

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-*tert*-Butyl-1-(3-nitrophenyl)-1*H*pyrazol-5-amine

Simón Hernández-Ortega,^a* Fernando Cuenú-Cabezas,^b Rodrigo Abonia-González^c and Armando Cabrera-Ortiz^a

^aInstituto de Química, Universidad Nacional Autónoma de México, circuito exterior, ciudad universitaria, México 04510, México, ^bLaboratorio de Química Inorgánica y Catálisis, Programa de Química, Universidad del Quindio, Avenida Bolivar Calle 12 Norte, Armenia, Colombia, and ^cDepartamento de Química, Universidad del Valle, A. A. 25360, Cali, Colombia

Correspondence e-mail: simonho@unam.mx

Received 10 October 2012; accepted 12 October 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.115; data-to-parameter ratio = 13.7.

In the title compound, $C_{13}H_{16}N_4O_2$, the pyrazole ring forms a dihedral angle of 50.61 (6)° with the 3-nitro-phenyl ring. The plane of the nitro group is twisted by 6.8 (7)° out of the plane of the phenyl ring. In the crystal, the molecules are linked by $N-H\cdots N$ and $N-H\cdots O$ hydrogen bonds, forming sheets in the *bc* plane. In addition, a weak $C-H\cdots N$ interaction is observed.

Related literature

For background to pyrazole-based ligands, see; Ahmed *et al.* (2005); Abonia *et al.* (2002, 2004, 2010); Guerrero *et al.* (2009); Quiroga *et al.* (2008); Schutznerová, *et al.* (2012). For structure of an isomer of the title compound, see: Low *et al.* (2004).

Experimental

Crystal data $C_{13}H_{16}N_4O_2$ $M_r = 260.30$

Monoclinic, $P2_1/c$ *a* = 11.9421 (14) Å b = 9.6419 (11) Å c = 11.7694 (13) Å $\beta = 93.504 (2)^{\circ}$ $V = 1352.6 (3) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART APEX CCD areadetector diffractometer 14529 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.115$ S = 1.052486 reflections 181 parameters 2 restraints $0.46 \times 0.36 \times 0.32 \text{ mm}$

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

T = 298 K

2486 independent reflections 2036 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N4-H4A\cdots N2^{i}$	0.90(1)	2.23 (1)	3.1195 (17)	172 (2)
$N4-H4B\cdotsO1^{ii}$	0.90(1)	2.39 (1)	3.241 (2)	160 (2)
$C14-H14\cdots N4^{iii}$	0.93	2.54	3.403 (2)	155
	1 1	an 1	1	1 2

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x, -y - \frac{1}{2}, z + \frac{1}{2}$; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

FCC and RAG thanks the Universidad del Valle and the Universidad del Quindío for financial support to project 542. ACO thanks the DGAPA–UNAM for financial support (PAPIIT IN203209). SHO thanks the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a licence for the use of the Cambridge Structural Database.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6847).

References

- Abonia, R., Castillo, J., Insuasty, B., Quiroga, J., Nogueras, M. & Cobo, J. (2010). Eur. J. Org. Chem. 33, 6454–6463.
- Abonia, R., Rengifo, E., Quiroga, J., Insuasty, B., Cobo, J. & Nogueras, M. (2004). *Tetrahedron*, **60**, 8839–8843.
- Abonia, R., Rengifo, E., Quiroga, J., Insuasty, B., Sanchez, A., Cobo, J., Low, J. N. & Nogueras, M. (2002). *Tetrahedron Lett.* 43, 5617–5620.

Ahmed, M. S. M., Kobayashi, K. & Mori, A. (2005). Org. Lett. 7, 4487–4489.Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Guerrero, M., Pons, J., Parella, T., Font-Bardia, M., Calvet, T. & Ros, J. (2009). *Inorg. Chem.* 48, 8736–8750.
- Low, J. N., Cobo, J., Abonia, R., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. C60, o194–o195.
- Quiroga, J., Portilla, J., Abonia, R., Insuasty, B., Nogueras, M. & Cobo, J. (2008). Tetrahedron Lett. 49, 6254–6256.
- Schutznerová, E., Popa, I., Krystof, V., Koshino, H., Trávnícek, Z., Hradil, P. & Cankar, P. (2012). *Tetrahedron*, 68, 3996–4002.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o3171 [doi:10.1107/S1600536812042791]

3-tert-Butyl-1-(3-nitrophenyl)-1H-pyrazol-5-amine

Simón Hernández-Ortega, Fernando Cuenú-Cabezas, Rodrigo Abonia-González and Armando Cabrera-Ortiz

S1. Comment

The recent past has evidenced an ever-increasing interest in pyrazole based ligands. The interest in such compounds is due, first of all, to their variety of coordination complexes with a great number of metal ions and, second, to their ability to provide an extensive variety of coordination geometries and significant structural nuclearity when introducing different kinds of heteroatoms (Ahmed *et al.* 2005; Schutznerová *et al.* 2012). The past few years have seen considerable rise in interest in the design of various pyrazole-based ligands for particular metal binding site (Guerrero *et al.* 2009).

As a part of our current research work focused on the development of new bioactive heterocyclic compounds and continuing with the use of pyrazolic Schiff bases (Quiroga *et al.*, 2008; Abonia *et al.* 2002, 2004, 2010), in the synthesis of pyrazolopyrimidines, we want to describe the compound 5-amino-3-*tert*-butyl-1-(3-nitro-phenyl)-1*H*-pyrazole (**I**), which is a structural isomer of a related compound previously reported by Low (Low *et al.*, 2004).

The structure of the title compound is shown in Figure 1. The compound consists of a ring pyrazole substituted by 3nitro-phenyl ring bonded to N1, amino group in C5 and *tert* butyl group in C3. The pyrazole and phenyl rings are not coplanar, they are forming a dihedral angle of 50.61 (6)°. The nitro group is rotated around C14—N3 bond by 6.8 (3)°. These angle values are larger than those described for the isomeric compound 5-amino-3-*tert* butyl-1-(4-nitro-phenyl)-1*H*pyrazole (Low *et al.*, 2004). In the crystal, the molecules are linked by N—H–N and N—H–O intermolecular hydrogen bonds forming sheets in the *bc* plane. In additon, a weak intermolecular C-H…N interaction is observed (Figure 2, Table 1).

S2. Experimental

To a solution of conc hydrochloric acid (3.8 ml) in water (33 ml), 3-nitrophenylhydrazine (1.5001 g, 9.87 mmol) and 4,4dimethyl-3-oxopentanenitrile (1.8502 g, 14.80 mmol) were added. The mixture was heated at 70 °C for 1 h. Then, conc hydrochloric acid (3.8 ml) was added and the mixture was heated for 1 h more. After cooling, crushed ice was added and neutralized with conc ammonium hydroxide. The resulting solid was filtered under reduced pressure, washed with cold water (3 *X* 5 ml) and dried at ambient temperature affording the title compound (I) as a yellow solid [yield 1.744 g, 68%, m.p. 375 K]. MS (70 eV) m/z (%): 260 (55), 245 (100), 218 (88), 190 (73). Anal. Calc. for $C_{13}H_{16}N_4O_2$; C 59.99; H 6.20; N 21.52%, found C 60.36; H 6.42; N 21.88%. Crystals of the title compound suitable for single-crystal X-ray diffraction were grown by slow diffusion of pentane into a CH_2Cl_2 solution of the title compound.

S3. Refinement

The positional parameters of the amino H atom were refined with a distance restraint of 0.90 (1)Å while those of the other H atoms were calculated geometrically (C—H = 0.93–0.98 Å). All H atoms were refined with $U_{iso}(H) = 1.2U_{eq}$ of the parent atom.

Figure 1

Structure of (I), with the numbering scheme. The displacement ellipsoids are drawn to 40% of probability.

Figure 2

The crystal packing of (I), only the H atoms involved in intermolecular interaction were drawn.

3-tert-Butyl-1-(3-nitrophenyl)-1H-pyrazol-5-amine

Crystal data	
$C_{13}H_{16}N_4O_2$	F(000) = 552
$M_r = 260.30$	$D_{\rm x} = 1.278 { m Mg} { m m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 7587 reflections
a = 11.9421 (14) Å	$\theta = 2.7 - 25.3^{\circ}$
b = 9.6419 (11) Å	$\mu=0.09~\mathrm{mm^{-1}}$
c = 11.7694 (13) Å	T = 298 K
$\beta = 93.504 \ (2)^{\circ}$	Prism, orange
V = 1352.6 (3) Å ³	$0.46 \times 0.36 \times 0.32$ mm
Z = 4	

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0.83 pixels mm ⁻¹ ω scans 14529 measured reflections <i>Refinement</i>	2486 independent reflections 2036 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 25.4^{\circ}, \theta_{min} = 2.7^{\circ}$ $h = -14 \rightarrow 14$ $k = -11 \rightarrow 11$ $l = -14 \rightarrow 14$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.115$ S = 1.05 2486 reflections 181 parameters 2 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0644P)^2 + 0.1233P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.17 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.17 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the those in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.61664 (14)	-0.30475 (15)	0.45577 (16)	0.1090 (6)	
O2	0.76468 (15)	-0.18160 (16)	0.45837 (14)	0.1006 (5)	
N1	0.71780 (9)	0.17992 (11)	0.75434 (9)	0.0403 (3)	
N2	0.78018 (9)	0.26705 (11)	0.68907 (9)	0.0426 (3)	
N3	0.67228 (15)	-0.20551 (15)	0.48900 (13)	0.0686 (4)	
N4	0.68987 (11)	0.12825 (14)	0.94996 (10)	0.0516 (3)	
H4A	0.7163 (13)	0.1491 (17)	1.0213 (9)	0.062*	
H4B	0.6699 (13)	0.0411 (11)	0.9321 (14)	0.062*	
C3	0.84041 (11)	0.34268 (13)	0.76494 (11)	0.0401 (3)	
C4	0.81984 (11)	0.30418 (14)	0.87650 (11)	0.0433 (3)	
H4	0.8523	0.3421	0.9433	0.052*	
C5	0.74255 (11)	0.19985 (13)	0.86760 (11)	0.0400 (3)	
C6	0.91855 (12)	0.45492 (15)	0.72699 (13)	0.0488 (4)	
C7	0.99208 (17)	0.3989 (2)	0.63582 (17)	0.0768 (6)	
H7A	1.0374	0.3241	0.6669	0.115*	
H7B	1.0398	0.4716	0.6110	0.115*	
H7C	0.9453	0.3657	0.5723	0.115*	

C8	0.85048 (16)	0.57837 (16)	0.67990 (16)	0.0698 (5)
H8A	0.8051	0.5500	0.6138	0.105*
H8B	0.9005	0.6509	0.6594	0.105*
H8C	0.8030	0.6119	0.7368	0.105*
С9	0.99367 (15)	0.50386 (18)	0.82913 (16)	0.0657 (5)
H9A	0.9483	0.5454	0.8845	0.098*
H9B	1.0464	0.5709	0.8044	0.098*
H9C	1.0334	0.4260	0.8626	0.098*
C11	0.64947 (11)	0.07495 (13)	0.70143 (11)	0.0413 (3)
C12	0.69297 (12)	-0.00946 (14)	0.62034 (12)	0.0458 (4)
H12	0.7658	0.0027	0.5985	0.055*
C13	0.62517 (13)	-0.11245 (14)	0.57271 (12)	0.0490 (4)
C14	0.51684 (14)	-0.13283 (15)	0.60126 (14)	0.0555 (4)
H14	0.4727	-0.2023	0.5668	0.067*
C15	0.47534 (14)	-0.04795 (17)	0.68205 (15)	0.0598 (4)
H15	0.4022	-0.0603	0.7032	0.072*
C16	0.54076 (12)	0.05548 (16)	0.73219 (13)	0.0535 (4)
H16	0.5117	0.1124	0.7869	0.064*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.1062 (12)	0.0705 (9)	0.1473 (15)	-0.0008 (8)	-0.0181 (10)	-0.0588 (10)
O2	0.1094 (13)	0.0912 (11)	0.1050 (12)	-0.0042 (9)	0.0366 (10)	-0.0347 (9)
N1	0.0438 (6)	0.0374 (6)	0.0390 (6)	-0.0066 (5)	-0.0035 (5)	0.0012 (5)
N2	0.0464 (7)	0.0400 (6)	0.0408 (6)	-0.0063 (5)	-0.0029(5)	0.0030 (5)
N3	0.0837 (11)	0.0507 (8)	0.0697 (9)	0.0057 (8)	-0.0079 (8)	-0.0137 (7)
N4	0.0619 (8)	0.0505 (7)	0.0418 (7)	-0.0070 (6)	-0.0016 (6)	0.0068 (6)
C3	0.0411 (7)	0.0346 (7)	0.0435 (7)	0.0009 (6)	-0.0056 (6)	0.0008 (6)
C4	0.0487 (8)	0.0402 (7)	0.0398 (7)	-0.0025 (6)	-0.0089 (6)	-0.0019 (6)
C5	0.0429 (7)	0.0370 (7)	0.0393 (7)	0.0041 (6)	-0.0037 (6)	0.0025 (5)
C6	0.0518 (8)	0.0404 (7)	0.0530 (8)	-0.0076 (6)	-0.0062 (7)	0.0043 (6)
C7	0.0860 (13)	0.0648 (11)	0.0827 (13)	-0.0206 (10)	0.0292 (11)	0.0050 (10)
C8	0.0834 (12)	0.0428 (9)	0.0797 (12)	-0.0123 (8)	-0.0248 (10)	0.0123 (8)
C9	0.0610 (10)	0.0575 (10)	0.0756 (11)	-0.0208 (8)	-0.0191 (9)	0.0098 (8)
C11	0.0442 (8)	0.0361 (7)	0.0426 (7)	-0.0044 (6)	-0.0060 (6)	0.0030 (6)
C12	0.0460 (8)	0.0427 (8)	0.0478 (8)	-0.0014 (6)	-0.0044 (6)	0.0011 (6)
C13	0.0606 (9)	0.0365 (7)	0.0484 (8)	0.0008 (7)	-0.0084 (7)	-0.0012 (6)
C14	0.0612 (10)	0.0420 (8)	0.0611 (9)	-0.0129 (7)	-0.0132 (8)	0.0031 (7)
C15	0.0495 (9)	0.0606 (10)	0.0690 (10)	-0.0154 (8)	-0.0001 (8)	-0.0018 (8)
C16	0.0494 (9)	0.0525 (9)	0.0585 (9)	-0.0054 (7)	0.0020 (7)	-0.0050 (7)

Geometric parameters (Å, °)

01—N3	1.2159 (19)	С7—Н7В	0.9600	
O2—N3	1.204 (2)	С7—Н7С	0.9600	
N1—C5	1.3613 (17)	C8—H8A	0.9600	
N1—N2	1.3858 (15)	C8—H8B	0.9600	

N1—C11	1.4198 (16)	C8—H8C	0.9600
N2—C3	1.3297 (17)	С9—Н9А	0.9600
N3—C13	1.470 (2)	С9—Н9В	0.9600
N4—C5	1.3735 (18)	С9—Н9С	0.9600
N4—H4A	0.901 (9)	C11—C12	1.380 (2)
N4—H4B	0.895 (9)	C11—C16	1.382 (2)
C3—C4	1.4005 (19)	C12—C13	1.378 (2)
C3—C6	1.5140 (19)	C12—H12	0.9300
C4—C5	1.3650 (19)	C13—C14	1.370 (2)
C4—H4	0.9300	C14—C15	1.370 (2)
C6—C8	1.526 (2)	C14—H14	0.9300
C6—C7	1.526 (2)	C15—C16	1.377 (2)
C6—C9	1.530 (2)	С15—Н15	0.9300
C7—H7A	0.9600	С16—Н16	0.9300
C5—N1—N2	111.43 (10)	С6—С8—Н8А	109.5
C5—N1—C11	127.92 (11)	C6—C8—H8B	109.5
N2—N1—C11	120.20 (10)	H8A—C8—H8B	109.5
C3—N2—N1	104.32 (10)	С6—С8—Н8С	109.5
O2—N3—O1	123.17 (17)	H8A—C8—H8C	109.5
O2—N3—C13	118.64 (15)	H8B—C8—H8C	109.5
O1—N3—C13	118.17 (17)	С6—С9—Н9А	109.5
C5—N4—H4A	113.3 (11)	С6—С9—Н9В	109.5
C5—N4—H4B	115.7 (11)	H9A—C9—H9B	109.5
H4A—N4—H4B	120.1 (16)	С6—С9—Н9С	109.5
N2-C3-C4	111.44 (12)	Н9А—С9—Н9С	109.5
N2-C3-C6	120.78 (12)	H9B—C9—H9C	109.5
C4—C3—C6	127.78 (12)	C12-C11-C16	120.04 (13)
C5-C4-C3	106.26 (12)	C12-C11-N1	119.55(12)
C5-C4-H4	126.9	C16-C11-N1	120 40 (13)
$C_3 - C_4 - H_4$	126.9	C13 - C12 - C11	120.10(13) 118.00(13)
N1 - C5 - C4	106 53 (11)	C13 - C12 - H12	121.0
N1C5N4	100.55(11) 122.60(12)	C11_C12_H12	121.0
CA = C5 = N4	122.00(12) 130.77(13)	$C_{14} = C_{12} = C_{12}$	121.0 122.02(14)
C_{4} C_{5} C_{6} C_{8}	100.00(12)	C14 - C13 - C12	122.92(14)
$C_3 = C_6 = C_7$	109.90(12) 110.23(12)	$C_{14} = C_{13} = N_3$	118.03(14) 118.23(14)
$C_{3} = C_{0} = C_{1}$	110.23(12) 100.71(14)	C12 - C13 - N3	116.23(14)
$C_{0} = C_{0} = C_{1}$	109.71(14) 100.22(12)	C15 - C14 - C15	118.12 (14)
	109.33 (12)	C13—C14—H14	120.9
	108.57 (13)	C13—C14—H14	120.9
C/C6C9	109.07 (14)	C14—C15—C16	120.67 (15)
С6—С/—Н/А	109.5	С14—С15—Н15	119.7
С6—С7—Н7В	109.5	C16—C15—H15	119.7
Н/А—С7—Н7В	109.5	C15—C16—C11	120.24 (14)
С6—С7—Н7С	109.5	C15—C16—H16	119.9
H7A—C7—H7C	109.5	C11—C16—H16	119.9
H7B—C7—H7C	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
$N4$ — $H4A$ ···· $N2^{i}$	0.90(1)	2.23 (1)	3.1195 (17)	172 (2)
N4—H4 <i>B</i> ···O1 ⁱⁱ	0.90(1)	2.39(1)	3.241 (2)	160 (2)
C14—H14····N4 ⁱⁱⁱ	0.93	2.54	3.403 (2)	155

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (ii) *x*, -*y*-1/2, *z*+1/2; (iii) -*x*+1, *y*-1/2, -*z*+3/2.