Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bicyclo[2.2.1]hept-7-yl p-bromobenzoate

Barry A. Lloyd ${ }^{\text {a }}$ and Atta M. Arif ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Weber State University, Ogden, Utah 84408-2503, and
${ }^{\text {b }}$ Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
Correspondence e-mail: blloyd@weber.edu

Received 12 September 2012; accepted 1 October 2012
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.022 ; w R$ factor $=0.055 ;$ data-to-parameter ratio $=13.4$.

The title compound, $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{2}$, contains a sterically unencumbered norbornyl group. The dihedral angle between the plane of the carboxylate group and the mean plane of the adjacent benzene ring is $5.3(2)^{\circ}$. The dihedral angle between the plane of the carboxylate group and the norbornyl methano $\mathrm{C}-\mathrm{O}$ bond is $4.5(1)^{\circ}$, the methano C atom deviating by 0.141 (2) \AA from this plane. In the crystal, molecules pack as pairs of enantiomers, with a distance of 3.747 (1) Å between the centroids of nearest parallel benzene rings.

Related literature

For calculated and experimental norbornane and related structures, see: Allinger et al. (1989); Pfund et al. (1980). For related polycyclic p-bromobenzoate structures, see: Lloyd \& Arif (2012); Lloyd et al. $(1995,2000)$. For a high resolution low temperature powder synchrotron X-ray diffraction structure of norbornane, see: Fitch \& Jobic (1993). For some norbornyl bond lengths and angles, see: Watson et al. (1992). For possible $\mathrm{C}-\mathrm{O}$ bond-length correlation to reactivity in a 7 -norbornenyl benzoate, see: Jones et al. (1992).

Experimental

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{2}$
$M_{r}=295.17$
Monoclinic, $P 2_{1} / c$
$a=11.7401$ (2) \AA
$V=1251.68$ (4) \AA^{3}
$=4$
Mo K α radiation
$b=6.3767$ (1) \AA
$c=17.7462(3) \AA$
$\beta=109.584(1)^{\circ}$
$\mu=3.27 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.30 \times 0.25 \times 0.18 \mathrm{~mm}$

Data collection

Nonius KappaCCD Diffractometer Absorption correction: multi-scan (DENZO-SMN; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.440, T_{\text {max }}=0.591$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.055$
$S=1.03$
2882 reflections

5495 measured reflections 2882 independent reflections 2469 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.015$

215 parameters
All H -atom parameters refined
$\Delta \rho_{\text {max }}=0.38 \mathrm{e}^{\circ} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.35 \mathrm{e} \mathrm{A}^{-3}$

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 2012), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

We thank the Weber State Chemistry Department for supporting this work, the University of Utah Chemistry Department X-ray crystallographic facility, and the late Professor Evan L. Allred who began this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2598).

References

Allinger, N. L., Geise, H. J., Pyckhout, W., Paquette, L. A. \& Gallucci, J. C. (1989). J. Am. Chem. Soc. 111, 1106-1114.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Fitch, A. N. \& Jobic, H. (1993). J. Chem. Soc. Chem. Commun. pp. 1516-1517.
Jones, P. G., Kirby, A. J. \& Percy, J. M. (1992). Acta Cryst. C48, 829-832.
Lloyd, B. A. \& Arif, A. M. (2012). Acta Cryst. E68, o2209.
Lloyd, B. A., Arif, A. M. \& Allred, E. L. (2000). Acta Cryst. C56, 1377-1379.
Lloyd, B. A., Arif, A. M., Coots, R. J. \& Allred, E. L. (1995). Acta Cryst. C51, 2059-2062.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pfund, R. A., Schweizer, W. B. \& Ganter, C. (1980). Helv. Chim. Acta, 63, $674-$ 681.

organic compounds

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Watson, W. H., Kashyap, R. P., Krawiec, M., Marchand, A. P., Reddy, C. M. \& Gadgil, V. R. (1992). Acta Cryst. B48, 731-737.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, o3086-o3087 [doi:10.1107/S1600536812041268]

Bicyclo[2.2.1]hept-7-yl p-bromobenzoate

Barry A. Lloyd and Atta M. Arif

S1. Comment

Many norbornyl structures have been previously determined, but precise bond lengths and angles are derivative dependent (Watson et al., 1992). The Cambridge Crystallographic Database contains only five 7-norbornyl benzoate structures, but these are complicated by additional substituents and their associated steric interactions (for example, see Pfund et al., 1980). An ORTEP-3 drawing (Farrugia, 2012) of title compound structure $\mathbf{1}$ is shown in Fig. 1, and a cell packing diagram is shown in Fig. 2. Structure 1 norbornyl group bond lengths and bond angles agree with reported values, but their precision is about ten times better than geometry averaged values (Watson et al., 1992). Structure 1 was determined so that bond length, bond angle, least-squares plane, and nonbonding contact comparisons could be made with other related p-bromobenzoate structures (Lloyd \& Arif, 2012, Lloyd et al., 2000 and Lloyd et al., 1995).
 at 3.257 (2) \AA [symmetry code: (ii) $x,-1+y, z$]. Least squares planes are defined as $\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 4$ (plane 1), $\mathrm{C} 1-\mathrm{C} 2-$ $\mathrm{C} 3-\mathrm{C} 4$ (plane 2), and $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$ (plane 3). Interplanar 1:2, 1:3, and 1:4 angles are: $121.2(1)^{\circ}, 125.5(1)^{\circ}$, and 113.3 (1) $)^{\circ}$, respectively. Angle 1:2 is 1.4° larger than the corresponding 296 K structure 2 (Fig. 3) angle (Lloyd et al., 1995), but smaller than corresponding angles of our other seven norbornenyl structures. Structure $\mathbf{1}$ angle $1: 3$ is larger than analogous angles in all eight norbornenyl structures, and angle 2:3 is smaller for all except structure 3. Smaller 1:2 and larger 1:3 angles in structure $\mathbf{1}$ are likely a consequence of a longer $\mathrm{C} 2-\mathrm{C} 3$ norbornyl single bond (versus a shorter norbornenyl C2=C3 double bond) which bends C7 toward plane 2. The slightly larger structure $\mathbf{1} 2: 3$ angle versus $\mathbf{3}$ might result from intramolecular $\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{H} 5 \mathrm{~A}$ and $\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{H} 6 \mathrm{~A}$ contacts, 2.35 (3) and 2.40 (3) \AA, respectively (Lloyd \& Arif, 2012). Reactant structural features (such as $\mathrm{C} 7-\mathrm{O} 2$ bond length) that might portend the large norbornenyl: norbornyl solvolytic reactivity ratio are not obvious, and the late transition state idea (Jones et al., 1992) is supported.

S2. Experimental

7-Norbornyl p-bromobenzoate (title compound 1) was made from commercial bicyclo[2.2.1]heptan-7-ol (7-norborneol, Alfa Products). Under a dry nitrogen atmosphere, 1.06 g freshly distilled (about $300 \mathrm{~K}, 7 \mathrm{~Pa}$) p-bromobenzoyl chloride, 15 ml reagent grade dichloromethane, 0.802 g dry, freshly distilled (from CaH_{2} under N_{2}) pyridine, and 0.540 g of sublimed ($373 \mathrm{~K}, 7 \mathrm{~Pa}$) 7-norborneol were combined and the mixture was refluxed for 15 min , then stirred for 2 d at 296 K . The reaction mixture was poured into 10 ml of $5 \% \mathrm{HCl}$ solution, and layers were separated. The dichloromethane layer was washed twice more with $5 \% \mathrm{HCl}$ solution, the dichloromethane was evaporated, and the residue was dissolved in about 3 ml of ether. The mixture was chromatographed on Florisil (petroleum ether, then ether). Recovered 1.22 g of $\mathbf{1}$, 85.3% yield, mp $350-351 \mathrm{~K}$ after two recrystallizations from petroleum ether/ether: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta 1.10-$ $1.57(4 \mathrm{H}, \mathrm{m}), 1.57-2.09(4 \mathrm{H}, \mathrm{m}), 2.31(2 \mathrm{H}, \mathrm{m}), 4.99(1 \mathrm{H}, \mathrm{s}), 7.57(2 \mathrm{H}, \mathrm{d}), 7.88(2 \mathrm{H}, \mathrm{d})$. Crystals were regrown slowly by dissolving 1.0 g of $\mathbf{1}$ in 5 ml of anhydrous ether in a 30 ml beaker. The beaker was placed inside a desiccator along with a 20 ml beaker containing 15 ml of petroleum ether (bp 303-333 K), and the desiccator was placed inside a freezer
at 253 K . A one-hole rubber stopper was placed in the desiccator neck with glass wool inserted into the hole, allowing for slow evaporation. Crystals began forming after 3 d and they were filtered out after 5 d . One of these crystals was selected for X-ray analysis.

S3. Refinement

A colorless prism shaped crystal $0.30 \times 0.25 \times 0.18 \mathrm{~mm}$ in size was mounted on a glass fiber with traces of viscous oil and then transferred to a Nonius KappaCCD diffractometer equipped with Mo $K \alpha$ radiation ($\lambda=0.71073 \AA$). Ten frames of data were collected at 150 (1) K with an oscillation range of $1 \% /$ frame and an exposure time of $20 \mathrm{sec} /$ frame (Nonius, 1998). Indexing and unit cell refinement based on all observed reflection from those ten frames, indicated a monoclinic \boldsymbol{P} lattice. A total of 5495 reflections $\left(\Theta_{\max }=27.48^{\circ}\right)$ were indexed, integrated and corrected for Lorentz, polarization and absorption effects using DENZO-SMN and SCALEPAC (Otwinowski \& Minor, 1997). Post refinement of the unit cell gave $\mathrm{a}=11.7401$ (2) $\AA, \mathrm{b}=6.3767$ (1) \AA, $\mathrm{c}=17.7462$ (3) $\AA, \beta=109.584(1)^{\circ}$, and $\mathrm{V}=1251.68$ (4) \AA^{3}. Axial photographs and systematic absences were consistent with the compound having crystallized in the monoclinic space group $\boldsymbol{P} 2_{1} / \mathrm{c}$.
The structure was solved by a combination of direct and heavy atom methods using SIR97 (Altomare et al., 1999). All of the non-hydrogen atoms were refined with anisotropic displacement coefficients. Hydrogen atoms were located and refined isotropically using SHELXL97 (Sheldrick, 2008). The weighting scheme employed was $\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+\right.$ $\left.(0.0254 \mathrm{P})^{2}+0.4883 \mathrm{P}\right]$ where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$. The refinement converged to $\mathrm{R} 1=0.0224$, $\mathrm{wR} 2=0.0527$, and $\mathrm{S}=1.025$ for 2469 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$, and $\mathrm{R} 1=0.0294$, $\mathrm{wR} 2=0.0552$, and $\mathrm{S}=1.025$ for 2882 unique reflections and 215 parameters, where $\mathrm{R} 1=\Sigma\left(\| \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right|\right) / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right|$, wR2 $=\left[\Sigma\left(w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right) 2\right) / \Sigma\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2}$, and $\mathrm{S}=$ Goodness-of-fit on $\mathrm{F}^{2}=[\Sigma$ $\left(w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2} /(\mathrm{n}-\mathrm{p})\right]^{1 / 2}, \mathrm{n}$ is the number of reflections and p is the number of parameters refined.
The maximum Δ / σ in the final cycle of the least-squares was 0.001 , and the residual peaks on the final differenceFourier map ranged from -0.35 to $0.382 \mathrm{e} / \AA^{3}$. Scattering factors were taken from the International Tables for Crystallography, Volume C, Chapters 4 pp 206-222 and 6 pp 476-516.

Figure 1
ORTEP-3 drawing of the title compound showing 50% displacement ellipsoids.

Figure 2
Cell packing diagram for the title compound.

Figure 3

Compounds 1, 2, and 3.

Bicyclo[2.2.1]hept-7-yl p-bromobenzoate

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{2} \\
& M_{r}=295.17 \\
& \text { Monoclinic, } P 2_{1} / c \\
& \text { Hall symbol: }-\mathrm{P} 2 \mathrm{ybc} \\
& a=11.7401(2) \AA \\
& b=6.3767(1) \AA \\
& c=17.7462(3) \AA \\
& \beta=109.584(1)^{\circ} \\
& V=1251.68(4) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& F(000)=600 \\
& D_{\mathrm{x}}=1.566 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Melting point: } 351 \mathrm{~K} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3135 \text { reflections } \\
& \theta=1.0-27.5^{\circ} \\
& \mu=3.27 \mathrm{~mm}^{-1} \\
& T=150 \mathrm{~K} \\
& \text { Prism, colourless } \\
& 0.30 \times 0.25 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD Diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Phi and ω scans
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.440, T_{\text {max }}=0.591$
5495 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.055$
$S=1.03$
2882 reflections
215 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> 2882 independent reflections
> 2469 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.015$
> $\theta_{\max }=27.5^{\circ}, \theta_{\min }=2.4^{\circ}$
> $h=-15 \rightarrow 15$
> $k=-8 \rightarrow 8$
> $l=-22 \rightarrow 23$

> Hydrogen site location: inferred from neighbouring sites All H-atom parameters refined
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0254 P)^{2}+0.4883 P\right]$
> \quad where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.38$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.35 \mathrm{e} \AA^{-3}$
> Extinction correction: SHELXL, $\quad \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0091 (7)

Special details

Experimental. The program DENZO-SMN (Otwinowski \& Minor, 1997) uses a scaling algorithm which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL-97 input file.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
O1	$0.29724(11)$	$-0.03809(19)$	$0.03440(7)$	$0.0345(3)$
O2	$0.17768(10)$	$0.23527(18)$	$0.03757(6)$	$0.0275(2)$
Br1	$0.470495(15)$	$0.70360(3)$	$-0.187891(10)$	$0.03601(8)$
C1	$0.20441(14)$	$0.1660(3)$	$0.18033(9)$	$0.0284(3)$
C2	$0.12314(16)$	$0.0547(3)$	$0.22003(10)$	$0.0357(4)$
C3	$-0.00686(16)$	$0.0964(3)$	$0.16107(11)$	$0.0341(4)$
C4	$0.01573(14)$	$0.2271(3)$	$0.09468(9)$	$0.0268(3)$
C5	$0.05962(15)$	$0.4456(3)$	$0.12780(10)$	$0.0313(4)$
C6	$0.18971(16)$	$0.4036(3)$	$0.18646(10)$	$0.0336(4)$
C7	$0.13181(14)$	$0.1242(3)$	$0.09249(9)$	$0.0253(3)$
C8	$0.26378(13)$	$0.1393(3)$	$0.01604(8)$	$0.0244(3)$

C9	0.31177 (13)	0.2786 (2)	-0.03379 (8)	0.0224 (3)
C10	0.39565 (15)	0.1984 (3)	-0.06648 (9)	0.0274 (3)
C11	0.44332 (15)	0.3225 (3)	-0.11205 (10)	0.0303 (4)
C12	0.40660 (13)	0.5289 (3)	-0.12504 (8)	0.0257 (3)
C13	0.32412 (15)	0.6139 (3)	-0.09307 (10)	0.0291 (3)
C14	0.27768 (14)	0.4878 (3)	-0.04697 (9)	0.0270 (3)
H1	0.2846 (17)	0.116 (3)	0.1972 (10)	0.029 (4)*
H2A	0.1403 (19)	-0.093 (4)	0.2256 (12)	0.049 (6)*
H2B	0.1354 (16)	0.109 (3)	0.2741 (11)	0.036 (5)*
H3A	-0.0457 (17)	-0.037 (3)	0.1400 (12)	0.039 (5)*
H3B	-0.0543 (18)	0.179 (3)	0.1874 (12)	0.038 (5)*
H4	-0.0512 (17)	0.230 (3)	0.0436 (11)	0.031 (5)*
H5A	0.0057 (17)	0.507 (3)	0.1529 (11)	0.034 (5)*
H5B	0.0597 (17)	0.540 (3)	0.0856 (11)	0.035 (5)*
H6A	0.2006 (18)	0.443 (3)	0.2418 (12)	0.046 (6)*
H6B	0.2501 (18)	0.476 (3)	0.1699 (12)	0.043 (5)*
H7	0.1235 (16)	-0.023 (3)	0.0794 (10)	0.029 (5)*
H10	0.4167 (17)	0.061 (3)	-0.0576 (11)	0.038 (5)*
H11	0.5023 (19)	0.270 (3)	-0.1319 (13)	0.042 (5)*
H13	0.3001 (19)	0.760 (3)	-0.1028 (12)	0.040 (5)*
H14	0.2213 (17)	0.543 (3)	-0.0241 (11)	0.035 (5)*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0420(7)$	$0.0262(6)$	$0.0433(7)$	$0.0084(5)$	$0.0250(5)$	$0.0038(5)$
O2	$0.0331(6)$	$0.0299(6)$	$0.0262(5)$	$0.0085(5)$	$0.0190(5)$	$0.0049(5)$
Br1	$0.03629(11)$	$0.04188(13)$	$0.03518(11)$	$-0.00802(7)$	$0.01902(8)$	$0.00085(8)$
C1	$0.0223(7)$	$0.0396(10)$	$0.0243(7)$	$0.0034(7)$	$0.0093(6)$	$0.0054(7)$
C2	$0.0356(9)$	$0.0473(11)$	$0.0288(8)$	$0.0035(8)$	$0.0169(7)$	$0.0101(8)$
C3	$0.0299(8)$	$0.0427(11)$	$0.0349(9)$	$-0.0027(8)$	$0.0177(7)$	$0.0010(8)$
C4	$0.0227(7)$	$0.0357(9)$	$0.0231(7)$	$0.0029(6)$	$0.0090(6)$	$0.0000(6)$
C5	$0.0347(9)$	$0.0312(9)$	$0.0333(8)$	$0.0059(7)$	$0.0184(7)$	$-0.0013(7)$
C6	$0.0326(9)$	$0.0396(10)$	$0.0301(8)$	$-0.0049(7)$	$0.0125(7)$	$-0.0081(8)$
C7	$0.0294(8)$	$0.0267(8)$	$0.0245(7)$	$0.0020(6)$	$0.0151(6)$	$0.0015(6)$
C8	$0.0244(7)$	$0.0296(8)$	$0.0203(7)$	$0.0036(6)$	$0.0090(6)$	$-0.0045(6)$
C9	$0.0214(7)$	$0.0273(8)$	$0.0179(6)$	$0.0016(6)$	$0.0056(5)$	$-0.0030(6)$
C10	$0.0304(8)$	$0.0273(8)$	$0.0285(8)$	$0.0068(7)$	$0.0153(6)$	$0.0003(7)$
C11	$0.0269(8)$	$0.0389(10)$	$0.0295(8)$	$0.0053(7)$	$0.0154(6)$	$-0.0017(7)$
C12	$0.0221(7)$	$0.0343(9)$	$0.0207(7)$	$-0.0046(6)$	$0.0074(6)$	$-0.0025(6)$
C13	$0.0300(8)$	$0.0263(8)$	$0.0326(8)$	$0.0009(7)$	$0.0125(7)$	$-0.0010(7)$
C14	$0.0266(7)$	$0.0293(8)$	$0.0284(8)$	$0.0046(6)$	$0.0134(6)$	$-0.0027(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 8$	$1.206(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.556(2)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.3421(17)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	$0.971(19)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.4469(18)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	$0.96(2)$

Br1-C12	1.8997 (15)	C6-H6A	0.98 (2)
C1-C7	1.529 (2)	C6-H6B	0.97 (2)
C1-C6	1.533 (3)	C7-H7	0.966 (19)
$\mathrm{C} 1-\mathrm{C} 2$	1.537 (2)	C8-C9	1.491 (2)
C1-H1	0.944 (18)	C9-C14	1.390 (2)
C2-C3	1.557 (2)	C9-C10	1.397 (2)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.96 (2)	C10-C11	1.377 (2)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.984 (19)	C10-H10	0.91 (2)
$\mathrm{C} 3-\mathrm{C} 4$	1.537 (2)	C11-C12	1.380 (2)
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.98 (2)	C11-H11	0.94 (2)
С3-H3B	0.99 (2)	C12-C13	1.386 (2)
C4-C7	1.525 (2)	C13-C14	1.383 (2)
C4-C5	1.533 (2)	C13-H13	0.97 (2)
C4-H4	0.981 (19)	C14-H14	0.953 (19)
C8-O2-C7	117.02 (12)	C1-C6-H6A	110.0 (13)
C7-C1-C6	101.97 (13)	C5-C6-H6A	113.4 (12)
C7- $\mathrm{C} 1-\mathrm{C} 2$	99.62 (13)	C1-C6-H6B	109.8 (12)
C6- $\mathrm{C} 1-\mathrm{C} 2$	108.80 (14)	C5-C6-H6B	111.6 (12)
C7- $\mathrm{C} 1-\mathrm{H} 1$	114.8 (11)	H6A-C6-H6B	108.6 (17)
C6- $\mathrm{C} 1-\mathrm{H} 1$	116.0 (12)	O2-C7-C4	110.13 (13)
C2- $\mathrm{C} 1-\mathrm{H} 1$	113.8 (11)	O2-C7- ${ }^{\text {- }}$	113.28 (13)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	103.42 (13)	C4-C7- 1	95.54 (12)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	111.1 (13)	O2-C7-H7	110.2 (10)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	111.2 (13)	C4-C7-H7	114.0 (11)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	112.1 (12)	C1-C7-H7	113.0 (10)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	112.7 (11)	$\mathrm{O} 1-\mathrm{C} 8-\mathrm{O} 2$	124.01 (14)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	106.5 (17)	O1-C8-C9	124.44 (13)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	103.05 (13)	O2-C8-C9	111.55 (13)
C4-C3-H3A	110.9 (11)	C14-C9-C10	119.00 (14)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.6 (12)	C14-C9-C8	121.81 (13)
C4-C3-H3B	110.0 (11)	C10-C9-C8	119.17 (14)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.7 (11)	C11-C10-C9	121.02 (15)
H3A-C3-H3B	112.2 (16)	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	121.0 (12)
C7-C4-C5	102.27 (13)	C9-C10-H10	117.9 (12)
C7-C4-C3	99.88 (13)	C10-C11-C12	118.71 (14)
C5-C4-C3	108.73 (13)	C10-C11-H11	120.7 (13)
C7-C4-H4	115.4 (11)	C12-C11-H11	120.5 (13)
C5- $\mathrm{C} 4-\mathrm{H} 4$	113.6 (11)	C11-C12-C13	121.77 (15)
C3-C4-H4	115.4 (11)	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{Br} 1$	119.64 (11)
C4-C5-C6	103.21 (13)	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{Br} 1$	118.59 (13)
C4-C5-H5A	110.9 (11)	C14-C13-C12	118.87 (16)
C6-C5-H5A	114.0 (11)	C14-C13-H13	120.9 (12)
C4-C5-H5B	111.2 (11)	C12-C13-H13	120.2 (12)
C6-C5-H5B	111.8 (11)	C13-C14-C9	120.61 (14)
H5A-C5-H5B	105.9 (16)	C13-C14-H14	120.3 (12)
C1-C6-C5	103.36 (13)	C9-C14-H14	119.1 (12)

supporting information

$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-35.57(17)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$70.69(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.06(19)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$	$35.81(17)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-70.86(17)$
$\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-33.78(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$71.24(15)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$34.25(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-70.38(16)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-0.36(16)$
$\mathrm{C} 8-\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 4$	$-166.14(13)$
$\mathrm{C} 8-\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 1$	$88.22(16)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7-\mathrm{O} 2$	$-63.24(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{O} 2$	$-175.05(13)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 1$	$54.04(14)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 1$	$-57.76(15)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	$60.55(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	$172.27(13)$

$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 4$	$-54.16(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 4$	$57.56(15)$
$\mathrm{C} 7-\mathrm{O} 2-\mathrm{C} 8-\mathrm{O} 1$	$6.3(2)$
$\mathrm{C} 7-\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9$	$-174.22(12)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 14$	$-174.03(15)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 14$	$6.5(2)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$4.3(2)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-175.22(13)$
$\mathrm{C} 14-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-0.8(2)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-179.21(15)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$0.0(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$0.5(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{Br} 1$	$-179.84(12)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$0.0(2)$
$\mathrm{Br} 1-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-179.71(12)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 9$	$-0.9(2)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 14-\mathrm{C} 13$	$1.3(2)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 14-\mathrm{C} 13$	$179.63(14)$

