

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Cyano-*N'*-[1-(pyridin-2-yl)ethylidene]acetohydrazide

Xiao-Yi Zhang,^a Xiao-Lin Han^b and Zhi-Bin Qian^{c*}

^aSchool of Pharmacy, Xinxiang Medical University, Xinxiang Henan 453003, People's Republic of China, ^bThe Hematology Department of the First Affiliated Hospital of Xinxiang Medical University, Weihui Henan 453100, People's Republic of China, and ^cSchool of Basic Medical Sciences, Xinxiang Medical University, Xinxiang Henan 453003, People's Republic of China Correspondence e-mail: gianzhibin2012@163.com

Received 7 October 2012; accepted 13 October 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.064; wR factor = 0.143; data-to-parameter ratio = 15.9.

In the title compound, $C_{10}H_{10}N_4O$, the dihedral angle between the pyridine ring and the $-C=O(CH_2)CN$ group is 24.08 (12)°. In the crystal, inversion dimers linked by pairs of $N-H\cdots N$ hydrogen bonds generate $R_2^2(8)$ loops.

Related literature

For the biological activity of hydrazone compounds, see: Rauf *et al.* (2008); Zhang *et al.* (2012). For related structures, see: Taha *et al.* (2012); Kargar *et al.* (2012); Rassem *et al.* (2012).

Experimental

Crystal data

$C_{10}H_{10}N_4O$
$M_r = 202.22$
Monoclinic, P21/c
a = 8.192 (2) Å
b = 14.520(2) Å

c = 8.7340 (17) Å $\beta = 98.466 (2)^{\circ}$ $V = 1027.6 (4) \text{ Å}^3$ Z = 4Mo K α radiation $0.17 \times 0.13 \times 0.12 \text{ mm}$

6189 measured reflections

 $R_{\rm int} = 0.040$

2222 independent reflections

1128 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 298 K

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.985, T_{max} = 0.989$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.064 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.143 & \text{independent and constrained} \\ S &= 1.03 & \text{refinement} \\ 2222 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.14 \text{ e } \text{ Å}^{-3} \\ 140 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.18 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, $^\circ).$

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$

 N3-H3A···O1ⁱ
 0.90 (1)
 2.05 (1)
 2.929 (2)
 167 (2)

Symmetry code: (i) -x + 2, -y, -z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The intensity data were collected by Xiao-Lin Han under the guidance of Mr Yanglu Zhu at Dalian Institute of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6969).

References

- Bruker (1998). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
- Kargar, H., Kia, R. & Tahir, M. N. (2012). Acta Cryst. E68, o2118-o2119.
- Rassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012). *Acta Cryst.* E68, 02279.

Rauf, A., Banday, M. R. & Mattoo, R. H. (2008). Acta Chim. Slov. 55, 448-452. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Taha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Yousuf, S. (2012). Acta Cryst. E68, o2846.
- Zhang, M., Xian, D.-M., Li, H.-H., Zhang, J.-C. & You, Z.-L. (2012). Aust. J. Chem. 65, 343–350.

supporting information

Acta Cryst. (2012). E68, o3203 [doi:10.1107/S1600536812042869]

2-Cyano-N'-[1-(pyridin-2-yl)ethylidene]acetohydrazide

Xiao-Yi Zhang, Xiao-Lin Han and Zhi-Bin Qian

S1. Comment

Hydrazone compounds bearing biological active functional groups -C(O)-NH-N=CH- are readily prepared by the condensation reactions of hydrazines with various aldehydes (e.g. Rauf *et al.*, 2008; Zhang *et al.*, 2012). In the present work, the title new hydrazone compound, derived from 2-acetylpyridine and cyanoacetohydrazide, is reported.

The molecule of the compound adopts a *trans* conformation about the C6=N2 double bond (Fig. 1). The torsion angles of C6-N2-N3-C8, N2-N3-C8-C9, and N3-C8-C9-C10 are 4.8 (3), 5.1 (3), and 6.5 (3)°, respectively. The bond lengths are comparable to those in similar compounds (Taha *et al.*, 2012; Kargar *et al.*, 2012; Rassem *et al.*, 2012). The crystal structure of the compound features N—H···O hydrogen bonds (Table 1), generating dimers (Fig. 2).

S2. Experimental

2-Acetylpyridine (1.0 mmol, 0.121 g) and cyanoacetohydrazide (1.0 mmol, 0.991 g) were mixed and stirred in methanol (50 mL) at room temperature for 1 h. Colorless block-shaped single crystals were obtained after slow evaporation of the solution in air for a few days.

S3. Refinement

H3A attached to N3 was located in a difference Fourier map and was refined isotropically, with N—H distance of 0.90 (1) Å. The remaining hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å for aromatic and CH₂ and 0.96 Å for CH₃. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl group.

Figure 1

Molecular structure of the title compound with 30% thermal ellipsoids.

Figure 2

Molecular packing diagram of the title compound, viewed down the c axis. Hydrogen bonds are drawn as dashed lines.

F(000) = 424

 $\theta = 2.7 - 24.5^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colorless

 $0.17 \times 0.13 \times 0.12 \text{ mm}$

T = 298 K

 $D_{\rm x} = 1.307 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1009 reflections

2-Cyano-N'-[1-(pyridin-2-yl)ethylidene]acetohydrazide

Crystal data

C10H10N4O $M_r = 202.22$ Monoclinic, $P2_1/c$ a = 8.192 (2) Å b = 14.520(2) Å c = 8.7340 (17) Å $\beta = 98.466 \ (2)^{\circ}$ V = 1027.6 (4) Å³ Z = 4

Data collection	
Bruker SMART CCD	6189 measured reflections
diffractometer	2222 independent reflections
Radiation source: fine-focus sealed tube	1128 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.040$
ω scans	$\theta_{\rm max} = 27.0^{\circ}, \theta_{\rm min} = 2.7^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 10$
(SADABS; Sheldrick, 1996)	$k = -18 \rightarrow 12$
$T_{\min} = 0.985, \ T_{\max} = 0.989$	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.064$	Hydrogen site location: inferred from
$wR(F^2) = 0.143$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
2222 reflections	and constrained refinement
140 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0562P)^2 + 0.0523P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.14 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.3684 (2)	0.07074 (13)	0.3032 (2)	0.0623 (6)

N2	0.6478 (2)	0.10204 (13)	0.0382 (2)	0.0537 (5)	
N3	0.7946 (2)	0.06818 (13)	0.0033 (2)	0.0583 (5)	
N4	0.8363 (3)	0.17583 (17)	-0.4976 (3)	0.0901 (8)	
01	0.97937 (19)	0.06914 (12)	-0.16256 (18)	0.0727 (5)	
C1	0.4400 (3)	0.11185 (15)	0.1938 (2)	0.0504 (6)	
C2	0.3705 (3)	0.18833 (17)	0.1157 (3)	0.0667 (7)	
H2	0.4223	0.2167	0.0404	0.080*	
C3	0.2244 (3)	0.22169 (19)	0.1506 (3)	0.0805 (9)	
Н3	0.1764	0.2733	0.0993	0.097*	
C4	0.1494 (3)	0.17926 (19)	0.2605 (3)	0.0714 (7)	
H4	0.0494	0.2006	0.2851	0.086*	
C5	0.2256 (3)	0.10466 (18)	0.3330 (3)	0.0686 (7)	
Н5	0.1747	0.0755	0.4082	0.082*	
C6	0.5976 (3)	0.07141 (15)	0.1606 (2)	0.0512 (6)	
C7	0.6822 (3)	-0.00024 (17)	0.2651 (3)	0.0675 (7)	
H7A	0.6830	-0.0574	0.2098	0.101*	
H7B	0.6246	-0.0083	0.3522	0.101*	
H7C	0.7936	0.0187	0.3006	0.101*	
C8	0.8458 (3)	0.09339 (15)	-0.1295 (3)	0.0554 (6)	
C9	0.7285 (3)	0.15165 (16)	-0.2381 (2)	0.0587 (6)	
H9A	0.6215	0.1218	-0.2570	0.070*	
H9B	0.7146	0.2109	-0.1904	0.070*	
C10	0.7896 (3)	0.16532 (16)	-0.3836 (3)	0.0594 (6)	
H3A	0.860 (2)	0.0304 (13)	0.066 (2)	0.080*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0625 (14)	0.0709 (13)	0.0578 (12)	0.0094 (11)	0.0226 (10)	0.0093 (10)
N2	0.0449 (11)	0.0645 (13)	0.0536 (11)	0.0050 (9)	0.0137 (9)	0.0024 (9)
N3	0.0490 (13)	0.0724 (14)	0.0548 (12)	0.0110 (10)	0.0125 (9)	0.0116 (10)
N4	0.0921 (18)	0.1099 (19)	0.0729 (15)	0.0051 (14)	0.0278 (13)	0.0163 (14)
01	0.0543 (11)	0.0962 (13)	0.0717 (11)	0.0180 (9)	0.0226 (9)	0.0185 (9)
C1	0.0485 (14)	0.0581 (14)	0.0448 (12)	-0.0002 (12)	0.0069 (10)	-0.0003 (11)
C2	0.0622 (17)	0.0784 (18)	0.0631 (15)	0.0105 (14)	0.0215 (13)	0.0169 (13)
C3	0.0741 (19)	0.091 (2)	0.0809 (19)	0.0283 (16)	0.0261 (16)	0.0236 (16)
C4	0.0623 (17)	0.0910 (19)	0.0649 (16)	0.0209 (15)	0.0232 (14)	0.0064 (15)
C5	0.0664 (17)	0.0843 (19)	0.0610 (15)	0.0076 (15)	0.0291 (13)	0.0074 (14)
C6	0.0486 (14)	0.0581 (14)	0.0471 (12)	-0.0015 (11)	0.0081 (11)	0.0011 (11)
C7	0.0607 (17)	0.0816 (17)	0.0616 (15)	0.0133 (14)	0.0131 (12)	0.0181 (13)
C8	0.0481 (15)	0.0633 (16)	0.0568 (14)	0.0015 (12)	0.0143 (12)	0.0027 (12)
C9	0.0536 (15)	0.0676 (16)	0.0564 (13)	0.0062 (12)	0.0132 (11)	0.0058 (12)
C10	0.0594 (16)	0.0618 (15)	0.0583 (14)	0.0026 (12)	0.0131 (13)	0.0045 (12)

Geometric parameters (Å, °)

N1-C5	1.331 (3)	С3—Н3	0.9300
N1—C1	1.333 (2)	C4—C5	1.359 (3)

supporting information

1 280 (2)	C4—H4	0.9300
1.200(2) 1.374(2)	C5—H5	0.9300
1.371(2) 1 341(3)	C6-C7	1 486 (3)
0.899(10)	C7—H7A	0.9600
1 128 (3)	C7—H7B	0.9600
1.120(3) 1.224(2)	C7—H7C	0.9600
1.221(2) 1.382(3)	C8 - C9	1 506 (3)
1 486 (3)	C9-C10	1 446 (3)
1 366 (3)	C9—H9A	0.9700
0.9300	C9—H9B	0.9700
1 361 (3)		0.9700
1.501 (5)		
117.8 (2)	N2—C6—C1	114.9 (2)
117.41 (19)	N2—C6—C7	125.31 (19)
119.3 (2)	C1—C6—C7	119.78 (18)
117.5 (15)	С6—С7—Н7А	109.5
123.2 (15)	С6—С7—Н7В	109.5
121.4 (2)	H7A—C7—H7B	109.5
116.7 (2)	С6—С7—Н7С	109.5
121.88 (19)	H7A—C7—H7C	109.5
119.1 (2)	H7B—C7—H7C	109.5
120.5	O1—C8—N3	122.0 (2)
120.5	O1—C8—C9	121.5 (2)
119.9 (2)	N3—C8—C9	116.48 (19)
120.1	С10—С9—С8	111.03 (18)
120.1	С10—С9—Н9А	109.4
117.7 (2)	С8—С9—Н9А	109.4
121.1	С10—С9—Н9В	109.4
121.1	С8—С9—Н9В	109.4
124.1 (2)	Н9А—С9—Н9В	108.0
118.0	N4—C10—C9	179.6 (3)
118.0		
	1.280 (2) $1.374 (2)$ $1.341 (3)$ $0.899 (10)$ $1.128 (3)$ $1.224 (2)$ $1.382 (3)$ $1.486 (3)$ $1.366 (3)$ 0.9300 $1.361 (3)$ $117.8 (2)$ $117.41 (19)$ $119.3 (2)$ $117.5 (15)$ $123.2 (15)$ $121.4 (2)$ $116.7 (2)$ $121.88 (19)$ $119.1 (2)$ 120.5 120.5 120.5 $119.9 (2)$ 120.1 120.1 $117.7 (2)$ 121.1 $124.1 (2)$ 118.0 118.0	1.280(2) $C4-H4$ $1.374(2)$ $C5-H5$ $1.341(3)$ $C6-C7$ $0.899(10)$ $C7-H7A$ $1.128(3)$ $C7-H7B$ $1.224(2)$ $C7-H7C$ $1.382(3)$ $C8-C9$ $1.486(3)$ $C9-C10$ $1.366(3)$ $C9-H9A$ 0.9300 $C9-H9B$ $1.361(3)$ $117.8(2)$ $N2-C6-C1$ $117.41(19)$ $N2-C6-C7$ $119.3(2)$ $C1-C6-C7$ $117.5(15)$ $C6-C7-H7A$ $123.2(15)$ $C6-C7-H7B$ $121.4(2)$ $H7A-C7-H7B$ $16.7(2)$ $C6-C7-H7C$ $119.1(2)$ $H7B-C7-H7C$ $19.1(2)$ $H7B-C7-H7C$ $19.9(2)$ $N3-C8-C9$ $119.9(2)$ $N3-C8-C9$ 120.1 $C10-C9-H9A$ 121.1 $C10-C9-H9A$ 121.1 $C10-C9-H9B$ 121.1 $C10-C9-H9B$ 121.1 $C8-C9-H9B$ $124.1(2)$ $H9A-C9-H9B$ 18.0 $N4-C10-C9$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N3—H3A···O1 ⁱ	0.90 (1)	2.05 (1)	2.929 (2)	167 (2)

Symmetry code: (i) -x+2, -y, -z.