metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Acetato- $\kappa^2 O, O'$)(acetato- κO)bis(2amino-3-methylpyridine- κN^1)cobalt(II)

Azadeh Tadjarodi,^a* Keyvan Bijanzad^a and Behrouz Notash^b

^aDepartment of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran, and ^bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran Correspondence e-mail: tajarodi@iust.ac.ir

Received 1 September 2012; accepted 9 September 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.051; wR factor = 0.096; data-to-parameter ratio = 20.6.

In the title compound, $[Co(CH_3COO)_2(C_6H_8N_2)_2]$, the Co^{II} ion is five-coordinated by two pyridine N atoms from two 2amino-3-methylpyridine ligands, two O atoms from one acetate ion and one O atom from another acetate ion in a distorted trigonal-bipyramidal geometry. The pyridine rings are nearly perpendicular to each other [dihedral angle = $84.49 (16)^\circ$]. The crystal packing is stabilized by intramolecular and intermolecular N-H···O hydrogen-bonding interactions.

Related literature

For related coordination compounds of 2-amino-3-methylpyridine, see: Arab Ahmadi *et al.* (2011); Tadjarodi *et al.* (2010, 2012); Castillo *et al.* (2001); Ziegler *et al.* (2000); Amani Komaei *et al.* (1999); Chen *et al.* (2005). For proton-transfer compounds of 2-amino-3-methylpyridine, see: Carnevale *et al.* (2010).

Experimental

Crystal data

 $\begin{bmatrix} \text{Co}(\text{C}_2\text{H}_3\text{O}_2)_2(\text{C}_6\text{H}_8\text{N}_2)_2 \end{bmatrix} & \gamma = 72.42 \ (3)^\circ \\ M_r = 393.31 & V = 930.1 \ (4) \ \text{Å}^3 \\ \text{Triclinic, } P\overline{1} & Z = 2 \\ a = 8.1685 \ (16) \ \text{\AA} & \text{Mo } K\alpha \text{ radiation} \\ b = 10.452 \ (2) \ \text{\AA} & \mu = 0.95 \ \text{mm}^{-1} \\ c = 12.231 \ (2) \ \text{\AA} & T = 298 \ \text{K} \\ \alpha = 69.58 \ (3)^\circ & 0.27 \times 0.23 \times 0.13 \ \text{mm} \\ \beta = 79.94 \ (3)^\circ \end{array}$

Data collection

Stoe IPDS 2T diffractometer Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005) $T_{\rm min} = 0.785, T_{\rm max} = 0.886$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of
$wR(F^2) = 0.096$	independent and constrained
S = 0.92	refinement
4996 reflections	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
242 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$
3 restraints	

11215 measured reflections

 $R_{\rm int} = 0.062$

4996 independent reflections

2756 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Co1-O1	1.962 (2)	Co1-N1	2.072 (2)
Co1-O3	2.352 (2)	Co1-N3	2.074 (2)
Co1-O4	2.0028 (18)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots O4$	0.85 (2)	2.17 (2)	2.965 (3)	157 (3)
$N2-H2B\cdots O2^{i}$	0.84(2)	2.16 (2)	2.978 (3)	166 (3)
$N4-H4A\cdots O1$	0.83 (3)	2.10 (3)	2.859 (3)	153 (3)
$N4-H4B\cdots O3^{ii}$	0.84 (2)	2.06 (2)	2.881 (3)	164 (3)

Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) -x + 2, -y + 2, -z + 1.

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors wish to acknowledge Iran University of Science and Technology (IUST) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5616).

References

- Amani Komaei, S., Van Albada, G. A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (1999). *Polyhedron*, **18**, 1991–1997.
- Arab Ahmadi, R., Safari, N., Khavasi, H. R. & Amani, S. (2011). J. Coord. Chem. 64, 2056–2065.

- Carnevale, D. J., Landee, C. P., Turnbull, M. M., Winn, M. & Xiao, F. (2010). J. Coord. Chem. 63, 2223–2238.
- Castillo, O., Luque, A., Lloret, F. & Román, P. (2001). Inorg. Chem. Commun. 4, 350-353.
- Chen, Z.-F., Liu, B., Liang, H., Hu, R.-X. & Zhou, Z.-Y. (2005). J. Coord. Chem. 28, 561-565.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Tadjarodi, A., Bijanzad, K. & Notash, B. (2010). Acta Cryst. E66, m1293m1294.
- Tadjarodi, A., Bijanzad, K. & Notash, B. (2012). Acta Cryst. E68, m1099.
- Ziegler, C. J., Silverman, A. P. & Lippard, S. J. (2000). J. Biol. Inorg. Chem. 5, 774–783.

Acta Cryst. (2012). E68, m1260–m1261 [https://doi.org/10.1107/S1600536812038664]

$(Acetato-\kappa^2 O, O')(acetato-\kappa O)bis(2-amino-3-methylpyridine-\kappa N^1)cobalt(II)$

Azadeh Tadjarodi, Keyvan Bijanzad and Behrouz Notash

S1. Comment

2-Amino-3-methylpyridine (ampy) coordinates to metals mostly through the nitrogen atom of the pyridyl group (Arab Ahmadi *et al.*, 2011; Tadjarodi *et al.*, 2012 and 2010; Castillo *et al.*, 2001; Ziegler *et al.*, 2000; Amani Komaei *et al.*, 1999) but it can also coordinate *via* the nitrogen atom of the amino group (Chen *et al.*, 2005). In recent years, several structures of proton-transfer compounds, [(ampyH)₂CoX₄] (X = Cl, Br) have been reported by 2-Amino-3-methylpyridine (Carnevale *et al.* 2010).

Herein, we report the synthesis and structural determination of the title compound, $[Co(ampy)_2(CH_3COO)_2]$. The coordination sphere of the mononuclear complex includes three oxygen atoms from two acetate ions and two pyridyl nitrogen atoms from two ampy ligands thus constructing a distorted trigonal bipyramidal geometry (Fig. 1). In the structure of $[Co(ampy)_2(CH_3COO)_2]$, several intramolecular and intermolecular N–H…O hydrogen bond interactions formed between the amino group of the ligand and the acetate oxygen atoms which can stabilize the crystal structure (Fig. 2 & Table 1).

S2. Experimental

A solution of 2-amino-3-methylpyridine (1 mmol) in ethanol was added to an aqueous solution of $Co(CH_3COO)_2.4H_2O$ (0.5 mmol) and stirred for 20 min at 50 °C. Slow evaporation of the resulting solution gave violet plate shaped crystals of the title compound suitable for X-ray analysis (decomposition >300 °C).

S3. Refinement

Hydrogen atoms attached to nitrogen atoms were found in difference Fourier map.H2A and H2B and H4B were refined with distance restraints of N—H 0.845 (18), 0.840 (18) and 0.839 (18), respectively. H atoms attached to carbon atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å (CH), with C—H = 0.96 Å (CH₃), and $U_{iso}(H) = 1.2, 1.5 U_{eq}(C)$.

Figure 1

The molecular structure of [Co(ampy)₂(CH₃COO)₂] with displacement ellipsoids drawn at 30% probability level.

The packing diagram of the title compound showing hydrogen bonding as blue dashed lines.

(Acetato- $\kappa^2 O, O'$)(acetato- κO)bis(2-amino-3- methylpyridine- κN^1)cobalt(II)

Crystal data

$$\begin{split} & [\mathrm{Co}(\mathrm{C}_{2}\mathrm{H}_{3}\mathrm{O}_{2})_{2}(\mathrm{C}_{6}\mathrm{H}_{8}\mathrm{N}_{2})_{2}]\\ & M_{r} = 393.31\\ & \mathrm{Triclinic}, \ & P1\\ & \mathrm{Hall\ symbol:\ -P1}\\ & a = 8.1685\ (16)\ \mathrm{\AA}\\ & b = 10.452\ (2)\ \mathrm{\AA}\\ & c = 12.231\ (2)\ \mathrm{\AA}\\ & a = 69.58\ (3)^{\circ}\\ & \beta = 79.94\ (3)^{\circ}\\ & \gamma = 72.42\ (3)^{\circ}\\ & V = 930.1\ (4)\ \mathrm{\AA}^{3} \end{split}$$

Data collection

Stoe IPDS 2T
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
rotation method scans
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
$T_{\min} = 0.785, \ T_{\max} = 0.886$

Refinement

nojmentem	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.096$	neighbouring sites
S = 0.92	H atoms treated by a mixture of independent
4996 reflections	and constrained refinement
242 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0361P)^2]$
3 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.35$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 2

F(000) = 410 $D_x = 1.404 \text{ Mg m}^{-3}$

 $\theta = 2.2 - 29.2^{\circ}$

 $\mu = 0.95 \text{ mm}^{-1}$

T = 298 K

Plate, violet

 $R_{\rm int} = 0.062$

 $h = -11 \rightarrow 11$ $k = -14 \rightarrow 14$ $l = -16 \rightarrow 16$

 $0.27 \times 0.23 \times 0.13 \text{ mm}$

11215 measured reflections 4996 independent reflections 2756 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 29.2^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4996 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F 1		1	1	• , •		• 1 /	• , •	1. 1		,	182	Δ
Fractional	atomic	coordinates	and	isofronic	or e	pautvalent	isofronic	displa	rement	narameters	1 A*)
1 / actionat	aronne	coordinates		ison opic	0, 0	guirducin	isonopie	anspia	cincin	parameters	(/	/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Col	0.71818 (5)	0.93397 (4)	0.77010 (3)	0.04555 (13)
01	0.6158 (3)	1.0480 (2)	0.62129 (18)	0.0698 (6)
O2	0.4417 (3)	1.2043 (3)	0.6980 (2)	0.0879 (8)

03	0.9471 (3)	1.0418 (2)	0.70296 (17)	0.0653 (6)
04	0.8186 (2)	0.9932 (2)	0.87698 (16)	0.0593 (5)
N1	0.5289 (3)	0.8404 (3)	0.8723 (2)	0.0516 (6)
N2	0.6160 (3)	0.8098 (3)	1.0513 (2)	0.0569 (6)
N3	0.8801 (3)	0.7557 (2)	0.73364 (18)	0.0431 (5)
N4	0.9101 (4)	0.8685 (3)	0.5353 (2)	0.0638 (7)
C1	0.5153 (3)	0.7826 (3)	0.9897 (2)	0.0458 (6)
C2	0.4051 (4)	0.6933 (3)	1.0468 (3)	0.0570 (8)
C3	0.3999 (5)	0.6244 (4)	1.1759 (3)	0.0808 (11)
H3A	0.3216	0.5655	1.1991	0.121*
H3B	0.3618	0.6957	1.2141	0.121*
H3C	0.5130	0.5676	1.1978	0.121*
C4	0.3094 (4)	0.6719 (4)	0.9766 (3)	0.0737 (10)
H4	0.2364	0.6131	1.0110	0.088*
C5	0.3170 (4)	0.7344 (4)	0.8568 (3)	0.0813 (11)
Н5	0.2486	0.7206	0.8108	0.098*
C6	0.4280 (4)	0.8170 (4)	0.8083 (3)	0.0684 (9)
H6	0.4350	0.8593	0.7276	0.082*
C7	0.9548 (3)	0.7526(3)	0.6262 (2)	0.0435 (6)
C8	1.0746 (4)	0.6286 (3)	0.6109 (3)	0.0540 (7)
C9	1.1499 (5)	0.6286 (4)	0.4888 (3)	0.0899 (12)
H9A	1.2360	0.5413	0.4930	0.135*
H9B	1.2013	0.7063	0.4530	0.135*
H9C	1.0602	0.6381	0.4430	0.135*
C10	1.1139 (4)	0.5139 (3)	0.7075 (3)	0.0636 (8)
H10	1.1933	0.4319	0.6997	0.076*
C11	1.0377 (4)	0.5169 (3)	0.8177 (3)	0.0607 (8)
H11	1.0649	0.4385	0.8837	0.073*
C12	0.9222 (4)	0.6381 (3)	0.8255 (2)	0.0521 (7)
H12	0.8689	0.6400	0.8988	0.063*
C13	0.5012 (4)	1.1626 (3)	0.6146 (3)	0.0553 (7)
C14	0.4425 (6)	1.2476 (5)	0.4946 (4)	0.1086 (15)
H14A	0.3280	1.3066	0.5011	0.163*
H14B	0.4430	1.1849	0.4528	0.163*
H14C	0.5191	1.3057	0.4530	0.163*
C15	0.9323 (4)	1.0452 (3)	0.8040 (2)	0.0492 (7)
C16	1.0438 (4)	1.1079 (4)	0.8434 (3)	0.0724 (10)
H16A	1.1267	1.0337	0.8925	0.109*
H16B	0.9738	1.1690	0.8865	0.109*
H16C	1.1027	1.1615	0.7763	0.109*
H2A	0.666 (4)	0.874 (3)	1.016 (3)	0.087*
H4A	0.842 (4)	0.941 (4)	0.545 (3)	0.087*
H2B	0.587 (4)	0.798 (4)	1.1228 (17)	0.087*
H4B	0.960 (4)	0.877 (4)	0.4681 (19)	0.087*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Col	0.0517 (2)	0.0480 (2)	0.0384 (2)	-0.01574 (17)	0.00583 (15)	-0.01758 (17)
01	0.0657 (14)	0.0686 (15)	0.0551 (14)	0.0066 (12)	-0.0049 (10)	-0.0157 (12)
O2	0.1122 (19)	0.0934 (19)	0.0651 (16)	-0.0283 (15)	0.0210 (13)	-0.0454 (15)
03	0.0945 (15)	0.0705 (15)	0.0374 (12)	-0.0391 (12)	0.0109 (10)	-0.0177 (10)
O4	0.0669 (13)	0.0814 (15)	0.0415 (11)	-0.0407 (11)	0.0106 (9)	-0.0227 (11)
N1	0.0485 (13)	0.0653 (16)	0.0505 (15)	-0.0228 (12)	0.0103 (10)	-0.0300 (13)
N2	0.0629 (16)	0.0674 (18)	0.0432 (15)	-0.0304 (13)	0.0048 (12)	-0.0134 (14)
N3	0.0491 (13)	0.0397 (13)	0.0371 (13)	-0.0156 (10)	0.0050 (10)	-0.0088 (11)
N4	0.090 (2)	0.0453 (16)	0.0374 (15)	-0.0059 (14)	0.0174 (13)	-0.0117 (13)
C1	0.0416 (14)	0.0437 (16)	0.0521 (17)	-0.0121 (12)	0.0104 (12)	-0.0209 (14)
C2	0.0567 (17)	0.0534 (19)	0.062 (2)	-0.0219 (14)	0.0157 (15)	-0.0234 (16)
C3	0.088 (3)	0.077 (3)	0.076 (3)	-0.046 (2)	0.013 (2)	-0.012 (2)
C4	0.073 (2)	0.076 (2)	0.089 (3)	-0.0447 (19)	0.0195 (19)	-0.037 (2)
C5	0.078 (2)	0.112 (3)	0.086 (3)	-0.056 (2)	0.0105 (19)	-0.052 (3)
C6	0.070 (2)	0.096 (3)	0.058 (2)	-0.0366 (19)	0.0070 (16)	-0.039 (2)
C7	0.0474 (15)	0.0409 (16)	0.0431 (16)	-0.0148 (12)	0.0059 (12)	-0.0161 (14)
C8	0.0600 (18)	0.0420 (17)	0.0564 (19)	-0.0130 (14)	0.0082 (14)	-0.0174 (15)
C9	0.116 (3)	0.061 (2)	0.072 (2)	-0.004 (2)	0.030 (2)	-0.030 (2)
C10	0.0599 (19)	0.0438 (18)	0.079 (2)	-0.0070 (15)	0.0005 (17)	-0.0184 (18)
C11	0.0646 (19)	0.0485 (19)	0.057 (2)	-0.0119 (15)	-0.0061 (15)	-0.0034 (15)
C12	0.0559 (17)	0.0555 (19)	0.0431 (17)	-0.0218 (15)	0.0030 (13)	-0.0103 (15)
C13	0.0556 (18)	0.062 (2)	0.0513 (18)	-0.0127 (16)	-0.0026 (14)	-0.0246 (16)
C14	0.135 (4)	0.091 (3)	0.082 (3)	0.021 (3)	-0.048 (3)	-0.030 (2)
C15	0.0570 (17)	0.0450 (17)	0.0443 (17)	-0.0170 (14)	0.0021 (13)	-0.0124 (13)
C16	0.073 (2)	0.093 (3)	0.068 (2)	-0.045 (2)	0.0090 (17)	-0.032 (2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Co1-01	1.962 (2)	C4—C5	1.380 (5)
Co1—O3	2.352 (2)	C4—H4	0.9300
Co1—O4	2.0028 (18)	C5—C6	1.359 (4)
Co1—N1	2.072 (2)	С5—Н5	0.9300
Co1—N3	2.074 (2)	С6—Н6	0.9300
O1—C13	1.265 (4)	C7—C8	1.419 (4)
O2—C13	1.215 (3)	C8—C10	1.360 (4)
O3—C15	1.233 (3)	C8—C9	1.512 (4)
O4—C15	1.277 (3)	С9—Н9А	0.9600
N1-C1	1.349 (3)	C9—H9B	0.9600
N1-C6	1.353 (3)	С9—Н9С	0.9600
N2-C1	1.354 (4)	C10—C11	1.389 (4)
N2—H2A	0.845 (18)	C10—H10	0.9300
N2—H2B	0.840 (18)	C11—C12	1.354 (4)
N3—C12	1.345 (4)	C11—H11	0.9300
N3—C7	1.355 (3)	C12—H12	0.9300
N4—C7	1.331 (4)	C13—C14	1.501 (5)

	0.82(2)	C14 H14A	0.0600
N4—H4A	0.83(3)		0.9600
N4—H4B	0.839 (18)	CI4—HI4B	0.9600
C1—C2	1.414 (4)	C14—H14C	0.9600
C2—C4	1.367 (4)	C15—C16	1.492 (4)
C2—C3	1.489 (4)	C16—H16A	0.9600
С3—НЗА	0.9600	C16—H16B	0.9600
С3—Н3В	0.9600	C16—H16C	0.9600
С3—Н3С	0.9600		
$01 - C_0 = 04$	129 30 (10)	N1	122.9 (3)
O1 Co1 N1	129.36(10) 104.36(10)	N1 C6 H6	112.5 (5)
$O_{1} = O_{1} = N_{1}$	104.30(10) 105.67(9)	N1 - C0 - H0	110.5
04 - 01 - N1	103.07 (8)		118.5
01 - Co1 - N3	103.15 (9)	N4	118.0 (2)
04—Co1—N3	112.27 (9)	N4—C7—C8	121.0 (2)
N1—Co1—N3	97.38 (9)	N3—C7—C8	121.0 (3)
O1—Co1—O3	88.36 (9)	C10—C8—C7	117.8 (3)
O4—Co1—O3	58.90 (7)	C10—C8—C9	123.1 (3)
N1—Co1—O3	164.49 (7)	C7—C8—C9	119.1 (3)
N3—Co1—O3	88.12 (8)	С8—С9—Н9А	109.5
C13—O1—Co1	119.87 (19)	С8—С9—Н9В	109.5
C15—O3—Co1	83.56 (16)	H9A—C9—H9B	109.5
$C_{15} = 04 = C_{01}$	98 54 (16)	С8—С9—Н9С	109.5
C1 N1 $C6$	1186(2)	H_{0} C_{0} H_{0} H_{0}	109.5
$C_1 = N_1 = C_0$	110.0(2)		109.5
	127.07(17)		109.3
C6—N1—Co1	112.7 (2)		121.3 (3)
C1—N2—H2A	118 (2)	C8—C10—H10	119.4
C1—N2—H2B	118 (2)	C11—C10—H10	119.4
H2A—N2—H2B	116 (3)	C12—C11—C10	117.7 (3)
C12—N3—C7	118.3 (2)	C12—C11—H11	121.2
C12—N3—Co1	116.71 (17)	C10-C11-H11	121.2
C7—N3—Co1	124.82 (18)	N3—C12—C11	123.9 (3)
C7—N4—H4A	120 (3)	N3—C12—H12	118.0
C7—N4—H4B	123 (3)	C11—C12—H12	118.0
H4A—N4—H4B	116 (4)	O2-C13-O1	123.5 (3)
N1-C1-N2	117 2 (2)	02-C13-C14	1210(3)
N1-C1-C2	1219(2)	01-C13-C14	121.0(3) 1155(3)
$N_1 = C_1 = C_2$ $N_2 = C_1 = C_2$	121.9(2) 120.9(3)	C_{13} C_{14} H_{14A}	100 5
12 - C1 - C2	120.9(3)	C_{12} C_{14} U_{14} D_{14}	109.5
C4 - C2 - C1	110.4(3)		109.5
C4-C2-C3	122.9 (3)	H14A - C14 - H14B	109.5
C1C2C3	120.8 (3)	C13—C14—H14C	109.5
С2—С3—НЗА	109.5	H14A—C14—H14C	109.5
C2—C3—H3B	109.5	H14B—C14—H14C	109.5
НЗА—СЗ—НЗВ	109.5	O3—C15—O4	119.0 (2)
С2—С3—Н3С	109.5	O3—C15—C16	121.8 (3)
НЗА—СЗ—НЗС	109.5	O4—C15—C16	119.2 (2)
НЗВ—СЗ—НЗС	109.5	C15—C16—H16A	109.5
C2—C4—C5	122.5 (3)	C15—C16—H16B	109.5
С2—С4—Н4	118.7	H16A—C16—H16B	109.5

С5—С4—Н4	118.7	C15—C16—H16C	109.5
C6—C5—C4	117.6 (3)	H16A—C16—H16C	109.5
С6—С5—Н5	121.2	H16B—C16—H16C	109.5
C4—C5—H5	121.2		
O4—Co1—O1—C13	-50.1 (3)	Co1—N1—C1—C2	-164.79 (19)
N1—Co1—O1—C13	74.6 (2)	N1-C1-C2-C4	-1.8 (4)
N3—Co1—O1—C13	175.9 (2)	N2-C1-C2-C4	-179.6 (3)
O3—Co1—O1—C13	-96.4 (2)	N1—C1—C2—C3	176.5 (3)
O1—Co1—O3—C15	138.61 (18)	N2-C1-C2-C3	-1.3 (4)
O4—Co1—O3—C15	-0.62 (17)	C1—C2—C4—C5	-0.6 (5)
N1—Co1—O3—C15	-6.9 (4)	C3—C2—C4—C5	-179.0 (3)
N3—Co1—O3—C15	-118.18 (18)	C2C4C5C6	1.7 (6)
O1—Co1—O4—C15	-56.9 (2)	C1—N1—C6—C5	-1.9 (5)
N1—Co1—O4—C15	178.84 (17)	Co1—N1—C6—C5	167.7 (3)
N3—Co1—O4—C15	73.83 (19)	C4C5C6N1	-0.4 (5)
O3—Co1—O4—C15	0.60 (16)	C12—N3—C7—N4	178.7 (2)
O1—Co1—N1—C1	-161.2 (2)	Co1—N3—C7—N4	-6.2 (3)
O4—Co1—N1—C1	-22.5 (2)	C12—N3—C7—C8	-0.1 (4)
N3—Co1—N1—C1	93.1 (2)	Co1—N3—C7—C8	174.98 (19)
O3—Co1—N1—C1	-16.9 (5)	N4C7C8C10	-179.8 (3)
O1—Co1—N1—C6	30.3 (2)	N3-C7-C8-C10	-1.0 (4)
O4—Co1—N1—C6	169.0 (2)	N4—C7—C8—C9	-0.9 (4)
N3—Co1—N1—C6	-75.3 (2)	N3—C7—C8—C9	177.9 (3)
O3—Co1—N1—C6	174.6 (3)	C7—C8—C10—C11	0.9 (4)
O1—Co1—N3—C12	-157.47 (18)	C9—C8—C10—C11	-177.9 (3)
O4—Co1—N3—C12	59.53 (19)	C8-C10-C11-C12	0.2 (4)
N1—Co1—N3—C12	-50.79 (19)	C7—N3—C12—C11	1.3 (4)
O3—Co1—N3—C12	114.65 (18)	Co1—N3—C12—C11	-174.1 (2)
O1—Co1—N3—C7	27.4 (2)	C10-C11-C12-N3	-1.4 (4)
O4—Co1—N3—C7	-115.6 (2)	Co1-01-C13-02	-4.2 (4)
N1—Co1—N3—C7	134.1 (2)	Co1-01-C13-C14	175.0 (3)
O3—Co1—N3—C7	-60.5 (2)	Co1-03-C15-04	0.9 (3)
C6—N1—C1—N2	-179.0 (3)	Co1-O3-C15-C16	-179.2 (3)
Co1—N1—C1—N2	13.1 (4)	Co1—O4—C15—O3	-1.1 (3)
C6—N1—C1—C2	3.1 (4)	Co1-O4-C15-C16	179.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2 <i>A</i> ···O4	0.85 (2)	2.17 (2)	2.965 (3)	157 (3)
N2—H2 B ···O2 ⁱ	0.84 (2)	2.16 (2)	2.978 (3)	166 (3)
N4—H4 <i>A</i> …O1	0.83 (3)	2.10 (3)	2.859 (3)	153 (3)
N4—H4 <i>B</i> ···O3 ⁱⁱ	0.84 (2)	2.06 (2)	2.881 (3)	164 (3)

Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+2, -y+2, -z+1.