0.354	0.7604	0.035*	
C4	0.59970 (12)	0.3319 (3)	0.63530(11)	0.0238 (3)	
H4	0.5518	0.1908	0.6063	0.029*	
C5	0.66235 (12)	0.4428 (2)	0.58775 (10)	0.0186 (3)	
C6	0.73266 (11)	0.6514 (2)	0.62775 (10)	0.0188 (3)	
C7	0.94884 (12)	0.6136 (3)	0.62770 (11)	0.0231 (3)	
H7A	0.9786	0.6027	0.703	0.028*	
H7B	0.926	0.4484	0.5982	0.028*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C11	0.0267 (2)	0.0429 (3)	0.0519 (3)	-0.00401 (16)	0.02018 (18)	0.00852 (19)

Acta Cryst. (2012). E68, o3207

S 1	0.02044 (17)	0.01600 (17)	0.02053 (17)	-0.00089 (12)	0.00517 (13)	0.00213 (13)
01	0.0302 (5)	0.0156 (5)	0.0326 (5)	-0.0035 (4)	0.0074 (5)	-0.0018 (4)
O11	0.0317 (5)	0.0286 (6)	0.0247 (5)	-0.0052 (4)	0.0161 (4)	-0.0025 (4)
O12	0.0313 (6)	0.0277 (6)	0.0311 (6)	-0.0120 (4)	0.0109 (5)	-0.0111 (5)
N1	0.0192 (5)	0.0183 (6)	0.0205 (5)	0.0001 (4)	0.0061 (5)	-0.0008 (4)
C1	0.0237 (7)	0.0241 (7)	0.0235 (7)	0.0014 (6)	0.0057 (6)	-0.0049 (6)
C2	0.0300 (8)	0.0382 (9)	0.0207 (7)	0.0071 (6)	0.0110 (6)	-0.0023 (6)
C3	0.0263 (7)	0.0370 (9)	0.0270 (7)	0.0044 (6)	0.0148 (6)	0.0079 (7)
C4	0.0210 (7)	0.0228 (7)	0.0271 (7)	0.0004 (5)	0.0103 (6)	0.0032 (6)
C5	0.0171 (6)	0.0184 (6)	0.0178 (6)	0.0033 (5)	0.0054 (5)	0.0006 (5)
C6	0.0177 (6)	0.0171 (6)	0.0192 (6)	0.0033 (5)	0.0061 (5)	0.0022 (5)
C7	0.0191 (6)	0.0206 (6)	0.0279 (7)	0.0001 (5)	0.0091 (5)	0.0043 (6)

Geometric parameters (Å, °)

Cl1—C7	1.7703 (14)	C2—C3	1.382 (2)
S1—O1	1.4908 (10)	C2—H2	0.95
S1—C6	1.8196 (14)	C3—C4	1.385 (2)
S1—C7	1.8236 (14)	С3—Н3	0.95
O11—N1	1.2276 (15)	C4—C5	1.3837 (19)
O12—N1	1.2234 (15)	C4—H4	0.95
N1—C5	1.4618 (17)	C5—C6	1.3953 (18)
C1—C2	1.386 (2)	C7—H7A	0.99
C1—C6	1.3865 (19)	С7—Н7В	0.99
C1—H1	0.95		
01 - 51 - 6	104 99 (6)	C5—C4—C3	118 91 (13)
01 - S1 - C7	105.15(6)	C_{5} C_{4} C_{5}	120.5
C6 = S1 = C7	93 53 (6)	C3 - C4 - H4	120.5
012 - N1 - 011	123 31 (12)	C4-C5-C6	122.02(12)
012 - N1 - C5	118 97 (11)	C4-C5-N1	117 44 (12)
011 - N1 - C5	117.72 (11)	C6-C5-N1	120.53(12)
$C_{2}-C_{1}-C_{6}$	120.49(14)	C1 - C6 - C5	117 97 (13)
C2-C1-H1	119.8	C1 - C6 - S1	115.84 (11)
C6—C1—H1	119.8	C5—C6—S1	126.16 (10)
C3—C2—C1	120.60 (13)	Cl1—C7—S1	107.62 (7)
С3—С2—Н2	119.7	Cl1—C7—H7A	110.2
C1—C2—H2	119.7	S1—C7—H7A	110.2
C2—C3—C4	119.97 (13)	Cl1—C7—H7B	110.2
С2—С3—Н3	120	S1—C7—H7B	110.2
С4—С3—Н3	120	H7A—C7—H7B	108.5
C6-C1-C2-C3	-0.6(2)	C4—C5—C6—C1	-0.9(2)
C1 - C2 - C3 - C4	-0.9(2)	N1 - C5 - C6 - C1	179 16 (12)
$C_2 - C_3 - C_4 - C_5$	1.5(2)	C4-C5-C6-S1	-179.03(10)
C_{3} C_{4} C_{5} C_{6}	-0.6(2)	N1 - C5 - C6 - S1	1.02 (18)
C3-C4-C5-N1	179.38 (12)	01-\$1-C6-C1	-8.09(12)
012—N1—C5—C4	3.01 (18)	C7—S1—C6—C1	98.62 (11)
	× /		

O11—N1—C5—C4	-177.48 (12)	O1—S1—C6—C5	170.09 (11)
O12—N1—C5—C6	-177.04 (12)	C7—S1—C6—C5	-83.20 (12)
O11—N1—C5—C6	2.47 (18)	O1—S1—C7—C11	-67.86 (9)
C2-C1-C6-C5	1.4 (2)	C6—S1—C7—Cl1	-174.44 (8)
C2-C1-C6-S1	179.78 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
C4—H4…O12 ⁱ	0.95	2.44	3.384 (2)	173	
C7—H7A···O1 ⁱⁱ	0.99	2.36	3.2478 (18)	149	
C7—H7 <i>B</i> …O1 ⁱⁱⁱ	0.99	2.50	3.332 (2)	142	

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, y-1/2, -z+3/2; (iii) x, y-1, z.