Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Redetermination of $\mathrm{Ba}_{2} \mathrm{CdTe}_{3}$ from single-crystal X-ray data

Min Yang, Sheng-Qing Xia* and Xu-Tang Tao

State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China

Correspondence e-mail: shqxia@sdu.edu.cn

Received 6 September 2012; accepted 12 September 2012

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{Te}-\mathrm{Cd})=0.001 \mathrm{~A}$; R factor $=0.025 ; w R$ factor $=0.041$; data-to-parameter ratio $=28.9$.

The previous structure determination of the title compound, dibarium tritelluridocadmate, was based on powder X-ray diffraction data [Wang \& DiSalvo (1999). J. Solid State Chem. 148, 464-467]. In the current redetermination from singlecrystal X-ray data, all atoms were refined with anisotropic displacement parameters. The previous structure report is generally confirmed, but with some differences in bond lengths. $\mathrm{Ba}_{2} \mathrm{CdTe}_{3}$ is isotypic with $\mathrm{Ba}_{2} M X_{3}(M=\mathrm{Mn}, \mathrm{Cd} ; X$ $=\mathrm{S}, \mathrm{Se}$) and features ${ }_{\infty}^{1}\left[\mathrm{CdTe}_{2 / 2} \mathrm{Te}_{2 / 1}\right]^{4-}$ chains of cornersharing CdTe_{4} tetrahedra running parallel [010]. The two Ba^{2+} cations are located between the chains, both within distorted monocapped trigonal-prismatic coordination polyhedra. All atoms in the structure are located on a mirror plane.

Related literature

For the previous determination of $\mathrm{Ba}_{2} \mathrm{CdTe}_{3}$, see: Wang \& DiSalvo (1999). For isotypic compounds, see: Grey \& Steinfink (1971) for $\mathrm{Ba}_{2} \mathrm{MnS}_{3}$ and $\mathrm{Ba}_{2} \mathrm{MnSe}_{3}$; Iglesias et al. (1974) for $\mathrm{Ba}_{2} \mathrm{CdSe}_{3}$ and $\mathrm{Ba}_{2} \mathrm{CdS}_{3}$.

Experimental

Crystal data
$\mathrm{Ba}_{2} \mathrm{CdTe}_{3}$
$V=892.85(3) \AA^{3}$
$M_{r}=769.88$
Orthorhombic, Pnma
$a=9.8405$ (2) A
$b=4.7502$ (1) \AA
$c=19.1008(4) \mathrm{A}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=20.59 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.07 \times 0.03 \times 0.03 \mathrm{~mm}$
Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.348, T_{\text {max }}=0.627$

Refinement

$\begin{array}{ll}R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025 & 38 \text { parameters } \\ w R\left(F^{2}\right)=0.041 & \Delta \rho_{\max }=1.44 \mathrm{e}^{-3} \\ S=0.99 & \Delta \rho_{\min }=-1.27 \mathrm{e} \mathrm{A}^{-3}\end{array}$
1098 reflections

4014 measured reflections 1098 independent reflections 858 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support by the National Natural Science Foundation of China (20901047) and the Shandong Provincial Natural Science Foundation (ZR2010BM003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2681).

References

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Grey, I. E. \& Steinfink, H. (1971). Inorg. Chem. 10, 691-696.
Iglesias, J. E., Pachali, K. E. \& Steinfink, H. (1974). J. Solid State Chem. 9, 6-14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, Y. C. \& DiSalvo, F. J. (1999). J. Solid State Chem. 148, 464-467.

supporting information

Acta Cryst. (2012). E68, i77 [https://doi.org/10.1107/S1600536812038974]

Redetermination of $\mathrm{Ba}_{2} \mathrm{CdTe}_{3}$ from single-crystal X-ray data

Min Yang, Sheng-Qing Xia and Xu-Tang Tao

S1. Comment

Single crystals of $\mathrm{Ba}_{2} \mathrm{CdTe}_{3}$ were obtained unintentionally from a Bi-flux reactions for exploration of possible new ternary phases in the $\mathrm{Ba}-\mathrm{Cd}-\mathrm{Te}$ system.
The structure of $\mathrm{Ba}_{2} \mathrm{CdTe}_{3}$ is isotypic with $\mathrm{Ba}_{2} \mathrm{Mn} X_{3}\left(X=\mathrm{S}\right.$, Se; Grey \& Steinfink, 1971) and $\mathrm{Ba}_{2} \mathrm{Cd} X_{3}(X=\mathrm{S}, \mathrm{Se}$; Iglesias et al., 1974). The structural set-up can be described as a packing of polyanionic chains composed of cornersharing CdTe_{4} tetrahedra. These chains run parallel to [010]; inbetween the chains the two Ba^{2+} cations are located (Fig. 1), both with a coordination number of 7 and surrounded in form of monocapped trigonal-prismatic polyhedra of Te atoms. All atoms are located on a mirror plane $x, 1 / 4, z$ (Wyckoff symbol 4c).
In comparison with the previous structure model on basis of powder X-ray data (Wang \& DiSalvo, 1999), the most important improvement of the current redetermination is reflected in the higher precision of the atomic coordinates and the use of anisotropic displacemenet parameters for all atoms. Although the coordination spheres of Cd and the two Ba atoms can still be described as a distorted CdTe_{4} tetrahedron and two distorted monocapped trigonal BaTe_{7} prisms, respectively, the results of the redetermination indicate some differences in terms of $\mathrm{Cd}-\mathrm{Te}$ and $\mathrm{Ba}-\mathrm{Te}$ bond lengths (mean σ for the bond length of the powder model in the range $0.003 \AA ; 0.0006$ for the current model). For example, the longest Ba -Te bonds are 3.6722 (8) and 3.6796 (8) \AA for Ba 1 and Ba 2 . The previous powder study revealed distances of 3.638 (5) and 3.500 (5) \AA, respectively.

S2. Experimental

The title compound was synthesized through a high temperature metal flux reaction. All starting elements were handled inside an Argon-filled glove box with controlled oxygen and moisture levels below 0.1 p.p.m.. The reaction conditions were optimized as follows: $\mathrm{Ba}, \mathrm{Cd}, \mathrm{Te}$ and Bi in a molar ratio of $2: 1: 3: 10$ were loaded in an alumina crucible, which were subsequently flame-sealed in a fused silica tube. The reactants were heated quickly to 973 K and allowed to dwell at this temperature for 20 h . After a slow cooling process down to 773 K at a rate of $5 \mathrm{~K} / \mathrm{h}$ and the removal of the Bi flux by centrifugation, high-quality single crystals of $\mathrm{Ba}_{2} \mathrm{CdTe}_{3}$ were obtained.

S3. Refinement

The full occupancies for all sites were verified by freeing the site occupation factor for an individual atom, while other remaining parameters were kept fixed. This proved that all positions are fully occupied with corresponding deviations from full occupancy within 3σ. The residual electron densities show a maximum peak of $1.44 \mathrm{e} / \AA^{3}$ and a minimum hole of $-1.27 \mathrm{e} / \AA^{3}$, which are 0.86 and $0.81 \AA$ from Te 3 and Te 2 , respectively.

Figure 1
View of the structure of $\mathrm{Ba}_{2} \mathrm{CdTe}_{3}$ along the b-axis. The barium, cadmium and tellurium atoms are plotted as purple, green and red ellipsoids, respectively. Ellipsoids are drawn at the 90% probability level.

dibarium tritelluridocadmate

Crystal data

$\mathrm{Ba}_{2} \mathrm{CdTe}_{3}$
$M_{r}=769.88$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=9.8405$ (2) \AA
$b=4.7502$ (1) \AA
$c=19.1008(4) \AA$
$V=892.85(3) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min }=0.348, T_{\text {max }}=0.627$
$F(000)=1264$
$D_{\mathrm{x}}=5.727 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1715 reflections
$\theta=3.0-28.2^{\circ}$
$\mu=20.59 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle, red
$0.07 \times 0.03 \times 0.03 \mathrm{~mm}$

4014 measured reflections
1098 independent reflections
858 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=27.1^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-12 \rightarrow 9$
$k=-3 \rightarrow 6$
$l=-24 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.041$
$S=0.99$
1098 reflections
38 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier
map
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0142 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.44 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.27 \mathrm{e}^{-3}$
Extinction correction: SHELXTL (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.00112 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Ba 1	$0.07317(6)$	0.2500	$0.78653(3)$	$0.01857(16)$
Ba 2	$0.24597(6)$	0.2500	$0.03873(3)$	$0.01918(16)$
Cd 1	$0.12996(7)$	0.2500	$0.36470(3)$	$0.01947(18)$
Te 1	$0.01147(6)$	0.2500	$0.59692(3)$	$0.01802(17)$
Te 2	$0.19335(6)$	0.2500	$0.22108(3)$	$0.01748(16)$
Te 3	$0.38656(6)$	0.2500	$0.42865(3)$	$0.01745(17)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba 1	$0.0190(3)$	$0.0171(3)$	$0.0196(4)$	0.000	$-0.0003(3)$	0.000
Ba 2	$0.0209(3)$	$0.0191(3)$	$0.0175(3)$	0.000	$-0.0013(3)$	0.000
Cd 1	$0.0197(4)$	$0.0201(4)$	$0.0186(4)$	0.000	$0.0014(3)$	0.000
Te 1	$0.0187(4)$	$0.0154(3)$	$0.0200(4)$	0.000	$0.0024(3)$	0.000
Te 2	$0.0178(4)$	$0.0203(3)$	$0.0144(4)$	0.000	$-0.0008(3)$	0.000
Te 3	$0.0158(4)$	$0.0200(3)$	$0.0165(4)$	0.000	$0.0004(3)$	0.000

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Ba} 1 — \mathrm{Te} 2^{\mathrm{i}}$	$3.5331(6)$	$\mathrm{Cd} 1 — \mathrm{Te} 1^{\mathrm{iii}}$	$2.8488(5)$
$\mathrm{Ba} 1 — \mathrm{Te} 2^{\mathrm{ii}}$	$3.5331(6)$	$\mathrm{Cd} 1 — \mathrm{Te} 1^{\mathrm{iv}}$	$2.8488(5)$
$\mathrm{Ba} 1 — \mathrm{Te} 2^{\mathrm{iii}}$	$3.5413(6)$	$\mathrm{Te} 1 — \mathrm{Cd} 1^{\mathrm{iii}}$	$2.8488(5)$
$\mathrm{Ba} 1 — \mathrm{Te} 2^{\mathrm{iv}}$	$3.5413(6)$	$\mathrm{Te} 1-\mathrm{Cd} 1^{\mathrm{iv}}$	$2.8488(5)$
$\mathrm{Ba} 1-\mathrm{Te} 3^{\mathrm{i}}$	$3.6287(6)$	$\mathrm{Te} 1 — \mathrm{Ba} 2^{\mathrm{i}}$	$3.5459(6)$
$\mathrm{Ba} 1-\mathrm{Te} 3^{\mathrm{ii}}$	$3.6287(6)$	$\mathrm{Te} 1 — \mathrm{Ba} 2^{\mathrm{ii}}$	$3.5459(6)$

Bal-Tel	3.6722 (8)
$\mathrm{Ba} 2-\mathrm{Te} 3{ }^{\text {v }}$	3.4297 (6)
$\mathrm{Ba}-\mathrm{Te} 3^{\text {vi }}$	3.4297 (6)
$\mathrm{Ba} 2-\mathrm{Te} 2$	3.5213 (8)
$\mathrm{Ba} 2-\mathrm{Te} 1^{\text {vi }}$	3.5459 (6)
$\mathrm{Ba} 2-\mathrm{Te} 1^{v}$	3.5459 (6)
$\mathrm{Ba} 2-\mathrm{Te} 3{ }^{\text {vii }}$	3.5913 (8)
$\mathrm{Ba} 2-\mathrm{Te} 1^{\text {viii }}$	3.6796 (8)
Cd1-Te3	2.8050 (9)
Cd1-Te2	2.8133 (9)
$\mathrm{Te} 2{ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{Te} 2^{\text {ii }}$	84.480 (18)
$\mathrm{Te} 2{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{Te} 2^{\text {iii }}$	156.629 (18)
Te2ii- ${ }^{\text {ii }} 1-\mathrm{Te} 2^{\text {iii }}$	90.930 (5)
$\mathrm{Te} 2{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Te} 2{ }^{\text {iv }}$	90.930 (5)
$\mathrm{Te} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Te} 2^{\text {iv }}$	156.629 (18)
$\mathrm{Te} 2^{\text {iii }}$ - $\mathrm{Ba} 1-\mathrm{Te} 2^{\text {iv }}$	84.241 (18)
$\mathrm{Te} 2^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Te} 3^{\text {i }}$	75.741 (13)
Te2 ${ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{Te} 3^{\text {i }}$	129.32 (2)
$\mathrm{Te} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Te} 3{ }^{\text {i }}$	123.41 (2)
Te $2{ }^{\text {iv }}-\mathrm{Ba} 1-\mathrm{Te} 3{ }^{\text {i }}$	70.888 (14)
Te $2^{\text {i }}-\mathrm{Ba} 1-\mathrm{Te} 3{ }^{\text {ii }}$	129.32 (2)
Te2 ${ }^{\text {ii }}$ - $\mathrm{Ba} 1-\mathrm{Te} 3^{\text {ii }}$	75.741 (13)
$\mathrm{Te} 2{ }^{\text {iii- }} \mathrm{Ba} 1-\mathrm{Te} 3{ }^{\text {ii }}$	70.888 (14)
$\mathrm{Te} 2{ }^{\text {iv }}-\mathrm{Ba} 1-\mathrm{Te} 3{ }^{\text {ii }}$	123.41 (2)
Te3 ${ }^{\text {i }} \mathrm{Ba} 1-\mathrm{Te} 3{ }^{\text {ii }}$	81.769 (17)
Te2 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{Te} 1$	76.026 (15)
$\mathrm{Te} 2{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{Te} 1$	76.026 (15)
Te2iii-Ba1-Te1	80.624 (16)
Te2 ${ }^{\text {iv }}-\mathrm{Ba} 1-\mathrm{Te} 1$	80.624 (16)
Te3--Ba1-Te1	139.101 (8)
$\mathrm{Te} 3{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{Te} 1$	139.101 (8)
Te3 ${ }^{\text {v }}$ - $\mathrm{Ba} 2-\mathrm{Te} 3{ }^{\text {vi }}$	87.658 (19)
Te3 ${ }^{\text {- }} \mathrm{Ba} 2-\mathrm{Te} 2$	123.399 (16)
Te3 ${ }^{\text {vi}}-\mathrm{Ba} 2-\mathrm{Te} 2$	123.399 (16)
Te3 ${ }^{\text {v }}$ - $\mathrm{Ba} 2-\mathrm{Te} 1^{\text {vi }}$	155.78 (2)
Te3 ${ }^{\text {vi }}-\mathrm{Ba} 2-\mathrm{Te} 1^{\text {vi }}$	89.100 (12)
$\mathrm{Te} 2-\mathrm{Ba} 2-\mathrm{Te} 1^{\text {vi }}$	77.814 (17)
$\mathrm{Te} 3{ }^{\mathrm{v}}-\mathrm{Ba} 2-\mathrm{Te} 1^{v}$	89.100 (12)
Te3 ${ }^{\text {vi- }} \mathrm{Ba} 2-\mathrm{Te} 1^{v}$	155.78 (2)
$\mathrm{Te} 2-\mathrm{Ba} 2-\mathrm{Te} 1^{v}$	77.814 (17)
Te1 ${ }^{\text {vi- }} \mathrm{Ba} 2-\mathrm{Te} 1^{\text {v }}$	84.104 (18)
Te3 ${ }^{\text {v }}$ - $\mathrm{Ba} 2-\mathrm{Te} 3{ }^{\text {vii }}$	74.447 (16)
Te3 ${ }^{\text {vi- }} \mathrm{Ba} 2-\mathrm{Te} 3{ }^{\text {vii }}$	74.447 (16)
$\mathrm{Te} 2-\mathrm{Ba} 2-\mathrm{Te} 3{ }^{\text {vii }}$	71.552 (17)
Te1 ${ }^{\text {vi }}$ - $\mathrm{Ba} 2-\mathrm{Te} 3{ }^{\text {vii }}$	127.482 (15)
Te1 ${ }^{\text {v }}$ - $\mathrm{Ba} 2-\mathrm{Te} 3{ }^{\text {vii }}$	127.482 (15)
Te3 ${ }^{\text {v }}-\mathrm{Ba} 2-\mathrm{Te} 1^{\text {viii }}$	80.695 (16)

$\mathrm{Te} 2^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Te} 2^{\mathrm{ii}}$
$\mathrm{Te} 2^{2 i}-\mathrm{Ba} 1-\mathrm{Te} 2^{\mathrm{iii}}$
$\mathrm{Te} 2^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Te} 2^{\mathrm{iv}}$
$\mathrm{Te} 2^{2 i}-\mathrm{Ba} 1-\mathrm{Te} 2^{\mathrm{iv}}$
Te2 ${ }^{\text {iiii- }} \mathrm{Ba} 1 — \mathrm{Te} 2^{\text {iv }}$
$\mathrm{Te} 2^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Te} 3^{\mathrm{i}}$
$\mathrm{Te} 2^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Te} 3^{\mathrm{i}}$
$\mathrm{Te} 2^{2 i i}-\mathrm{Ba} 1-\mathrm{Te} 3^{\mathrm{i}}$
$\mathrm{Te} 2^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{Te} 3^{\mathrm{i}}$
$\mathrm{Te} 2^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Te} 3^{\text {ii }}$
$\mathrm{Te} 2^{2 i}-\mathrm{Ba} 1-\mathrm{Te} 3^{\mathrm{ii}}$
Te2 $2^{\text {iii- }} \mathrm{Ba} 1 — \mathrm{Te}^{3 i}$
Te $2^{2 v}-\mathrm{Ba} 1-\mathrm{Te} 3^{\text {ii }}$
Te3 ${ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Te} 3^{\mathrm{ii}}$
Te2 ${ }^{i}-\mathrm{Ba} 1-\mathrm{Te} 1$
Te2i- ${ }^{\mathrm{ii}} \mathrm{Ba} 1-\mathrm{Te} 1$
Te2 $2^{\text {iii- }} \mathrm{Ba} 1 — \mathrm{Te} 1$
$\mathrm{Te} 2^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{Te} 1$
Te3 ${ }^{i}-\mathrm{Ba} 1-\mathrm{Te} 1$
$\mathrm{Te} 3^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Te} 1$
Te3 ${ }^{v}-\mathrm{Ba} 2-\mathrm{Te} 3^{\text {vi }}$
Te3 ${ }^{v}-\mathrm{Ba} 2-\mathrm{Te} 2$
Te3 ${ }^{\text {vi}}-\mathrm{Ba} 2-\mathrm{Te} 2$
$\mathrm{Te} 3^{\mathrm{v}}-\mathrm{Ba} 2-\mathrm{Te} 1^{\mathrm{vi}}$
$\mathrm{Te}^{\mathrm{vi}}-\mathrm{Ba} 2-\mathrm{Te} 1^{\text {vi }}$
$\mathrm{Te} 2-\mathrm{Ba} 2-\mathrm{Te}{ }^{\mathrm{vi}}$
Te3 ${ }^{v}-\mathrm{Ba} 2-\mathrm{Te}{ }{ }^{\vee}$
Te3 ${ }^{\text {vii- }} \mathrm{Ba} 2-\mathrm{Te} 1^{v}$
$\mathrm{Te} 2-\mathrm{Ba} 2-\mathrm{Te} 1^{v}$
$\mathrm{Te} 1^{\mathrm{vi}}-\mathrm{Ba} 2-\mathrm{Te} 1^{\mathrm{v}}$
$\mathrm{Te} 3^{v}-\mathrm{Ba} 2-\mathrm{Te} 3^{\text {vii }}$
Te3 ${ }^{\text {vi- }} \mathrm{Ba} 2-\mathrm{Te} 3^{\text {vii }}$
$\mathrm{Te} 2-\mathrm{Ba} 2-\mathrm{Te} 3^{\text {vii }}$
$\mathrm{Te} 1^{\text {vi- }} \mathrm{Ba} 2-\mathrm{Te} 3^{\text {vii }}$

Te3 ${ }^{v}-\mathrm{Ba} 2-\mathrm{Te} 1^{\text {viii }}$

$\mathrm{Te} 1-\mathrm{Ba} 2{ }^{\text {vii }}$	3.6796 (8)
$\mathrm{Te} 2-\mathrm{Ba}{ }^{\text {vi }}$	3.5331 (6)
$\mathrm{Te} 2-\mathrm{Ba} 1^{\text {v }}$	3.5331 (6)
$\mathrm{Te} 2-\mathrm{Ba} 1^{\text {iii }}$	3.5413 (6)
Te2-Bal ${ }^{\text {iv }}$	3.5413 (6)
$\mathrm{Te} 3-\mathrm{Ba} 2^{\text {i }}$	3.4297 (6)
Te3-Ba2 ${ }^{\text {ii }}$	3.4297 (6)
$\mathrm{Te} 3-\mathrm{Ba} 2^{\text {viii }}$	3.5913 (8)
Te3-Ba1 ${ }^{\text {v }}$	3.6287 (6)
Te3-Bal ${ }^{\text {vi }}$	3.6287 (6)
Te1 ${ }^{\text {iii- }}$ - $\mathrm{Cd} 1-\mathrm{Te} 1^{\text {iv }}$	112.97 (3)
Cd1 ${ }^{\text {iii- }}$ - $\mathrm{Te} 1-\mathrm{Cd1}{ }^{\text {iv }}$	112.97 (3)
$\mathrm{Cd} 1{ }^{\text {iii }}-\mathrm{Te} 1-\mathrm{Ba} 2^{\text {i }}$	165.46 (2)
$\mathrm{Cd} 1^{\mathrm{iv}}-\mathrm{Te} 1-\mathrm{Ba} 2^{\text {i }}$	81.436 (14)
$\mathrm{Cd} 1{ }^{\text {iii }}-\mathrm{Te} 1-\mathrm{Ba} 2{ }^{\text {ii }}$	81.436 (14)
$\mathrm{Cd} 1{ }^{\text {iv }}-\mathrm{Te} 1-\mathrm{Ba} 2{ }^{\text {ii }}$	165.46 (2)
$\mathrm{Ba} 2{ }^{\mathrm{i}}-\mathrm{Te} 1-\mathrm{Ba} 2{ }^{\text {ii }}$	84.104 (18)
Cd1iii-Te1-Bal	80.038 (19)
Cd1 ${ }^{\text {iv }}$-Te1-Bal	80.038 (19)
$\mathrm{Ba} 2{ }^{\text {i }}-\mathrm{Te} 1-\mathrm{Ba} 1$	101.413 (18)
$\mathrm{Ba} 2{ }^{\mathrm{ii}}-\mathrm{Te} 1-\mathrm{Ba} 1$	101.413 (18)
Cd1 ${ }^{\text {iii- }}$ - $\mathrm{Te} 1-\mathrm{Ba} 2{ }^{\text {vii }}$	80.46 (2)
$\mathrm{Cd} 1^{\text {iv }}-\mathrm{Te} 1-\mathrm{Ba} 2{ }^{\text {vii }}$	80.46 (2)
$\mathrm{Ba} 2{ }^{\text {i }}-\mathrm{Te} 1-\mathrm{Ba} 2{ }^{\text {vii }}$	104.904 (17)
$\mathrm{Ba} 2{ }^{\text {ii }}-\mathrm{Te} 1-\mathrm{Ba} 2^{\text {vii }}$	104.904 (17)
$\mathrm{Ba} 1-\mathrm{Te} 1-\mathrm{Ba} 2^{\text {vii }}$	144.28 (2)
$\mathrm{Cd} 1-\mathrm{Te} 2-\mathrm{Ba} 2$	175.65 (3)
Cd1-Te2-Ba1 ${ }^{\text {vi }}$	78.412 (18)
$\mathrm{Ba} 2-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {vi }}$	104.737 (17)
$\mathrm{Cd} 1-\mathrm{Te} 2-\mathrm{Ba} 1^{v}$	78.412 (18)
$\mathrm{Ba} 2-\mathrm{Te} 2-\mathrm{Ba} 1^{v}$	104.737 (17)
$\mathrm{Ba} 1^{\mathrm{vi}}-\mathrm{Te} 2-\mathrm{Ba} 1^{v}$	84.480 (18)
$\mathrm{Cd} 1-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {iii }}$	82.866 (18)
$\mathrm{Ba} 2-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {iii }}$	93.918 (17)
$\mathrm{Ba} 1^{\text {vi }}-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {iii }}$	161.261 (19)
$\mathrm{Ba} 1^{\mathrm{v}}-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {iii }}$	92.594 (5)
Cd1-Te2-Ba1 ${ }^{\text {iv }}$	82.866 (18)
$\mathrm{Ba} 2-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {iv }}$	93.918 (17)
$\mathrm{Ba} 1^{\text {vi }}-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {iv }}$	92.594 (5)
$\mathrm{Ba} 1^{\mathrm{v}}-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {iv }}$	161.261 (19)
$\mathrm{Ba} 1^{\text {iii }}-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {iv }}$	84.240 (18)
$\mathrm{Cd} 1-\mathrm{Te} 3-\mathrm{Ba} 2{ }^{\text {i }}$	85.679 (19)
$\mathrm{Cd} 1-\mathrm{Te} 3-\mathrm{Ba} 2{ }^{\text {ii }}$	85.679 (19)
$\mathrm{Ba} 2{ }^{\mathrm{i}}-\mathrm{Te} 3-\mathrm{Ba} 2{ }^{\text {ii }}$	87.658 (19)
Cd1-Te3-Ba2 ${ }^{\text {viii }}$	164.18 (3)
$\mathrm{Ba} 2{ }^{\text {i }}$-Te3- $\mathrm{Ba}^{\text {viii }}$	105.553 (16)
$\mathrm{Ba} 2{ }^{\text {iii }}-\mathrm{Te} 3-\mathrm{Ba} 2^{\text {viii }}$	105.553 (16)

Te3 ${ }^{\text {vi }}$ - $\mathrm{Ba} 2-\mathrm{Te} 1^{\text {viii }}$	80.695 (16)	Cd1-Te3- $\mathrm{Ba}^{\text {v }}$	76.852 (18)
Te2-Ba2-Te1 ${ }^{\text {viii }}$	143.22 (2)	$\mathrm{Ba} 2{ }^{\text {i }}$-Te3- $\mathrm{Ba}^{\text {v }}$	162.44 (2)
Te1 ${ }^{\text {vi }}-\mathrm{Ba} 2-\mathrm{Te} 1^{\text {viii }}$	75.096 (17)	$\mathrm{Ba} 2{ }^{\text {iii }}-\mathrm{Te} 3-\mathrm{Ba} 1^{v}$	92.687 (10)
Te1 ${ }^{v}-\mathrm{Ba} 2-\mathrm{Te} 1^{\text {viii }}$	75.096 (17)	$\mathrm{Ba} 2^{\text {viii- }} \mathrm{Te} 3-\mathrm{Ba} 1^{v}$	91.275 (17)
Te3 ${ }^{\text {vii }}$ - $\mathrm{Ba} 2-\mathrm{Te} 1^{\text {viii }}$	145.23 (2)	Cd1-Te3-Ba1 ${ }^{\text {vi }}$	76.852 (18)
Te3-Cd1-Te2	103.01 (3)	$\mathrm{Ba} 2{ }^{\mathrm{i}}-\mathrm{Te} 3-\mathrm{Ba} 1^{\text {vi }}$	92.687 (10)
Te3-Cd1-Te $1^{\text {iii }}$	109.13 (2)	$\mathrm{Ba} 2{ }^{\text {iii }}$ - $\mathrm{Te} 3-\mathrm{Ba} 1^{\text {vi }}$	162.44 (2)
$\mathrm{Te} 2-\mathrm{Cd} 1-\mathrm{Te} 1^{\text {iii }}$	111.05 (2)	$\mathrm{Ba} 2{ }^{\text {viii }}$-Te3- $\mathrm{Ba}^{\text {vi }}$	91.275 (17)
$\mathrm{Te} 3-\mathrm{Cd} 1-\mathrm{Te} 1^{\text {iv }}$	109.13 (2)	$\mathrm{Ba} 1^{\mathrm{v}}-\mathrm{Te} 3-\mathrm{Ba}{ }^{\text {vi }}$	81.769 (17)
Te2-Cd1-Te1 ${ }^{\text {iv }}$	111.05 (2)		

Symmetry codes: (i) $-x+1 / 2,-y+1, z+1 / 2$; (ii) $-x+1 / 2,-y, z+1 / 2$; (iii) $-x,-y,-z+1$; (iv) $-x,-y+1,-z+1$; (v) $-x+1 / 2,-y, z-1 / 2$; (vi) $-x+1 / 2,-y+1, z-1 / 2$; (vii) $x-1 / 2, y,-z+1 / 2$; (viii) $x+1 / 2, y,-z+1 / 2$.

