Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Redetermination of clinobarylite, $\mathrm{BaBe}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$

Adrien J. Di Domizio,* Robert T. Downs and Hexiong Yang

Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, USA

Correspondence e-mail: ajdidomizio727@email.arizona.edu

Received 31 August 2012; accepted 25 September 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{Si}-\mathrm{O})=0.001 \AA$; R factor $=0.011 ; w R$ factor $=0.026 ;$ data-to-parameter ratio $=16.1$.

Clinobarylite, ideally $\mathrm{BaBe}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ (chemical name barium diberyllium disilicate), is a sorosilicate mineral and dimorphic with barylite. It belongs to a group of compounds characterized by the general formula $\mathrm{Ba} M^{2+}{ }_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$, with $M^{2+}=\mathrm{Be}, \mathrm{Mg}$, $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Zn}, \mathrm{Co}$, or Cu , among which the $\mathrm{Be}-$, $\mathrm{Fe}-$, and $\mathrm{Cu}-$ members have been found in nature. The crystal structure of clinobarylite has been re-examined in this study based on single-crystal X-ray diffraction data collected from a natural sample from the type locality (Khibiny Massif, Kola Peninsula, Russia). The structure of clinobarylite can be considered as a framework of BeO_{4} and SiO_{4} tetrahedra, with one of the O atoms coordinated to two Be and one Si , one coordinated to two Si , and two O atoms coordinated to one Si and one Be atom. The BeO_{4} tetrahedra share corners, forming chains parallel to the c axis, which are interlinked by the $\mathrm{Si}_{2} \mathrm{O}_{7}$ units oriented parallel to the a axis. The Ba^{2+} cations (site symmetry m..) are in the framework channels and are coordinated by eleven O atoms in form of an irregular polyhedron. The $\mathrm{Si}-$ O_{br} (bridging O atom, at site symmetry m. .) bond length, the $\mathrm{Si}-\mathrm{O}_{\mathrm{nbr}}$ (non-bridging O atoms) bond lengths, and the $\mathrm{Si}-$ $\mathrm{O}-\mathrm{Si}$ angle within the $\mathrm{Si}_{2} \mathrm{O}_{7}$ unit are in marked contrast to the corresponding values determined in the previous study [Krivovichev et al. (2004). N. Jb. Miner. Mh. pp. 373-384].

Related literature

For clinobarylite, see: Chukanov et al. (2003); Rastsvetaeva \& Chukanov (2003); Krivovichev et al. (2004). For clinobaryliterelated minerals and compounds, see: Lin et al. (1999); Fleet \& Liu (2001); Kolitsch et al. (2009); Yang et al. (2012). For general information on applications of clinobarylite-related materials, see: Barry (1970); Robinson \& Fang (1977); Adams \& Layland (1996); Yao et al. (1998); Lu et al. (2000); Yamada et al. (2001); Ohta et al. (2004); Bertaina \& Hayn (2006); Zvyagin (2006); Zheludev et al. (2007); Yang et al. (2012).

Experimental

Crystal data

$\mathrm{BaBe}_{2} \mathrm{O}_{7} \mathrm{Si}_{2}$
$V=267.78(2) \AA^{3}$
$M_{r}=323.54$
Orthorhombic, $P_{\AA} m 2_{1}$
$Z=2$
$a=11.6491$ (5) £
Mo $K \alpha$ radiation
$b=4.9175$ (2) A
$c=4.6746$ (2) \AA
$T=293 \mathrm{~K}$
$0.05 \times 0.05 \times 0.04 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2005)
$T_{\text {min }}=0.695, T_{\text {max }}=0.744$
3929 measured reflections 965 independent reflections 947 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.011$
$w R\left(F^{2}\right)=0.026$
$S=1.08$
965 reflections
60 parameters
1 restraint
$\Delta \rho_{\max }=0.47 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.42 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
399 Friedel pairs
Flack parameter: 0.502 (12)

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Si}-\mathrm{O} 1$	$1.6065(13)$	$\mathrm{Si}-\mathrm{O} 2^{\mathrm{i}}$	$1.6315(14)$
$\mathrm{Si}-\mathrm{O} 4$	$1.616(2)$	$\mathrm{Si}-\mathrm{O} 3$	$1.6566(10)$
$\mathrm{Si}^{\mathrm{ii}}-\mathrm{O} 3-\mathrm{Si}$	$128.82(13)$		
Symmetry codes: $(\mathrm{i})-x+\frac{3}{2},-y+1, z+\frac{1}{2} ;$; (ii) $-x+1, y, z$.			

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XtalDraw (Downs \& Hall-Wallace, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).

We gratefully acknowledge support of this study by the Arizona Science Foundation.

[^0]
References

Adams, R. D. \& Layland, R. (1996). Inorg. Chem. 35, 3492-3497.
Barry, T. L. (1970). J. Electrochem. Soc. 117, 381-385.
Bertaina, S. \& Hayn, R. (2006). Phys. Rev. B, 73, 212409.
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chukanov, N. V., Pekov, I. V., Rastsvetaeva, R. K., Shilov, G. V. \& Zadov, A. E. (2003). Z. Vseros. Miner. Obsh. 132, 29-37.

Downs, R. T. \& Hall-Wallace, M. (2003). Am. Mineral. 88, 247-250.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fleet, M. E. \& Liu, X. (2001). J. Solid State Chem. 161, 166-172.
Kolitsch, U., Wierzbicka-Wieczorek, M. \& Tillmanns, E. (2009). Can. Mineral. 47, 421-431.
Krivovichev, S. V., Yakovenchuk, V. N., Armbuster, T., Mikhailova, Y. \& Pakhomovsky, Y. A. (2004). N. Jb. Miner. Mh. pp. 373-384.
Lin, J. H., Lu, G. X., Du, J., Su, M. Z., Loong, C.-K. \& Richardson, J. W. Jr (1999). J. Phys. Chem. Solids, 60, 975-983.

Lu, G. X., Yang, L. Q. \& Lin, J. H. (2000). Solid State Commun. 114, 113-116.

inorganic compounds

Ohta, H., Okubo, S., Inagaki, Y., Hiroi, Z. \& Kikuchi, H. (2004). Physica B, 346-347, 38-44.
Rastsvetaeva, R. K. \& Chukanov, N. V. (2003). Dokl. Akad. Nauk, 388, 205207.

Robinson, P. D. \& Fang, J. H. (1977). Am. Mineral. 62, 167-169.
Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Yamada, T., Hiroi, Z. \& Takano, M. (2001). J. Solid State Chem. 156, 101-109. Yang, H., Downs, R. T., Evans, S. H. \& Pinch, W. W. (2012). Am. Mineral. In the press.
Yao, G. Q., Lin, J. H., Zhang, L., Lu, G. X., Gong, M. L. \& Su, M. Z. (1998). J. Mater. Chem. 8, 585-, 588.
Zheludev, A., Masuda, T., Dhalenne, G., Revcolevschi, A., Frost, C. \& Perring, T. (2007). Phys. Rev. B, 75, 054409.

Zvyagin, A. A. (2006). Low Temp. Phys. 32, 158-161.

supporting information

Acta Cryst. (2012). E68, i78-i79 [https://doi.org/10.1107/S1600536812040457]

Redetermination of clinobarylite, $\mathrm{BaBe}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$

Adrien J. Di Domizio, Robert T. Downs and Hexiong Yang

S1. Comment

Clinobarylite, ideally $\mathrm{BaBe}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$, is a sorosilicate mineral and dimorphic with the mineral barylite (Chukanov et al., 2003). It belongs to a group of compounds characterized by the general formula $\mathrm{Ba} M^{2+}{ }_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$, with $M^{2+}=\mathrm{Be}, \mathrm{Mg}, \mathrm{Fe}$, $\mathrm{Mn}, \mathrm{Zn}, \mathrm{Co}$, or Cu (Yang et al., 2012). In addition to the Be-member, the Fe - and Cu -members of this group have also been found in nature, and are known as andrémeyerite and scottyite, respectively. The $\mathrm{Ba} M_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ compounds have been the subject of numerous investigations for scientific and industrial interests. For example, the materials with $M=\mathrm{Be}, \mathrm{Mg}$, and Zn are suitable hosts for luminescent activating ions. In particular, Pb^{2+}-doped $\mathrm{BaBe}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ is used commercially as an UV-emitting material in moth-killing lamps and $\left(\mathrm{Eu}^{2+} / \mathrm{Mn}^{2+}\right)$-doped $\mathrm{BaMg}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ is a deep-red luminescent emitter through effective energy transfers from Eu^{2+} to Mn^{2+} (Barry, 1970; Yao et al., 1998). Moreover, the compounds with $M=$ Cu, Co, and Mn are ideal prototypical quasi-one-dimensional quantum spin ($S=1 / 2,3 / 2$, and $5 / 2$, respectively) Heisenberg antiferromagnets with adjustable superexchange interactions, vital for our understanding of high-Tc superconductivity (e.g., Adams \& Layland, 1996; Lu et al., 2000; Yamada et al., 2001; Ohta et al., 2004; Bertaina \& Hayn, 2006; Zvyagin, 2006; Zheludev et al., 2007).

Clinobarylite was first described by Chukanov et al. (2003) as monoclinic with space group Pm and unit-cell parameters $a=11.618(3), b=4.904(1), c=4.655(1) \AA, \beta=89.92(2)^{\circ}$. Its structure was subsequently determined by Rastsvetaeva \& Chukanov (2003), yielding a reliability factor $R=0.052$ with isotropic displacement parameters for all atoms.
However, Krivovichev et al. (2004) examined the monoclinic structure reported by Rastsvetaeva \& Chukanov (2003) and noted that a shift of $0.0088 \AA$ along b in all the atomic positions would result in a change of symmetry from monoclinic $P m$ to orthorhombic $P m n 2_{1}$. They subsequently collected single-crystal X-ray diffraction data from a new sample, and found that systematic intensity absences were consistent with space group $P m n 2_{1}$ and a racemic twinning model $(R 1=$ 0.030). Yet, they were unable to obtain positive definite anisotropic displacement parameters for Be and O atoms, and attributed that to the effect of the dominant Ba scattering factor. The resulting geometric parameters, such as bond lengths and angles, matched those obtained from the Pm structural model determined by Rastsvetaeva \& Chukanov (2003). An examination of the clinobarylite structure reported by Krivovichev et al. (2004), nevertheless, reveals a rather peculiar feature: The $\mathrm{Si}-\mathrm{O}_{\text {br }}$ (bridging O atom) distance $\left(1.597 \AA\right.$) is significantly shorter than the $\mathrm{Si}-\mathrm{O}_{\mathrm{nbr}}$ (non-bridging O atoms) distances (1.619-1.631 \AA). This contradicts the previous observations specifically for disilicate compounds (e.g., Lin et al., 1999; Fleet \& Liu, 2001; Kolitsch et al., 2009), including all other compounds in the $\mathrm{Ba}^{2+}{ }_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ group (Yang et al., 2012). The present study was conducted to clarify this controversy.
The crystal structure of clinobarylite is based on a framework of SiO_{4} and BeO_{4} tetrahedra, with one of the O atoms (O2) coordinated to two Be and one Si , one $(\mathrm{O} 3)$ coordinated to two Si , and two O atoms $(\mathrm{O} 1, \mathrm{O} 4)$ coordinated to one Si and one Be . The BeO_{4} tetrahedra share corners to form chains parallel to the c axis, which are interlinked by the $\mathrm{Si}_{2} \mathrm{O}_{7}$ units oriented parallel to the a axis. The Ba^{2+} cations are situated in the framework channels and are coordinated in form of irregular polyhedra by eleven O atoms if $\mathrm{Ba}-\mathrm{O}$ distances $<3.4 \AA$ are considered as relevant (Figs. 1, 2). The average
$\mathrm{Si}-\mathrm{O}, \mathrm{Be}-\mathrm{O}$, and $\mathrm{Ba}-\mathrm{O}$ bond lengths in clinobarylite are $1.630,1.941$, and $2.825 \AA$, respectively. Our study confirmed the space group Pmn2 2_{1} for clinobarylite, as determined by Krivovichev et al. (2004), but revealed different bond length from those given by Krivovichev et al. (2004): The $\mathrm{Si}-\mathrm{O}_{\text {br }}$ bond length [1.6566(10) \AA] is, in fact, substantially longer than the $\mathrm{Si}-\mathrm{O}_{\text {nbr }}$ bond lengths $[1.6065(13)-1.6315(14) \AA$, in marked contrast to the corresponding values of 1.597 (4) $\AA, 1.619$ (6)-1.631 (7) \AA as reported by Krivovichev et al. (2004). Moreover, the $\mathrm{Si}-\mathrm{O}_{\mathrm{br}}-\mathrm{Si}$ angle within the $\mathrm{Si}_{2} \mathrm{O}_{7}$ disilicate unit from our study is $128.82(13)^{\circ}$, in contrast to 138.5° (Krivovichev et al., 2004).
The Raman spectrum of clinobarylite is plotted in Fig. 3, along with that of barylite (R060620 from the RRUFF Project) for comparison. Evidently, the two Raman spectra are quite similar. In general, they can be divided into four regions. Region 1, between 800 and $1100 \mathrm{~cm}^{-1}$, contains bands attributable to the $\mathrm{Si}-\mathrm{O}$ symmetric and anti-symmetric stretching vibrations (v_{1} and v_{3} modes) within the SiO_{4} tetrahedra. Region 2, between 660 and $700 \mathrm{~cm}^{-1}$, includes bands resulting from the $\mathrm{Si}-\mathrm{O}_{\mathrm{br}}-\mathrm{Si}$ bending vibrations within the $\mathrm{Si}_{2} \mathrm{O}_{7}$ tetrahedral dimers. Major bands in region 3, ranging from 420 to $660 \mathrm{~cm}^{-1}$, are ascribed to the $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ symmetric and anti-symmetric bending vibrations (v_{2} and v_{4} modes) within the SiO_{4} tetrahedra. The bands in region 4 , below $420 \mathrm{~cm}^{-1}$, are mainly associated with the rotational and translational modes of SiO_{4} tetrahedra, as well as the $\mathrm{Be}-\mathrm{O}$ interactions and lattice vibrational modes.
One of the noticeable features in Fig. 3 is that the wavenumbers of the bands due to the $\mathrm{Si}-\mathrm{O}_{\mathrm{br}}-\mathrm{Si}$ bending mode for barylite and clinobarylite are nearly identical $\left(\sim 685 \mathrm{~cm}^{-1}\right)$, indicating that the $\mathrm{Si}-\mathrm{O}_{\mathrm{br}}$ bond lengths and the $\mathrm{Si}-\mathrm{O}_{\mathrm{br}}-\mathrm{Si}$ angles in these two minerals are rather comparable. This is indeed the case. The $\mathrm{Si}-\mathrm{O}_{\mathrm{br}}$ distance and the $\mathrm{Si}-\mathrm{O}_{\mathrm{br}}-\mathrm{Si}$ angle are $1.657 \AA$ and 128.59°, respectively, in barylite (Robinson \& Fang, 1977), and $1.6566(10) \AA$ and $128.82(13)^{\circ}$ in clinobarylite.

S2. Experimental

The clinobarylite sample used in this study is from the type locality Yukspor Mountain, Khibiny Massif, Kola Peninsula, Russia, and is in the collection of the RRUFF project (deposition, http://rruff.info/ R060606). The chemical composition of the sample was analyzed with a CAMECA SX50 electron microprobe. The average composition (12 analysis points) is $\left(\%_{\mathrm{wt}}\right) \mathrm{BaO} 47.5(2), \mathrm{SiO}_{2} 37.0$ (2), $\mathrm{TiO}_{2} 0.19$ (2), and BeO 15.3 (estimated by the difference from 100%). The empirical chemical formula, calculated on the basis of 7 O atoms, is $\mathrm{Ba}_{1.0} \mathrm{Be}_{2.0} \mathrm{Si}_{2.0} \mathrm{O}_{7}$.
The Raman spectrum of clinobarylite was collected from a randomly oriented crystal at 100% power on a Thermo Almega microRaman system, using a solid-state laser with a wavelength of 532 nm , and a thermoelectrically cooled CCD detector. The laser is partially polarized with $4 \mathrm{~cm}^{-1}$ resolution and a spot size of $1 \mu \mathrm{~m}$.

S3. Refinement

For better comparison with the previous determination of barylite (Krivovichev et al., 2004), the same atom numbering was used, along with the given coordinates as starting parameters for the subsequent refinement. An inversion twin was introduced in the refinement, giving a twin ratio of 0.502 (12):0.498 (12). All atoms were refined with anisotropic displacement parameters. The ideal chemistry, $\mathrm{BaBe}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$, was assumed during the final refinement. The highest residual peak $\left(0.47 \mathrm{e}^{-} / \AA^{3}\right)$ in the difference Fourier maps was located at $(0,0.7651,0.2479), 0.75 \AA$ from Ba, and the deepest hole $\left(-0.42 \mathrm{e}^{-} / \AA^{3}\right)$ at $(0,0.3845,0.0984), 1.75 \AA$ from O 4 .

Figure 1
Crystal structure of clinobarylite. The gray spheres represent Ba atoms. The yellow and purple tetrahedra represent BeO_{4} and SiO_{4} groups, respectively.

Figure 2
Atoms in clinobarylite with corresponding ellipsoids at the 99.9% probability level. The gray, yellow, green, and red ellipsoids represent $\mathrm{Ba}, \mathrm{Be}, \mathrm{Si}$, and O atoms, respectively.

Figure 3
Raman Spectrum of clinobarylite, along with that of barylite for comparison. The spectra are shown with vertical offset for more clarity.

Barium diberyllium disilicate

Crystal data

$\mathrm{BaBe}_{2} \mathrm{O}_{7} \mathrm{Si}_{2}$
$M_{r}=323.54$
Orthorhombic, Pmn_{1}
Hall symbol: P 2ac -2
$a=11.6491$ (5) \AA
$b=4.9175$ (2) \AA
$c=4.6746$ (2) \AA
$V=267.78(2) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scan
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
$T_{\min }=0.695, T_{\text {max }}=0.744$
$F(000)=296$
$D_{\mathrm{x}}=4.013 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3074 reflections
$\theta=3.5-32.6^{\circ}$
$\mu=7.85 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Cuboid, colourless
$0.05 \times 0.05 \times 0.04 \mathrm{~mm}$

3929 measured reflections
965 independent reflections
947 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=32.6^{\circ}, \theta_{\text {min }}=3.5^{\circ}$
$h=-17 \rightarrow 16$
$k=-7 \rightarrow 7$
$l=-6 \rightarrow 7$

Refinement

Refinement on F^{2}	965 reflections
Least-squares matrix: full	60 parameters
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.011$	1 restraint
$w R\left(F^{2}\right)=0.026$	Primary atom site location: structure-invariant
$S=1.08$	direct methods

Secondary atom site location: difference Fourier map
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0139 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.47 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.42$ e \AA^{-3}

Extinction correction: SHELXL, $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0160 (9)
Absolute structure: Flack (1983), 399 Friedel pairs
Absolute structure parameter: 0.502 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ba	0.5000	$0.20316(2)$	0.5905	$0.00932(5)$
Be	$0.75108(15)$	$0.1693(4)$	$0.0849(14)$	$0.0070(4)$
Si	$0.62826(4)$	$0.67528(8)$	$0.0692(2)$	$0.00526(12)$
O 1	$0.63895(10)$	$0.3560(2)$	$0.1367(3)$	$0.0073(3)$
O 2	$0.77699(10)$	$0.1340(2)$	$-0.2702(3)$	$0.0066(2)$
O 3	0.5000	$0.7764(3)$	$0.1793(5)$	$0.0077(3)$
O 4	$0.63272(12)$	$0.7295(2)$	$-0.2716(3)$	$0.0082(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba	$0.01102(6)$	$0.00872(6)$	$0.00823(7)$	0.000	0.000	$0.00004(8)$
Be	$0.0052(7)$	$0.0071(7)$	$0.0087(10)$	$-0.0001(5)$	$-0.0020(17)$	$0.0017(18)$
Si	$0.00460(16)$	$0.00420(14)$	$0.0070(3)$	$-0.00035(10)$	$0.0000(3)$	$-0.0001(2)$
O 1	$0.0077(4)$	$0.0055(4)$	$0.0088(10)$	$0.0007(3)$	$0.0022(4)$	$0.0011(4)$
O 2	$0.0079(5)$	$0.0051(4)$	$0.0067(6)$	$-0.0008(4)$	$0.0007(4)$	$0.0003(4)$
O 3	$0.0045(7)$	$0.0082(7)$	$0.0103(9)$	0.000	0.000	$-0.0024(6)$
O 4	$0.0075(6)$	$0.0109(5)$	$0.0064(7)$	$-0.0016(4)$	$-0.0007(5)$	$0.0000(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Ba}-\mathrm{O}^{\mathrm{i}}$	$2.7721(13)$	$\mathrm{Ba}-\mathrm{O} 2^{\text {vi }}$	$3.3093(12)$
$\mathrm{Ba}-\mathrm{O} 1^{\text {ii }}$	$2.7721(13)$	$\mathrm{Be}-\mathrm{O} 4^{\text {vii }}$	$1.591(3)$
$\mathrm{Ba}-\mathrm{O}^{\text {ii }}$	$2.8459(18)$	$\mathrm{Be}-\mathrm{O} 1$	$1.615(2)$
$\mathrm{Ba}-\mathrm{O}^{\text {iii }}$	$2.8689(13)$	$\mathrm{Be}-\mathrm{O} 2^{\text {viii }}$	$1.670(4)$
$\mathrm{Ba}-4^{\text {iv }}$	$2.8689(13)$	$\mathrm{Be}-\mathrm{O} 2$	$1.696(7)$
$\mathrm{Ba}-\mathrm{O}^{\mathrm{v}}$	$3.0831(12)$	$\mathrm{Si}-\mathrm{O} 1$	$1.6065(13)$
$\mathrm{Ba}-4^{\text {vi }}$	$3.0831(12)$	$\mathrm{Si}-\mathrm{O} 4$	$1.616(2)$
$\mathrm{Ba}-\mathrm{O1}^{\mathrm{v}}$	$3.1151(14)$	$\mathrm{Si}-\mathrm{O} 2^{\text {vii }}$	$1.6315(14)$

$\mathrm{Ba}-\mathrm{Ol}^{\text {vi }}$	3.1151 (14)	$\mathrm{Si}-\mathrm{O} 3$	1.6566 (10)
$\mathrm{Ba}-\mathrm{O} 2{ }^{\text {v }}$	3.3093 (12)		
$\mathrm{O} 4{ }^{\text {vii }}-\mathrm{Be}-\mathrm{O} 1$	116.6 (2)	$\mathrm{O} 1-\mathrm{Si}-\mathrm{O}^{\text {vii }}$	114.78 (8)
$\mathrm{O} 4{ }^{\text {vii }}-\mathrm{Be}-\mathrm{O} 2^{\text {viii }}$	106.0 (3)	$\mathrm{O} 4-\mathrm{Si}-\mathrm{O}^{\text {vii }}$	109.70 (8)
$\mathrm{O} 1-\mathrm{Be}-\mathrm{O} 2{ }^{\text {viii }}$	106.8 (2)	$\mathrm{O} 1-\mathrm{Si}-\mathrm{O} 3$	107.59 (8)
$\mathrm{O} 4{ }^{\text {vii }}-\mathrm{Be}-\mathrm{O} 2$	107.1 (2)	$\mathrm{O} 4-\mathrm{Si}-\mathrm{O} 3$	106.60 (10)
$\mathrm{O} 1-\mathrm{Be}-\mathrm{O} 2$	110.4 (3)	$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Si}-\mathrm{O} 3$	107.14 (8)
$\mathrm{O} 2{ }^{\text {viiil }}-\mathrm{Be}-\mathrm{O} 2$	109.90 (19)	$\mathrm{Si}^{\mathrm{i}}-\mathrm{O} 3-\mathrm{Si}$	128.82 (13)
$\mathrm{O} 1-\mathrm{Si}-\mathrm{O} 4$	110.64 (8)		

Symmetry codes: (i) $-x+1, y, z$; (ii) $x, y-1, z$; (iii) $-x+1, y-1, z+1$; (iv) $x, y-1, z+1$; (v) $x, y, z+1$; (vi) $-x+1, y, z+1$; (vii) $-x+3 / 2,-y+1, z+1 / 2$; (viii) $-x+3 / 2$, $-y, z+1 / 2$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2678).

