Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cyclo(-L-prolyl-t-valinyl-) from Burkholderia thailandensis MSMB43

Xiang-Yang Liu, Cheng Wang* and Yi-Qiang Cheng*

Department of Biological Sciences, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201, USA Correspondence e-mail: wang35@uwm.edu, ycheng@uwm.edu

Received 8 October 2012; accepted 15 October 2012
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; disorder in main residue; R factor $=0.031 ; w R$ factor $=0.075$; data-to-parameter ratio $=13.5$.

The title compound [systematic name: $(3 S, 8 \mathrm{a} S)$-3-isopropyl-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione], $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$, is a newly isolated cyclic dipeptide from Burkholderia thailandensis MSMB43. There are two independent molecules in the asymmetric unit. Two C atoms and their attached H atoms in the five-membered ring of one of the molecules are disordered over two sets of sites in a 0.715 (5):0.285 (5) ratio. The two independent molecules have the same configuration and the absolute configurations of the chiral centers were determined based on the observation of anomalous dispersion. In the crystal, two types of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link pairs of independent molecules.

Related literature

For general background to secondary metabolites from B. thailandensis, see: Knappe et al. (2008); Nguyen et al. (2008); Seyedsayamdost et al. (2010); Ishida et al. (2010); Klausmeyer et al. (2011); Biggins et al. (2011); Wang et al. (2011, 2012); Ishida et al. (2012). For isolation of the title compound from other microorganisms, see: Chen (1960); Schmitz et al. (1983); Jayatilake et al. (1996); Ginz \& Engelhardt (2000); Qi et al. (2009); Wang et al. (2010); Park et al. (2006). For the biological activity of the title compound, see: Holden et al. (1999); Fdhila et al. (2003). For large-scale genome sequencing, see: Mukhopadhyay et al. (2010); Yu et al. (2006); Zhuo et al. (2012). For our work on obtaining natural products from B. thailandensis MSMB43, see: Liu et al. (2012).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$

$$
V=1973.07(6) \AA^{3}
$$

$M_{r}=196.25$
$Z=8$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$\mathrm{Cu} K \alpha$ radiation
$a=5.6227$ (1) \AA 。
$\mu=0.76 \mathrm{~mm}^{-1}$
$b=10.2571$ (2) \AA
$T=100 \mathrm{~K}$
$c=34.2115(6) \AA$
$0.22 \times 0.14 \times 0.10 \mathrm{~mm}$

Data collection

Bruker APEXII area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.851, T_{\text {max }}=0.928$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.075 \quad$ independent and constrained
$S=1.02$
3668 reflections
271 parameters refinement
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{-3}$
3 restraints
28285 measured reflections 3668 independent reflections 3354 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.045$
$\Delta \rho_{\text {min }}=-0.23 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 1481 Friedel pairs
Flack parameter: 0.05 (17)

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 A^{\mathrm{i}}$	$0.872(19)$	$2.016(19)$	$2.8734(17)$	$167.7(17)$
$\mathrm{N} 1 A-\mathrm{H} 1 A \cdots 1^{\mathrm{ii}}$	$0.916(19)$	$2.06(2)$	$2.9710(17)$	$172.3(17)$

Symmetry codes: (i) $x-1, y, z$; (ii) $x+1, y, z$.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL and OLEX2.

Support for this work was obtained from a Research Growth Initiative Award from the University of WisconsinMilwaukee and NIH/NCI grant R01 CA 152212 (both to YQC). The authors thank Lara C. Spencer and Ilia A. Guzei (University of Wisconsin-Madison Department of Chemistry Crystallography Facility) for collecting the crystallographic data.

[^0]
References

Biggins, J. B., Gleber, C. D. \& Brady, S. F. (2011). Org. Lett. 13, 1536-1539.
Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, Y. S. (1960). Bull. Chem. Soc. Jpn, 24, 372-381.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Fdhila, F., Vazquez, V., Sanchez, J. L. \& Riguera, R. (2003). J. Nat. Prod. 66, 1299-1301.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Ginz, M. \& Engelhardt, U. H. (2000). J. Agric. Food Chem. 48, 3528-3532.
Holden, M. T., Ram Chhabra, S., de Nys, R., Stead, P., Bainton, N. J., Hill, P. J., Manefield, M., Kumar, N., Labatte, M., England, D., Rice, S., Givskov, M., Salmond, G. P., Stewart, G. S., Bycroft, B. W., Kjelleberg, S. \& Williams, P. (1999). Mol. Microbiol. 33, 1254-1266.

Ishida, K., Lincke, T., Behnken, S. \& Hertweck, C. (2010). J. Am. Chem. Soc. 132, 13966-13968.
Ishida, K., Lincke, T. \& Hertweck, C. (2012). Angew. Chem. Int. Ed. Engl. 51, 5470-5474.
Jayatilake, G. S., Thornton, M. P., Leonard, A. C., Grimwade, J. E. \& Baker, B. J. (1996). J. Nat. Prod. 59, 293-296.

Klausmeyer, P., Shipley, S. M., Zuck, K. M. \& McCloud, T. G. (2011). J. Nat. Prod. 74, 2039-2044.
Knappe, T. A., Linne, U., Zirah, S., Rebuffat, S., Xie, X. \& Marahiel, M. A. (2008). J. Am. Chem. Soc. 130, 11446-11454.

Liu, X.-Y., Wang, C. \& Cheng, Y.-Q. (2012). Acta Cryst. E68, o2757-o2758.

Mukhopadhyay, S., Thomason, M. K., Lentz, S., Nolan, N., Willner, K., Gee, J. E., Glass, M. B., Inglis, T. J., Merritt, A., Levy, A., Sozhamannan, S., Mateczun, A. \& Read, T. D. (2010). J. Bacteriol. 192, 6313-6314.
Nguyen, T., Ishida, K., Jenke-Kodama, H., Dittmann, E., Gurgui, C., Hochmuth, T., Taudien, S., Platzer, M., Hertweck, C. \& Piel, J. (2008). Nat. Biotechnol. 26, 225-233.
Park, Y. C., Gunasekera, S. P., Lopez, J. V., McCarthy, P. J. \& Wright, A. E. (2006). J. Nat. Prod. 69, 580-584.

Qi, S. H., Xu, Y., Gao, J., Qian, P. Y. \& Zhang, S. (2009). Anna. Microbiol. 59, 229-233.
Schmitz, F. J., Vanderah, D. J., Hollenbeak, K. H., Enwall, C. E. L. \& Gopichand, Y. (1983). J. Org. Chem. 48, 3941-3945.
Seyedsayamdost, M. R., Chandler, J. R., Blodgett, J. A., Lima, P. S., Duerkop, B. A., Oinuma, K., Greenberg, E. P. \& Clardy, J. (2010). Org. Lett. 12, 716719.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, C., Flemming, C. J. \& Cheng, Y. Q. (2012). MedChemComm, 3, 976-981.
Wang, C., Henkes, L. M., Doughty, L. B., He, M., Wang, D., Meyer-Almes, F. J. \& Cheng, Y. Q. (2011). J. Nat. Prod. 74, 2031-2038.
Wang, J. H., Quan, C. S., Qi, X. H., Li, X. \& Fan, S. D. (2010). Ann. Microbiol. 396, 1773-1779.
Yu, Y., Kim, H. S., Chua, H. H., Lin, C. H., Sim, S. H., Lin, D., Derr, A., Engels, R., DeShazer, D., Birren, B., Nierman, W. C. \& Tan, P. (2006). BMC Microbiol. 6, 46.
Zhuo, Y., Liu, L., Wang, Q., Liu, X., Ren, B., Liu, M., Ni, P., Cheng, Y. Q. \& Zhang, L. (2012). J. Bacteriol. 194, 4749-4750.

supporting information

Acta Cryst. (2012). E68, o3182-o3183 [doi:10.1107/S1600536812043000]

Cyclo(-L-prolyl-t-valinyl-) from Burkholderia thailandensis MSMB43

Xiang-Yang Liu, Cheng Wang and Yi-Qiang Cheng

S1. Comment

Many interesting compounds, including thailandamides A-B (Ishida et al., 2012, Nguyen et al., 2008, Ishida et al., 2010), capistruin (Knappe et al., 2008), bactobolins A—D (Seyedsayamdost et al., 2010), burkholdacs A—B (Biggins et al., 2011), spiruchostatin C (Klausmeyer et al., 2011) and thailandepsins A-F (Wang et al., 2011, Wang et al., 2012), were discovered from Burkholderia thailandensis E264 in recent years. In conjunction with large-scale genome sequencing (Mukhopadhyay et al., 2010, Zhuo et al., 2012, Yu et al., 2006), the Burkholderia species have drawn much attention due to their capabilities to produce novel compounds with antibacterial, antitumor and antiviral activities. As a result of our expanded natural product discovery from Burkholderia species, we have recently confirmed that B. thailandensis MSMB43 can produce high titers of FK228 in M8 medium (Liu et al., 2012). Here we report the crystal structure of a known dipeptide isolated from the culture broth of B. thailandensis MSMB43 grown in M11 medium.
The title compound is a cyclic dipeptide of L-proline and L-valine. The structural skeleton is fused by a five-membered pyrrolidine ring and a six-membered piperazine ring. The pyrrolidine ring adopts an envelope configuration and the piperazine ring has a boat configuration. These two rings are located on nearly the same plane and the dihedral angles of these two least-squares planes are $18.2(1)^{\circ}$ for the non-disordered molecule, and $30.6(1)^{\circ}$ for the major component of the disordered molecule. There are two independent molecules in the asymmetric unit of the crystal. Atoms C3A and C4A of one of the molecules are disordered over two positions with a major component contribution of $71.5(5) \%$. The two molecules have the same configuration and the absolute configurations of $\mathrm{C} 2, \mathrm{C} 2 \mathrm{~A}, \mathrm{C} 7$ and C 7 A are S based on the results of anomalous dispersion. There are two intermolecular hydrogen bonds present between two independent molecules in the different asymmetric unit and connect them to form a pair of molecules (Table 1, Fig. 1 and Fig. 2).

S2. Experimental

Isolation of the title compound Bacterial strain and culture conditions B. thailandensis strain MSMB43 was obtained from the US Centers for Disease Control (CDC) and was routinely activated on LB agar containing $50 \mathrm{mg} \mathrm{ml}^{-1}$ of apramycin $\left(\mathrm{Am}^{50}\right)$ at $37^{\circ} \mathrm{C}$ for 1 to 2 days as a master plate. A single colony was then transferred into a 1-L flask containing 300 ml of LB medium and Am^{50}, and the culture were growing at $37^{\circ} \mathrm{C}$ for 24 h as seed culture. For fed-batch fermentation 250 ml of seed culture was transferred into a 20-L fermentor (BioFlo IV, New Brunswick Scientific Co., USA) containing $12 L$ of M11 medium ($10.0 \mathrm{~g} / L$ dextrose, $2.0 \mathrm{~g} / L$ pancreatic digest of casein, $1.0 \mathrm{~g} / L$ yeast extract, 1.0 g / L beef extract; pH 7.0). Fermentation was proceeded at $37^{\circ} \mathrm{C}, 300 \mathrm{rpm}$ for 72 h , during which the pH was automatically adjusted by the fermentor with 1 N HCl or 1 N NaOH . Three liters of 10 X M11 was fed to the fermentor from 24 h to 48 h at a flow rate of $0.125 \mathrm{ml} / \mathrm{min}$.

Recovery of the crude extract

Bacterial cells and debris were removed by centrifugation of broth at $6,000 \mathrm{~g}$ for 15 min . Supernatant was applied to a 2- L column ($\Phi 8.0 \times 40 \mathrm{~cm}$) packed with a 50/50 mixture of Diaion HP-20 resin (Sigma-Aldrich, USA) and Amberlite

XAD16 resin (Sigma-Aldrich) to allow absorption to occur. The resins were subsequently dried and extracted repeatedly with ethyl acetate. Organic extractions were pooled and dried in a rotary evaporator to yield a crude extract.

Isolation and purification of the title compound

Crude extract was mixed with 50 g silica gel (230-400 mesh, Whatman Purasil, USA). The mixture of silica gel was dried overnight and then applied to a $120-\mathrm{g}$ silica gel column, which has been equilibrated with hexane. The column was eluted sequentially with $1 L$ of hexane (fraction 1), $1 L$ of hexane:ethyl acetate ($3: 1, v / v$) (fraction 2), $1 L$ of hexane:ethyl acetate $(1: 1, v / v)($ fraction 3$), 1 L$ of ethyl acetate (fraction 4), $1 L$ of ethyl acetate:acetone $(1: 1, v / v)$ (fraction 5) and $2 L$ of acetone (fraction 6). Fraction 5 was applied on a flash chromatography equipped with a silica gel Universal Column (Φ $23 \times 123 \mathrm{~mm}, 16 \mathrm{~g}$, Yamazen Corporation,) mounted atop an injection column ($\Phi 20 \times 65 \mathrm{~mm}, 14 \mathrm{~g}$, Yamazen Corporation). The column was eluted by mixtures of chloroform and acetone with increasing polarity according to the following scheme: $1 \%, 5 \%, 10 \%, 15 \%, 20 \%, 25 \%, 30 \%, 35 \%, 65 \%, 100 \%$ of acetone. Fraction eluted by 10% acetone was applied on a preparative HPLC system equipped with an Agilent Prep-C18 column ($\Phi 21.2 \times 250 \mathrm{~mm}, 10 \mu \mathrm{~m}$). The mobile phase consists of acetonitrile and water. The column was first eluted by 10% acetonitrile for 90 min, then by a gradient from 10% to 15% acetronitrile from 90 min to 100 min , then by 15% acetonitrile for 30 min , and finally by 100% acetonitrile for 20 min . The flow rate was $8 \mathrm{ml} / \mathrm{min}$. The UV spectrum was monitored at 210 nm . The title compound was eluted at 30.0 min and other compounds were eluted at later times.

Crystallization

The purified title compound was dissolved in ethyl acetate and the crystals were obtained after a slow evaporation of the solvent at room temperature for 5 days.

S3. Refinement

All hydrogen atoms attached to the carbon atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.98,0.99$ and $1.00 \AA$ on the primary, secondary and tertiary aliphatic C atoms respectively). The H atoms were refined as riding, with isotropic displacement coefficients of $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl groups or $1.2 U_{\mathrm{eq}}(\mathrm{C})$ otherwise. The hydrogen atoms attached to N were located in the difference map and refined independently with restraints and constraints. The H atoms on the N were constrained to have the distances of $0.88 \AA$ and the $U_{\text {iso }}$ value were assigned as equal to 1.2 times the $U_{\text {eq }}$ of the attached atoms.

Figure 1
A molecular structures of cyclo(-L-prolyl-L-valinyl-) in asymmetric unit with displacement ellipsoids shown at the 50\% probability level. All hydrogen atoms attached to non-chiral carbon atoms and minor components of disordered atoms were omitted for clarity.

Figure 2
A packing diagram of $c y c l o(-L$-prolyl- L-valinyl-), viewed along the b axis. For clarity, all H atoms attached to carbon atoms are omitted. The dashed lines represent hydrogen bonds.

(3S,8aS)-3-Isopropylhexahydropyrrolo[1,2-a]pyrazine-1,4- dione

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=196.25$
Orthorhombic, $P 2_{1} 2_{2} 2_{1}$
Hall symbol: P 2ac 2ab
$a=5.6227$ (1) \AA
$b=10.2571$ (2) \AA
$c=34.2115$ (6) \AA
$V=1973.07$ (6) \AA^{3}
$Z=8$

Data collection

Bruker APEXII area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$0.50^{\circ} \omega$ and $0.5^{\circ} \varphi$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.851, T_{\text {max }}=0.928$
$F(000)=848$
$D_{\mathrm{x}}=1.321 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 999 reflections
$\theta=2.6-69.5^{\circ}$
$\mu=0.76 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, colourless
$0.22 \times 0.14 \times 0.10 \mathrm{~mm}$

28285 measured reflections
3668 independent reflections
3354 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=69.5^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-6 \rightarrow 6$
$k=-12 \rightarrow 12$
$l=-40 \rightarrow 41$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.075$
$S=1.02$
3668 reflections
271 parameters
3 restraints
Primary atom site location: structure-invariant
direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0411 P)^{2}+0.438 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}
Absolute structure: Flack (1983), 1481 Friedel pairs
Absolute structure parameter: 0.05 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
O1	-0.0686 (2)	0.57786 (10)	0.42809 (3)	0.0185 (2)	
O2	0.6845 (2)	0.29334 (10)	0.46538 (3)	0.0189 (2)	
N1	0.1607 (2)	0.39828 (12)	0.41718 (4)	0.0158 (3)	
H1	0.120 (3)	0.3984 (17)	0.3926 (6)	0.019*	
N2	0.4056 (2)	0.44278 (12)	0.48284 (4)	0.0151 (3)	
C1	0.0698 (3)	0.49203 (15)	0.43957 (4)	0.0154 (3)	
C2	0.1570 (3)	0.48683 (15)	0.48164 (4)	0.0152 (3)	
H2	0.0559	0.4246	0.4968	0.018*	
C3	0.1676 (3)	0.61678 (15)	0.50308 (5)	0.0177 (3)	
H3A	0.0138	0.6373	0.5157	0.021*	
H3B	0.2109	0.6886	0.4851	0.021*	
C4	0.3622 (3)	0.59338 (16)	0.53340 (4)	0.0179 (3)	
H4A	0.4259	0.6767	0.5436	0.021*	
H4B	0.3025	0.5404	0.5555	0.021*	
C5	0.5497 (3)	0.51970 (15)	0.51009 (4)	0.0167 (3)	
H5A	0.6562	0.5804	0.4960	0.020*	
H5B	0.6463	0.4628	0.5272	0.020*	
C6	0.4837 (3)	0.34091 (14)	0.46205 (4)	0.0155 (3)	
C7	0.2933 (3)	0.28844 (14)	0.43410 (4)	0.0155 (3)	
H7	0.1787	0.2360	0.4500	0.019*	
C8	0.3954 (3)	0.19864 (15)	0.40270 (4)	0.0175 (3)	
H8	0.4958	0.1321	0.4163	0.021*	
C9	0.1969 (3)	0.12534 (16)	0.38147 (5)	0.0215 (3)	
H9A	0.1029	0.1870	0.3660	0.032*	
H9B	0.0940	0.0825	0.4007	0.032*	
H9C	0.2668	0.0596	0.3641	0.032*	
C10	0.5556 (3)	0.27055 (17)	0.37385 (5)	0.0218 (3)	
H10A	0.4603	0.3323	0.3586	0.033*	
H10B	0.6305	0.2075	0.3562	0.033*	
H10C	0.6790	0.3180	0.3882	0.033*	
O1A	1.0544 (2)	0.43773 (11)	0.33589 (3)	0.0214 (2)	
O2A	0.4323 (2)	0.77776 (12)	0.27683 (3)	0.0320 (3)	
N1A	0.7596 (2)	0.58471 (13)	0.34599 (4)	0.0186 (3)	
H1A	0.799 (3)	0.5861 (18)	0.3720 (6)	0.022*	
N2A	0.6766 (3)	0.60603 (14)	0.26780 (4)	0.0221 (3)	

C1A	0.8856 (3)	0.50385 (15)	0.32357 (4)	0.0172 (3)	
C2A	0.8103 (3)	0.49229 (16)	0.28135 (4)	0.0190 (3)	
H2A	0.7014	0.4155	0.2795	0.023*	0.715 (5)
H2B	0.7274	0.4081	0.2756	0.023*	0.285 (5)
C3A	1.0062 (5)	0.4726 (3)	0.25090 (7)	0.0201 (8)	0.715 (5)
H3C	0.9797	0.3906	0.2363	0.024*	0.715 (5)
H3D	1.1637	0.4680	0.2638	0.024*	0.715 (5)
C4A	0.9952 (6)	0.5904 (3)	0.22307 (7)	0.0283 (7)	0.715 (5)
H4C	1.0389	0.5656	0.1960	0.034*	0.715 (5)
H4D	1.1001	0.6619	0.2320	0.034*	0.715 (5)
C3B	1.0460 (10)	0.5041 (11)	0.25504 (12)	0.0201 (8)	0.285 (5)
H3E	1.1567	0.5726	0.2642	0.024*	0.285 (5)
H3F	1.1306	0.4201	0.2518	0.024*	0.285 (5)
C4B	0.9032 (14)	0.5445 (9)	0.21869 (9)	0.0283 (7)	0.285 (5)
H4E	1.0131	0.5846	0.1996	0.034*	0.285 (5)
H4F	0.8355	0.4652	0.2065	0.034*	0.285 (5)
C5A	0.7235 (3)	0.62958 (18)	0.22612 (5)	0.0281 (4)	
H5C	0.6982	0.7222	0.2191	0.034*	0.715 (5)
H5D	0.6228	0.5738	0.2093	0.034*	0.715 (5)
H5E	0.7743	0.7210	0.2220	0.034*	0.285 (5)
H5F	0.5790	0.6131	0.2104	0.034*	0.285 (5)
C6A	0.5464 (3)	0.68536 (16)	0.28998 (5)	0.0218 (4)	
C7A	0.5431 (3)	0.65377 (15)	0.33383 (4)	0.0187 (3)	
H7A	0.4041	0.5954	0.3390	0.022*	
C8A	0.5085 (3)	0.77939 (15)	0.35758 (4)	0.0189 (3)	
H8A	0.3758	0.8289	0.3450	0.023*	
C9A	0.4322 (3)	0.75127 (17)	0.39963 (5)	0.0234 (4)	
H9D	0.5601	0.7050	0.4133	0.035*	
H9E	0.2885	0.6972	0.3995	0.035*	
H9F	0.3990	0.8336	0.4131	0.035*	
C10A	0.7283 (3)	0.86638 (17)	0.35596 (5)	0.0262 (4)	
H10D	0.6927	0.9504	0.3683	0.039*	
H10E	0.7740	0.8805	0.3286	0.039*	
H10F	0.8595	0.8241	0.3699	0.039*	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0189(5)$	$0.0192(5)$	$0.0175(5)$	$0.0049(5)$	$-0.0028(5)$	$-0.0005(4)$
O2	$0.0154(5)$	$0.0211(5)$	$0.0203(5)$	$0.0032(5)$	$-0.0027(5)$	$-0.0004(5)$
N1	$0.0175(7)$	$0.0179(6)$	$0.0119(6)$	$0.0029(6)$	$-0.0035(5)$	$0.0006(5)$
N2	$0.0145(6)$	$0.0170(6)$	$0.0138(6)$	$0.0008(5)$	$-0.0021(5)$	$-0.0011(5)$
C1	$0.0140(7)$	$0.0174(7)$	$0.0148(7)$	$-0.0030(7)$	$-0.0006(6)$	$0.0004(6)$
C2	$0.0138(7)$	$0.0172(7)$	$0.0147(7)$	$0.0002(6)$	$0.0006(6)$	$0.0001(6)$
C3	$0.0151(7)$	$0.0201(7)$	$0.0178(7)$	$0.0007(6)$	$-0.0001(6)$	$-0.0028(6)$
C4	$0.0160(8)$	$0.0216(7)$	$0.0161(7)$	$-0.0018(7)$	$-0.0014(6)$	$-0.0019(6)$
C5	$0.0162(7)$	$0.0184(7)$	$0.0155(7)$	$-0.0020(7)$	$-0.0034(6)$	$0.0001(6)$
C6	$0.0173(8)$	$0.0152(7)$	$0.0139(7)$	$-0.0016(6)$	$-0.0007(6)$	$0.0036(6)$

C7	$0.0169(8)$	$0.0145(7)$	$0.0151(7)$	$0.0005(6)$	$-0.0001(6)$	$0.0025(6)$
C8	$0.0189(8)$	$0.0167(7)$	$0.0169(7)$	$0.0023(6)$	$-0.0022(6)$	$-0.0004(6)$
C9	$0.0243(8)$	$0.0211(8)$	$0.0190(8)$	$-0.0011(7)$	$0.0001(7)$	$-0.0048(7)$
C10	$0.0191(8)$	$0.0266(8)$	$0.0198(8)$	$0.0015(7)$	$0.0021(7)$	$-0.0020(7)$
O1A	$0.0228(6)$	$0.0242(6)$	$0.0173(5)$	$0.0066(5)$	$-0.0020(5)$	$0.0014(5)$
O2A	$0.0418(7)$	$0.0346(7)$	$0.0197(6)$	$0.0179(6)$	$-0.0074(6)$	$0.0000(5)$
N1A	$0.0206(7)$	$0.0212(7)$	$0.0139(6)$	$0.0020(6)$	$-0.0046(5)$	$-0.0001(6)$
N2A	$0.0271(7)$	$0.0247(7)$	$0.0146(6)$	$0.0064(6)$	$-0.0050(6)$	$-0.0003(5)$
C1A	$0.0181(8)$	$0.0158(7)$	$0.0177(7)$	$-0.0024(6)$	$-0.0013(6)$	$0.0010(6)$
C2A	$0.0209(8)$	$0.0191(7)$	$0.0169(8)$	$0.0005(7)$	$-0.0020(7)$	$0.0001(7)$
C3A	$0.0151(12)$	$0.0287(18)$	$0.0164(9)$	$-0.0045(11)$	$-0.0045(9)$	$-0.0028(9)$
C4A	$0.029(18)$	$0.0287(16)$	$0.0271(11)$	$0.0011(12)$	$0.0122(11)$	$0.0109(11)$
C3B	$0.0151(12)$	$0.0287(18)$	$0.0164(9)$	$-0.0045(11)$	$-0.0045(9)$	$-0.0028(9)$
C4B	$0.0290(18)$	$0.0287(16)$	$0.0271(11)$	$0.0011(12)$	$0.0122(11)$	$0.0109(11)$
C5A	$0.0412(11)$	$0.0307(9)$	$0.0124(8)$	$0.0064(8)$	$-0.0042(7)$	$0.0000(7)$
C6A	$0.0223(9)$	$0.0243(8)$	$0.0187(8)$	$0.0034(8)$	$-0.0070(7)$	$-0.0028(7)$
C7A	$0.0174(8)$	$0.0204(8)$	$0.0182(7)$	$0.0004(6)$	$-0.0025(7)$	$0.0026(6)$
C8A	$0.0191(8)$	$0.0210(8)$	$0.0166(7)$	$0.0030(7)$	$-0.0003(6)$	$0.0006(6)$
C9A	$0.0219(8)$	$0.0287(9)$	$0.0197(8)$	$0.0035(7)$	$0.0021(7)$	$0.0002(7)$
C10A	$0.0331(10)$	$0.0219(8)$	$0.0236(8)$	$-0.0068(8)$	$0.0048(8)$	$-0.0012(7)$

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

O1-C1	$1.2390(19)$	N2A-C6A	$1.332(2)$
O2-C6	$1.2354(19)$	N2A-C2A	$1.463(2)$
N1-C1	$1.331(2)$	N2A-C5A	$1.470(2)$
N1-C7	$1.4698(19)$	C1A-C2A	$1.510(2)$
N1-H1	$0.872(19)$	C2A-C3A	$1.530(3)$
N2-C6	$1.3381(19)$	C2A-C3B	$1.607(4)$
N2-C5	$1.4656(19)$	C2A-H2A	1.0000
N2-C2	$1.469(2)$	C2A-H2B	1.0000
C1-C2	$1.521(2)$	C3A-C4A	$1.539(3)$
C2-C3	$1.523(2)$	C3A-H3C	0.9900
C2-H2	1.0000	C3A-H3D	0.9900
C3-C4	$1.527(2)$	C4A-C5A	$1.583(4)$
C3-H3A	0.9900	C4A-H4C	0.9900
C3-H3B	0.9900	C4A-H4D	0.9900
C4-C5	$1.523(2)$	C3B-C4B	$1.537(3)$
C4-H4A	0.9900	C3B-H3E	0.9900
C4-H4B	0.9900	C3B-H3F	0.9900
C5-H5A	0.9900	C4B-C5A	$1.359(7)$
C5-H5B	0.9900	C4B-H4E	0.9900
C6-C7	$1.533(2)$	C4B-H4F	0.9900
C7-C8	$1.527(2)$	C5A-H5C	0.9900
C7-H7	1.0000	C5A-H5D	0.9900
C8-C10	$1.526(2)$	C5A-H5E	0.9900
C8-C9	$1.529(2)$	C5A-H5F	0.9900
C8-H8	1.0000	C6A-C7A	$1.535(2)$

C9-H9A	0.9800
C9-H9B	0.9800
C9-H9C	0.9800
C10-H10A	0.9800
C10-H10B	0.9800
C10-H10C	0.9800
O1A-C1A	1.2402 (19)
O2A-C6A	1.230 (2)
N1A-C1A	1.333 (2)
N1A-C7A	1.469 (2)
N1A-H1A	0.916 (19)
C1-N1-C7	121.45 (13)
C1-N1-H1	116.9 (12)
C7-N1-H1	121.0 (12)
C6-N2-C5	125.23 (13)
C6-N2-C2	122.52 (13)
C5-N2-C2	112.22 (12)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	124.88 (14)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	121.83 (13)
N1-C1-C2	113.28 (13)
N2-C2-C1	110.11 (12)
N2-C2-C3	102.62 (12)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	115.95 (13)
N2-C2-H2	109.3
C1-C2-H2	109.3
C3-C2-H2	109.3
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	102.58 (13)
C2-C3-H3A	111.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	111.3
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	111.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	111.3
H3A-C3-H3B	109.2
C5-C4-C3	102.61 (12)
C5-C4-H4A	111.2
C3-C4-H4A	111.2
C5-C4-H4B	111.2
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	111.2
H4A-C4-H4B	109.2
N2-C5-C4	102.57 (12)
N2-C5-H5A	111.3
C4-C5-H5A	111.3
N2-C5-H5B	111.3
C4-C5-H5B	111.3
H5A-C5-H5B	109.2
O2-C6-N2	124.02 (14)
O2-C6-C7	123.85 (14)
N2-C6-C7	112.11 (13)

C7A-C8A	$1.536(2)$
C7A-H7A	1.0000
C8A-C10A	$1.525(2)$
C8A-C9A	$1.528(2)$
C8A-H8A	1.0000
C9A-H9D	0.9800
C9A-H9E	0.9800
C9A-H9F	0.9800
C10A-H10D	0.9800
C10A-H10E	0.9800
C10A-H10F	0.9800

100.7 (3)
107.4 (3)
15.0 (4)
107.1
107.1
107.1
112.8
112.7
109.8
106.77 (18)
110.4
110.4
110.4
110.4
108.6
101.4 (2)
111.5
111.5
111.5
111.5
109.3
92.4 (3)
113.2
113.2
113.2
113.2
110.6
114.2 (4)
108.7
108.7
108.7
108.7
107.6
102.1 (2)
101.27 (15)
111.5

N1-C7-C8	112.07 (12)
N1-C7-C6	109.31 (12)
C8-C7-C6	112.84 (13)
N1-C7-H7	107.5
C8-C7-H7	107.5
C6-C7-H7	107.5
C10-C8-C7	112.67 (13)
C10-C8-C9	111.19 (13)
C7-C8-C9	110.87 (13)
C10-C8-H8	107.3
C7-C8-H8	107.3
C9-C8-H8	107.3
C8-C9-H9A	109.5
C8-C9-H9B	109.5
H9A-C9-H9B	109.5
C8-C9-H9C	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5
C8-C10-H10A	109.5
C8-C10-H10B	109.5
H10A-C10-H10B	109.5
C8-C10-H10C	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
C1A-N1A-C7A	125.26 (13)
C1A-N1A-H1A	116.0 (12)
C7A-N1A-H1A	118.0 (12)
C6A-N2A-C2A	126.07 (13)
C6A-N2A-C5A	123.44 (14)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	110.25 (13)
O1A-C1A-N1A	123.44 (14)
O1A-C1A-C2A	119.79 (14)
N1A-C1A-C2A	116.76 (13)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	112.62 (13)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	105.04 (15)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	117.37 (17)
C7-N1-C1-O1	-170.29 (14)
C7-N1-C1-C2	11.1 (2)
C6-N2-C2-C1	-45.57 (18)
C5-N2-C2-C1	136.54 (13)
C6-N2-C2-C3	-169.60 (13)
C5-N2-C2-C3	12.51 (15)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	-143.76 (14)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	34.95 (18)
O1-C1-C2-C3	-27.8 (2)
N1-C1-C2-C3	150.87 (14)
N2-C2-C3-C4	-33.24 (14)

C4A-C5A-H5C	111.5
N2A-C5A-H5D	111.5
C4A-C5A-H5D	111.5
H5C-C5A-H5D	109.3
C4B-C5A-H5E	111.5
N2A-C5A-H5E	110.3
C4B-C5A-H5F	113.5
N2A-C5A-H5F	110.7
H5E-C5A-H5F	108.7
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	123.30 (15)
O2A-C6A-C7A	120.94 (14)
N2A-C6A-C7A	115.76 (14)
N1A-C7A-C6A	111.64 (13)
N1A-C7A-C8A	111.08 (13)
C6A-C7A-C8A	109.98 (13)
N1A-C7A-H7A	108.0
C6A-C7A-H7A	108.0
C8A-C7A-H7A	108.0
C10A-C8A-C9A	111.84 (14)
C10A-C8A-C7A	111.64 (13)
C9A-C8A-C7A	112.04 (13)
C10A-C8A-H8A	107.0
C9A-C8A-H8A	107.0
C7A-C8A-H8A	107.0
C8A-C9A-H9D	109.5
C8A-C9A-H9E	109.5
H9D-C9A-H9E	109.5
C8A-C9A-H9F	109.5
H9D-C9A-H9F	109.5
H9E-C9A-H9F	109.5
C8A-C10A-H10D	109.5
C8A-C10A-H10E	109.5
H10D-C10A-H10E	109.5
C8A-C10A-H10F	109.5
H10D-C10A-H10F	109.5
H10E-C10A-H10F	109.5
$\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	18.7 (2)
$\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~B}$	-141.0 (4)
$\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~B}$	33.5 (4)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	-158.55 (15)
N1A-C1A-C2A-N2A	22.8 (2)
O1A-C1A-C2A-C3A	-36.4 (2)
N1A-C1A-C2A-C3A	145.00 (17)
O1A-C1A-C2A-C3B	-48.6 (4)
N1A-C1A-C2A-C3B	132.8 (4)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	7.3 (3)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	-118.7 (3)

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-153.30(13)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$42.04(15)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$	$-164.35(13)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$	$13.47(16)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2$	$-33.83(15)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 6-\mathrm{O} 2$	$5.3(2)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 6-\mathrm{O} 2$	$-172.35(14)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7$	$-175.76(13)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7$	$6.64(19)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$-175.93(14)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$-50.06(19)$
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$-142.09(14)$
$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$38.92(17)$
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-16.7(2)$
$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$164.34(13)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 10$	$56.61(17)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 10$	$-67.31(17)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-68.72(16)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$167.36(13)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	$-172.92(14)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$5.6(2)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$-26.9(2)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$147.63(14)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$-155.8(2)$

$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$-27.8(3)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$-40.4(7)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$-158.4(5)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~A}$	$41.1(9)$
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	$-23.0(8)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~B}$	$166.1(4)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~B}$	$-8.6(5)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$138.76(19)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$-35.9(2)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	$37.7(3)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	$-177.98(16)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	$8.2(3)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	$1.2(2)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	$-172.63(15)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$-31.1(2)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$-154.21(15)$
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	$-154.28(15)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	$26.5(2)$
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$-30.5(2)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$150.31(15)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	$53.83(17)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	$-70.28(17)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}$	$-72.51(17)$
C6A-C7A-C8A-C9A	$163.39(14)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1 A^{\mathrm{i}}$	$0.872(19)$	$2.016(19)$	$2.8734(17)$	$167.7(17)$
$\mathrm{N} 1 A-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{ii}}$	$0.916(19)$	$2.06(2)$	$2.9710(17)$	$172.3(17)$

Symmetry codes: (i) $x-1, y, z$; (ii) $x+1, y, z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2084).

