Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

μ-(2,2'-Bipyrimidine)-bis[dichloridopalladium(II)] dimethylformamide monosolvate

Cyril Young,* Andreas Roodt and Barend C. B. Bezuidenhoudt

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
Correspondence e-mail: technetium3006@hotmail.com
Received 14 September 2012; accepted 27 September 2012
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; Hatom completeness 47%; disorder in solvent or counterion; R factor $=0.028$; $w R$ factor $=0.059$; data-to-parameter ratio $=16.3$.

In the title compound, $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, the two Pd^{2+} cations have a distorted square-planar coordination sphere and are bridged by a bis-bidentate $2,2^{\prime}$-bipyrimidine ligand. Two terminal chloride anions are also bonded to each of the Pd^{2+} cations. The dinuclear complex and the dimethylformamide solvate molecule lie on the intersection of a twofold rotation axis and a mirror plane, with disorder present in the solvate molecule. There is a slight distortion from the square-planar metal geometry, as indicated by the bite angles of $81.77(13)^{\circ}$ and $91.63(5)^{\circ}$. The C and O atoms of the solvent molecule are disordered over two sets of sites of equal occupancy.

Related literature

The title compound is structurally related to the monocoordinated species reported by Hudgens et al. (1997). For background literature on homogenous catalyst models, see: Van Leeuwen (2004); Meij et al. (2005); Otto et al. (2003); Steyn et al. (1997). For related structures, see: Inagaki et al. (2007); Maekawa et al. (1994). The mono-coordinated platinum counterpart was reported by Kawakami et al. (2006). For the synthetic procedure, see: Boyle et al. (2004).

Experimental

Crystal data

$\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$M_{r}=578.81$
Monoclinic, $C 2 / m$
$a=10.7299$ (6) \AA
$b=14.2399$ (7) \AA
$c=5.9381$ (3) \AA
$\beta=108.229$ (2) ${ }^{\circ}$

Data collection

Bruker APEXII diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\text {min }}=0.785, T_{\text {max }}=0.814$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028 \quad 68$ parameters
$w R\left(F^{2}\right)=0.059$
$S=1.11$
1108 reflections
$V=861.76(8) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=2.71 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.09 \times 0.09 \times 0.08 \mathrm{~mm}$

6102 measured reflections 1108 independent reflections 975 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.041$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.75$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.79 \mathrm{e}^{-3}$

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINTPlus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the University of the Free State, NRF(THRIP) and Sasol is gratefully acknowledged, while Theunis Muller is thanked for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2102).

References

Boyle, R. C., Mague, J. T. \& Fink, M. J. (2004). Acta Cryst. E60, m40-m41. Brandenburg, K. \& Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hudgens, T., Johnson, D., Cordes, W., Barclay, T. \& Jeter, D. (1997). J. Chem. Crystallogr. 27, 247-250.
Inagaki, A., Yatsuda, S., Edure, S., Suzuki, A., Takahashi, T. \& Akita, M. (2007). Inorg. Chem. 7, 2432-45.

Kawakami, D., Yamashita, M., Matsunaga, S., Takaishi, S., Kajiwara, T., Miyasaka, H., Sugiura, K., Matsuzaki, H., Okamoto, H., Wakabayashi, Y. \& Sawa, H. (2006). Angew. Chem. Int. Ed. 45, 7214-7217.
Maekawa, M., Munkata, M., Kuroda-Sowa, T. \& Motokawa, M. (1994). Anal. Sci. 10, 977-978.
Meij, A. M. M., Otto, S. \& Roodt, A. (2005). Inorg. Chim. Acta, 358, 10051011.

Otto, S., Roodt, A. \& Elding, L. I. (2003). Dalton Trans. pp. 2519-2525.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Steyn, G. J. J., Roodt, A. \& Poletaeva, I. (1997). J. Organomet. Chem. 536, 197205.

Van Leeuwen, P. (2004). Homogenous Catalysis. Dordrecht: Kluwer Academic Publishers.

supporting information

Acta Cryst. (2012). E68, m1374 [doi:10.1107/S1600536812040779]

$\boldsymbol{\mu}$-(2,2'-Bipyrimidine)-bis[dichloridopalladium(II)] dimethylformamide monosolvate

Cyril Young, Andreas Roodt and Barend C. B. Bezuidenhoudt

S1. Comment

Although a wide variety of metals are used in catalysis today, the platinum group metals show the most promising catalytic properties (Van Leeuwen (2004). Unfortunately, knowledge surrounding the actual catalysis process on a molecular level is minimal. Various platinum group metals which find application in heterogeneous catalysis are dispersed onto supports with little control. Consequently, this study was undertaken to explore the possibility of using bridging ligands ensure that metals are well dispersed in a controllable fashion. The insight gained by exploring bridged platinum group metals could contribute to ongoing homogeneous catalyst models of the metal complex. (Meij et al. (2005), Otto et al. (2003) Steyn et al. (1997)).

The compound crystallizes in a monoclinic $C 2 / m$ space group with $Z=2$. Both palladium atoms are situated on a twofold rotation axis and three carbon atoms, namely C11, C13 and C22 lie on a mirror plane. O22 of the DMF solvate molecule is situated on a twofold rotation axis and N 22 on both a mirror plane and a rotation axis, which essentially gives N 22 an occupation of 25%. As a result of the symmetry in the molecule there are only twelve atoms, including the hydrogen atoms, in the asymmetric unit. The geometry of the palladium centers is slightly distorted from the square
 $91.63(5)^{\circ}$ respectively. The bond lengths and angles for the title compound are comparable to those in literature (Inagaki et al. (2007), Maekawa et al. (1994)). The palladium-nitrogen bonds of $2.05 \AA$ are marginally longer than the monocoordinated palladium complex (Hudgens et al. (1997)) which has a bond length of $1.99 \AA$. The Pd-Pd intra-molecular bond distances of $5.47 \AA$, is slightly shorter than the $5.62 \AA$ for the platinum counterpart (Kawakami et al. (2006)).

S2. Experimental

The title compound was prepared by the modification of the published procedure by Boyle et al. (2004). $\mathrm{PdCl}_{2}(0.200 \mathrm{~g}$, $\left.1,13 \times 10^{-3} \mathrm{~mol}\right)$ was dissolved in boiling acetonitrile. 2,2-Bipyrimidine ($0.092 \mathrm{~g}, 5.71 \times 10^{-4} \mathrm{~mol}$) was added to the solution. Upon addition a yellow precipitate formed. Yield: $0.244 \mathrm{~g}(85 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 7.9(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 2 \mathrm{H})$, 9.3 (dd, J = $5.1 \mathrm{~Hz}, 4 \mathrm{H})$. IR (ATR): $1589\left(\mathrm{v}_{\mathrm{C}-\mathrm{H}}\right), 1137\left(\mathrm{v}_{\mathrm{C}-\mathrm{N}}\right), 813\left(\mathrm{v}_{\mathrm{Ar}-\mathrm{H}}\right)$.

S3. Refinement

The aromatic, methine, and methyl H atoms were placed in geometrically idealized positions ($\mathrm{C}-\mathrm{H}=0.93-0.98$) and constrained to ride on their parent atoms with $U_{s 0}(\mathrm{H})=1.2 U_{e q}(\mathrm{C})$ for the aromatic protons. The highest residual electron density was located $0.55 \AA$ from C13 and was essentially meaningless.

Figure 1

Diamond representation of the title compound, showing the numbering scheme and displacement ellipsoids (50\% probability).
μ-(2,2'-Bipyrimidine)-bis[dichloridopalladium(II)] dimethylformamide monosolvate

Crystal data

$\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$M_{r}=578.81$
Monoclinic, $\mathrm{C} 2 / \mathrm{m}$
Hall symbol: -C 2 y
$a=10.7299$ (6) \AA
$b=14.2399$ (7) \AA
$c=5.9381$ (3) \AA
$\beta=108.229(2)^{\circ}$
$V=861.76(8) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII
diffractometer
Radiation source: sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min }=0.785, T_{\text {max }}=0.814$
$F(000)=550$
$D_{\mathrm{x}}=2.231 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1958 reflections
$\theta=2.9-27.8^{\circ}$
$\mu=2.71 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Cuboid, red
$0.09 \times 0.09 \times 0.08 \mathrm{~mm}$

6102 measured reflections
1108 independent reflections
975 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=3.6^{\circ}$
$h=-12 \rightarrow 14$
$k=-18 \rightarrow 18$
$l=-7 \rightarrow 7$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.059$
$S=1.11$
1108 reflections
68 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier \quad map
> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0172 P)^{2}+2.5414 P\right]$ \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.75$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.79 \mathrm{e}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$	Occ. (<1)
C11	0.5	$0.4487(3)$	0.5	$0.0149(8)$	
C12	$0.5694(3)$	$0.3120(2)$	$0.6987(6)$	$0.0270(8)$	
H12	0.6167	0.2793	0.8341	0.032^{*}	
C13	0.5	$0.2637(3)$	0.5	$0.0370(13)$	
H13	0.5	0.1984	0.5	0.044^{*}	
N1	$0.5696(2)$	$0.40577(17)$	$0.6995(4)$	$0.0152(5)$	
C111	$0.72957(8)$	$0.61422(6)$	$1.23998(14)$	$0.0303(2)$	
Pd01	$0.65034(3)$	0.5	$0.96630(6)$	$0.01736(12)$	
N22	0.5	0	0	$0.0288(14)$	
O22	0.5	$0.1536(5)$	0	$0.052(2)$	0.5
C21	$0.4476(8)$	$0.0853(5)$	$-0.1298(13)$	$0.0356(18)$	0.5
C22	$0.4325(11)$	0	$-0.2451(19)$	$0.053(4)$	0.5

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.013(2)$	$0.015(2)$	$0.018(2)$	0	$0.0063(17)$	0
C12	$0.0231(18)$	$0.0158(15)$	$0.035(2)$	$0.0002(13)$	$-0.0007(15)$	$0.0069(13)$
C13	$0.034(3)$	$0.012(2)$	$0.051(3)$	0	$-0.008(3)$	0
N1	$0.0112(12)$	$0.0180(12)$	$0.0155(13)$	$0.0008(10)$	$0.0027(10)$	$0.0040(10)$
C111	$0.0220(4)$	$0.0488(5)$	$0.0189(4)$	$-0.0109(4)$	$0.0045(3)$	$-0.0137(4)$
Pd01	$0.01263(19)$	$0.0256(2)$	$0.01300(18)$	0	$0.00278(13)$	0
N22	$0.052(4)$	$0.016(3)$	$0.026(3)$	0	$0.025(3)$	0
O22	$0.095(7)$	$0.019(4)$	$0.064(6)$	0	$0.058(6)$	0
C21	$0.037(5)$	$0.038(4)$	$0.041(4)$	$-0.001(3)$	$0.025(4)$	$0.002(4)$

C 22	$0.015(5)$	$0.123(12)$	$0.018(5)$	0	$0.003(4)$	0

Geometric parameters ($A,{ }^{\circ}$)

C11-N1 ${ }^{\text {i }}$	1.335 (3)	N22-C22	1.408 (11)
C11-N1	1.335 (3)	N22-C22 ${ }^{\text {iv }}$	1.408 (11)
$\mathrm{C} 11-\mathrm{C} 11^{\text {ii }}$	1.462 (8)	$\mathrm{N} 22-\mathrm{C} 21^{\text {v }}$	1.454 (8)
C12-N1	1.336 (4)	$\mathrm{N} 22-\mathrm{C} 21^{\text {vi }}$	1.454 (8)
C12-C13	1.368 (4)	N22-C21	1.454 (8)
C12-H12	0.93	$\mathrm{N} 22-\mathrm{C} 21^{\text {iv }}$	1.454 (8)
C13-C12 ${ }^{\text {i }}$	1.368 (4)	$\mathrm{O} 22-\mathrm{C} 21$	1.258 (9)
C13-H13	0.93	$\mathrm{O} 22-\mathrm{C} 21^{\text {v }}$	1.258 (9)
N1-Pd01	2.050 (2)	C21-C22	1.379 (9)
Cl11-Pd01	2.2682 (8)	C21-C21 ${ }^{\text {V }}$	1.598 (16)
$\mathrm{Pd} 01-\mathrm{N} 1^{\text {iii }}$	2.050 (2)	$\mathrm{C} 22-\mathrm{C} 21^{\text {vi }}$	1.379 (9)
Pd01-Cl11 ${ }^{\text {iii }}$	2.2682 (8)		
$\mathrm{N} 1-\mathrm{C} 11-\mathrm{N} 1$	125.5 (4)	$\mathrm{C} 22^{\mathrm{iv}}-\mathrm{N} 22-\mathrm{C} 21^{\text {vi }}$	122.4 (3)
N1 ${ }^{\text {i }}$ - $\mathrm{C} 11-\mathrm{C} 11{ }^{\text {ii }}$	117.24 (18)	$\mathrm{C} 21^{\mathrm{v}}-\mathrm{N} 22-\mathrm{C} 21^{\text {vi }}$	180.0 (3)
N1-C11-C11ii	117.24 (18)	C22-N22-C21	57.6 (3)
N1-C12-C13	120.4 (3)	$\mathrm{C} 22^{\text {iv }}-\mathrm{N} 22-\mathrm{C} 21$	122.4 (3)
N1-C12-H12	119.8	$\mathrm{C} 21^{\mathrm{v}}-\mathrm{N} 22-\mathrm{C} 21$	66.7 (6)
C13-C12-H12	119.8	C21 ${ }^{\text {vi- }} \mathrm{N} 22-\mathrm{C} 21$	113.3 (6)
C12-C13-C12 ${ }^{\text {i }}$	119.6 (4)	$\mathrm{C} 22-\mathrm{N} 22-\mathrm{C} 21^{\text {iv }}$	122.4 (3)
C12-C13-H13	120.2	$\mathrm{C} 22^{\mathrm{iv}}-\mathrm{N} 22-\mathrm{C} 21^{\text {iv }}$	57.6 (3)
C12- ${ }^{\text {i }} 13-\mathrm{H} 13$	120.2	$\mathrm{C} 21^{\text {v }}-\mathrm{N} 22-\mathrm{C} 21^{\text {iv }}$	113.3 (6)
C11-N1-C12	117.1 (3)	$\mathrm{C} 21^{\text {vi }}-\mathrm{N} 22-\mathrm{C} 21^{\text {iv }}$	66.7 (6)
C11-N1-Pd01	111.7 (2)	$\mathrm{C} 21-\mathrm{N} 22-\mathrm{C} 21^{\text {iv }}$	180.0 (6)
C12-N1-Pd01	131.1 (2)	$\mathrm{C} 21-\mathrm{O} 22-\mathrm{C} 21^{\text {v }}$	78.9 (8)
N1—Pd01-N ${ }^{1 i i}$	81.77 (13)	$\mathrm{O} 22-\mathrm{C} 21-\mathrm{C} 22$	160.9 (9)
N1—Pd01-Cl11	174.98 (7)	$\mathrm{O} 22-\mathrm{C} 21-\mathrm{N} 22$	107.2 (6)
N $1^{\text {iii }}$-Pd01-Cl11	93.29 (7)	C22-C21-N22	59.5 (5)
$\mathrm{N} 1-\mathrm{Pd} 01-\mathrm{Cl11}{ }^{\text {iii }}$	93.29 (7)	$\mathrm{O} 22-\mathrm{C} 21-\mathrm{C} 21^{\text {v }}$	50.6 (4)
$\mathrm{N} 1{ }^{\text {iii- }} \mathrm{Pd} 01-\mathrm{Cl} 11^{\text {iii }}$	174.98 (7)	C22-C21-C21 ${ }^{\text {v }}$	114.6 (6)
Cl11-Pd01-Cl11 ${ }^{\text {iii }}$	91.63 (5)	$\mathrm{N} 22-\mathrm{C} 21-\mathrm{C} 21^{\text {v }}$	56.7 (3)
$\mathrm{C} 22-\mathrm{N} 22-\mathrm{C} 22^{\mathrm{iv}}$	180.0000 (10)	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 21^{\text {vi }}$	123.5 (10)
$\mathrm{C} 22-\mathrm{N} 22-\mathrm{C} 21^{\text {v }}$	122.4 (3)	C21-C22-N22	62.9 (5)
$\mathrm{C} 22^{\mathrm{iv}}-\mathrm{N} 22-\mathrm{C} 21^{\mathrm{v}}$	57.6 (3)	$\mathrm{C} 21{ }^{\text {vi}}-\mathrm{C} 22-\mathrm{N} 22$	62.9 (5)
$\mathrm{C} 22-\mathrm{N} 22-\mathrm{C} 21^{\text {vi }}$	57.6 (3)		

[^0]
[^0]: Symmetry codes: (i) $-x+1, y,-z+1$; (ii) $-x+1,-y+1,-z+1$; (iii) $x,-y+1, z$; (iv) $-x+1,-y,-z$; (v) $-x+1, y,-z$; (vi) $x,-y, z$.

