Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[diaqua $[\mu-1,4-b i s(1 H$-imidazol-1-yl)-benzene- $\left.\kappa^{2} N^{3}: N^{3}\right]\left(\mu\right.$-fumarato- $\left.\kappa^{2} O^{1}: O^{4}\right)$ nickel(II)]

Chang-Xin Bian, Xiao-Qiang Yao and Yu-Min Song*
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
Correspondence e-mail: songym@nwnu.edu.cn

Received 18 July 2012; accepted 11 September 2012
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.030 ; w R$ factor $=0.093$; data-to-parameter ratio $=17.1$.

In the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the $\mathrm{Ni}^{\mathrm{II}}$ ion has a distorted octahedral coordination geometry. The asymmetric unit is composed of an Ni^{2+} ion, located on a twofold rotation axis, one half of a 1,4-bis(1 H -imidazol-1yl)benzene (BIMB) ligand and one half of a fumarte (fum ${ }^{2-}$) dianion, both ligands being located about inversion centers, and a coordinating water molecule. The $\mathrm{Ni}^{\mathrm{II}}$ ions are linked by two BIMB ligands and two fum ${ }^{2-}$ dianions, forming a fourconnected layered structure parallel to (010) with a 4^{4}-sql topology. Within each layer, there are rhombic grids with dimensions of $c a 13.5 \times 9.0 \AA$ and approximate angles of 109 and 70°. The crystal packing features a two-dimensional \rightarrow two-dimensional parallel/parallel interpenetration in which one undulating layer is catenated to another equivalent one, forming a new bilayer. Moreover, the entangled two-dimensional layers are connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, generating a three-dimensional structure.

Related literature

For multi-dimensional coordination polymers and their applications, see: Batten \& Robson (1998); Carlucci et al. (2003a,b); Moulton \& Zaworotko (2001); Sun et al. (2006); Wu et al. (2011); Bu et al. (2004). For their potential applications in electron transfer and drug delivery, see: Harriman \& Sauvage (1996); Raymo \& Sauvage (1999). For the structures of some related compounds, see: Chen et al. (2010); Li et al. (2012); Bu et al. (2004).

Experimental

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$V=1666.67(11) \AA^{3}$
$M_{r}=419.04$
Orthorhombic, Pbcn
$a=11.2806$ (4) A
$Z=4$
Mo $K \alpha$ radiation
$\mu=1.21 \mathrm{~mm}^{-1}$
$b=16.3703$ (7) \AA
$T=296 \mathrm{~K}$
$c=9.0253$ (3) A
$0.23 \times 0.22 \times 0.20 \mathrm{~mm}$

Data collection

Bruke APEXII CCD area-dector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.768, T_{\max }=0.794$
8512 measured reflections 2108 independent reflections 1827 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
2 restraints
$w R\left(F^{2}\right)=0.093$
$S=1.08$
H -atom parameters constrained
2108 reflections
$\Delta \rho_{\text {max }}=0.36$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.48 \mathrm{e} \AA^{-3}$

123 parameters

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 Y \cdots \mathrm{O} 2^{\mathrm{i}}$	0.85	1.96	$2.7033(18)$	146
$\mathrm{O}^{\mathrm{ii}}-\mathrm{H} 3 X \cdots \mathrm{O}^{\mathrm{ii}}$	0.85	2.03	$2.8361(18)$	159
${\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{ii}}}^{2}$	0.93	2.49	$3.360(2)$	155

Symmetry codes: (i) $-x+2, y,-z+\frac{3}{2}$; (ii) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

This work was supported financially by the Key Laboratory of Eco-Environment-Related Polymer Materials (Northwest

metal-organic compounds

Normal University) and the Ministry of Education of Gansu (No. 1101-05).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2481).

References

Batten, S. R. \& Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Bu, X. H., Tong, M. L., Chang, H. C., Kitagawa, S. \& Batten, S. R. (2004). Angew. Chem. Int. Ed. 43, 192-195.
Carlucci, L., Ciani, G. \& Proserpio, D. M. (2003a). Coord. Chem. Rev. 246, 247-289.
Carlucci, L., Ciani, G. \& Proserpio, D. M. (2003b). CrystEngComm, 5, 269-279.

Chen, S. S., Bai, Z. S., Fan, J., Lv, G. C., Su, Z., Chen, M. S. \& Sun, W. Y. (2010). CrystEngComm, 12, 3091-3104.
Harriman, A. \& Sauvage, J. P. (1996). Chem. Soc. Rev. pp. 41-48.
Li, Y. W., Ma, H., Chen, Y. Q., He, K. H., Li, Z. X. \& Bu, X. H. (2012). Cryst. Growth Des. 12, 189-196.
Moulton, B. \& Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658
Raymo, F. M. \& Sauvage, J. P. (1999). Chem. Rev. 99, 1643-1664.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sun, D. F., Ma, S. Q., Ke, Y. X., Collins, D. J. \& Zhou, H. C. (2006). J. Am. Chem. Soc. 128, 3896-3897.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wu, H., Liu, H. Y., Liu, B., Yang, J., Liu, Y. Y., Ma, J. F., Liu, Y. Y. \& Bai, H. Y. (2011). CrystEngComm, 13, 3402-3407.

supporting information

Acta Cryst. (2012). E68, m1286-m1287 [https://doi.org/10.1107/S1600536812038895]

Poly[diaqua $\left[\mu\right.$-1,4-bis($1 H$-imidazol-1-yl)benzene- $\left.\kappa^{2} N^{3}: N^{3}\right]$ (μ-fumarato$\left.\kappa^{2} O^{1}: O^{4}\right)$ nickel(II)]

Chang-Xin Bian, Xiao-Qiang Yao and Yu-Min Song

S1. Comment

Entanglement, one of the ubiquitous phenomena in nature, has received considerable attention due to their intrinsic aesthetic architectures (Bu et al., 2004; Carlucci et al., 2003a; Wu et al., 2011) and potential applications (Sun et al., 2006; Moulton \& Zaworotko, 2001). Many structurally interesting entangled structures, such as polyrotaxane, polycatenation, polythreading, have been discussed in detail by (Batten et al., 1998; Carlucci et al., 2003b). Polycatenation as a type of interesting networks of entangled systems has attracted much attention for their potential application in energy of electron transfer and drug delivery (Harriman \& Sauvage, 1996; Raymo \& Sauvage, 1999). Herein, we report on the crystal structure of a $\mathrm{Ni}^{\text {II }}$ coordination polymer built from linear BIMB and fum ${ }^{2-}$ ligands, which features a two-dimensional \rightarrow two-dimensional parallel/parallel polycatenation network.
The asymmetric unit of the title compound contains half a $\mathrm{Ni}^{\mathrm{II}}$ ion located on a two-fold rotation axis, half a fum ${ }^{2-}$ dianion and half a BIMB ligand both located about inversion centers, and a coordinated water molecule. Each $\mathrm{Ni}^{\mathrm{II}}$ ion is coordinated by two water molecules, two different carboxylate O atoms from two different fum ${ }^{2-}$ dianions and by two N atoms from two different BIMB ligands, and has a distorted octahedral geometry (Fig. 1).
It is interesting to note that the maleic acid (hydrolysis product of maleic anhydride) is converted into fumaric acid on the self-assembly of the title compound. This is probably because trans-fumaric has a higher thermal stability than cismaleic acid.

In the crystal, each $\mathrm{Ni}^{\mathrm{II}}$ ion is connected by two BIMB ligands and two fum ${ }^{2-}$ ligands to form an infinite twodimensional puckered sheet with rhombic grids (Fig. 2). Within each layer, the rhombic grids have dimensions of ca. 13.5 $\AA \times 9.0 \AA$ with angles of of ca. 109.60 and 70.40° (defined by $\mathrm{Ni} \cdots \mathrm{Ni}$ distances and $\mathrm{Ni} \cdots \mathrm{Ni} \cdots \mathrm{Ni}$ angles). The large size of the grids in two adjacent layers allow a two-dimensional \rightarrow two-dimensional parallel/parallel polycatenation to occur (Fig. 3). From a topological perspective, each $\mathrm{Ni}^{\mathrm{II}}$ ion can be regarded as a four-connected node, thus this twodimensional network can be assigned to the 4^{4}-sql topology.
Moreover, the entangled two-dimensional layers are further connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to generate a threedimensional structure (Fig. 4).
The structure of a similar $\mathrm{Ni}^{\text {II }}$ coordination polymer assembled by BIMB ligand and adipic acid has been described by (Chen et al., 2010). However, compared with the title compound, the adipic acid is a longer spacer length and more flexible, and crystallizes in the lower symmetry triclinic space group $P \overline{1}$ rather than orthorhombic space group Pbcn for the title compound with the short fumarate spacer.
Another relevant example reported by (Bu et al., 2004) is a $\mathrm{Zn}^{\text {II }}$ coordination polymer (Li et al. 2012). Like the title complex, it is also built from BIMB and fum ${ }^{2-}$ ligands. However, the difference in the metal center results in an interesting 5-fold interpenetrated three-dimensional framework based on a diamondoid topology.

supporting information

In summary, we have synthesized a $\mathrm{Ni}^{\text {II }}$ coordination polymer by the hydrothermal reaction of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ with H_{2} fum and BIMB ligands, which features a two-dimensional \rightarrow two-dimensional parallel/parallel polycatenation network. On comparing with two relevant complexes based on the BIMB ligand, we found that the coordination geometry of the central metal ions and the flexibility of the auxiliary carboxylate ligands indeed have a significant effect on the architecture of the target complexes.

S2. Experimental

A mixture of 1,4-Bis(1-imidazolyl)benzene (BIMB) $(0.032 \mathrm{~g}, 0.15 \mathrm{mmol})$, maleic anydride $(0.015 \mathrm{~g}, 0.15 \mathrm{mmol})$ and $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}(0.045 \mathrm{~g}, 0.25 \mathrm{mmol})$ in N, N^{\prime}-dimethylformamide (DMF) (4 ml) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ was placed in a Teflon-lined stainless steel vessel and heated at 363 K for 3 days. On cooling to room temperature green block-like single crystals suitable for X-ray diffraction were obtained [70\% yield (based on BIMB ligand)]. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Ni}$: C, $45.86 ; \mathrm{H}, 3.85$; N, 13.37%. Found: C, $45.93 ; \mathrm{H}, 3.87$; N, 13.41%. Spectroscopic data for the title compound are given in the archived CIF.

S3. Refinement

The water H atoms were located in a difference Fourier map and included as riding atoms, with $\mathrm{O}-\mathrm{H}=0.85$ and $U_{\mathrm{iso}}(\mathrm{H})$ $=1.5 \mathrm{Ueq}(\mathrm{O})$. The C -bound H atoms were placed in calculated positions and treated as riding: $\mathrm{C}-\mathrm{H}=0.93 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
The molecular structure of the title compound, with atom numbering. The displacement ellipsoids are drawn at the 50% probability level [H atoms have been omitted for clarity; symmetry codes: (i) $1-x, y, 0.5-z$; (ii) $1-x, y,-0.5-z$; (iii) 2 $-x,-y,-z]$.

Figure 2
A view of the two-dimensional undulated 4^{4}-sql layer of the title compound.

Figure 3
A view of the two-fold parallel polycatenation of the two-dimensional layers in the crystal structure of the title compound.

Figure 4
A view of the entangled two-dimensional layers that extended to a three-dimensional structure via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in the crystal structure of the title compound.

Poly[diaqua[μ-1,4-bis(1H-imidazol-1-yl)benzene- $\left.\kappa^{2} N^{3}: N^{3}\right]$ (μ-fumarato- $\kappa^{2} O^{1}: O^{4}$)nickel(II)]

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$

$$
\begin{aligned}
& b=16.3703(7) \AA \\
& c=9.0253(3) \AA \\
& V=1666.67(11) \AA^{3} \\
& Z=4 \\
& F(000)=864
\end{aligned}
$$

$D_{\mathrm{x}}=1.670 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4217 reflections
$\theta=2.5-28.4^{\circ}$

Data collection

Bruke APEXII CCD area-dector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
CCD rotation images, thin slices scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.768, T_{\text {max }}=0.794$

$$
\mu=1.21 \mathrm{~mm}^{-1}
$$

$T=296 \mathrm{~K}$
Block, green
$0.23 \times 0.22 \times 0.20 \mathrm{~mm}$

8512 measured reflections
2108 independent reflections
1827 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=28.5^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-13 \rightarrow 15$
$k=-18 \rightarrow 21$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.093$
$S=1.08$
2108 reflections
123 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier
\quad map
Hydrogen site location: inferred from
\quad neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.047 P)^{2}+1.0911 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.36$ e \AA^{-3}
$\Delta \rho_{\min }=-0.48$ e \AA^{-3}

Special details

Experimental. Spectroscopic data for the title compound :
IR (KBr, cm^{-1}): $3380 \mathrm{~m}, 3133 \mathrm{~m}, 1564 \mathrm{~s}, 1533 \mathrm{~s}, 1385 \mathrm{~s}, 1307 \mathrm{w}, 1269 \mathrm{w}, 1130 \mathrm{w}, 1195 \mathrm{w}, 1074 \mathrm{~m}, 970 \mathrm{w}, 880 \mathrm{w}, 829 \mathrm{~m}, 751 \mathrm{~m}$, 682w, 656w, 534w, 495w.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.85967(16)$	$0.48653(12)$	$0.8087(2)$	$0.0337(4)$
H1	0.9127	0.5069	0.8785	0.040^{*}
C2	$0.76108(18)$	$0.52549(13)$	$0.7609(2)$	$0.0353(4)$
H2	0.7344	0.5768	0.7899	0.042^{*}
C3	$0.77741(16)$	$0.40688(11)$	$0.6505(2)$	$0.0294(4)$
H3	0.7616	0.3627	0.5889	0.035^{*}
C4	$0.57558(18)$	$0.56487(12)$	$0.5293(3)$	$0.0409(5)$
H4	0.6266	0.6082	0.5487	0.049^{*}
C5	$0.60153(15)$	$0.48748(11)$	$0.5802(2)$	$0.0290(4)$

C6	$0.52718(19)$	$0.42289(12)$	$0.5509(3)$	$0.0408(5)$
H6	0.5461	0.3709	0.5851	0.049^{*}
C7	$1.08521(15)$	$0.29993(11)$	$0.43626(19)$	$0.0266(3)$
C8	$1.05530(18)$	$0.30159(14)$	$0.2748(2)$	$0.0348(4)$
H8	1.1169	0.3027	0.2064	0.042^{*}
N1	$0.86960(13)$	$0.41195(10)$	$0.73829(16)$	$0.0261(3)$
N2	$0.70833(13)$	$0.47384(9)$	$0.66080(18)$	$0.0288(3)$
Ni1	1.0000	$0.323481(18)$	0.7500	$0.01981(12)$
O1	$1.00329(10)$	$0.31848(9)$	$0.52371(16)$	$0.0310(3)$
O2	$1.18776(11)$	$0.27709(9)$	$0.47076(14)$	$0.0347(3)$
O3	$0.86671(12)$	$0.23178(8)$	$0.74938(13)$	$0.0291(3)$
H3Y	0.8214	0.2383	0.8237	0.044^{*}
H3X	0.8264	0.2356	0.6701	0.044^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0277(8)$	$0.0378(10)$	$0.0358(10)$	$0.0029(7)$	$-0.0078(8)$	$-0.0101(8)$
C2	$0.0317(9)$	$0.0328(9)$	$0.0414(11)$	$0.0050(8)$	$-0.0073(8)$	$-0.0121(8)$
C3	$0.0260(8)$	$0.0294(9)$	$0.0327(9)$	$0.0065(7)$	$-0.0078(7)$	$-0.0043(7)$
C4	$0.0341(10)$	$0.0268(9)$	$0.0617(14)$	$0.0004(7)$	$-0.0200(10)$	$-0.0014(9)$
C5	$0.0221(8)$	$0.0304(9)$	$0.0344(9)$	$0.0059(6)$	$-0.0081(7)$	$-0.0022(7)$
C6	$0.0358(10)$	$0.0244(8)$	$0.0621(14)$	$0.0050(7)$	$-0.0197(10)$	$0.0031(9)$
C7	$0.0272(8)$	$0.0337(9)$	$0.0189(7)$	$0.0008(7)$	$-0.0008(6)$	$-0.0015(7)$
C8	$0.0321(10)$	$0.0489(11)$	$0.0233(8)$	$0.0010(9)$	$0.0014(7)$	$0.0001(8)$
N1	$0.0212(7)$	$0.0307(8)$	$0.0266(7)$	$0.0027(6)$	$-0.0046(5)$	$-0.0025(6)$
N2	$0.0230(7)$	$0.0287(7)$	$0.0346(8)$	$0.0049(6)$	$-0.0086(6)$	$-0.0031(6)$
Ni1	$0.01593(17)$	$0.02772(18)$	$0.01579(17)$	0.000	$-0.00177(9)$	0.000
O1	$0.0255(6)$	$0.0512(9)$	$0.0164(6)$	$0.0054(5)$	$-0.0009(4)$	$-0.0025(5)$
O2	$0.0270(6)$	$0.0532(8)$	$0.0238(6)$	$0.0093(6)$	$0.0004(5)$	$-0.0013(6)$
O3	$0.0263(6)$	$0.0357(7)$	$0.0253(7)$	$-0.0042(5)$	$-0.0021(5)$	$-0.0035(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

C1-C2	1.353 (3)	C6-H6	0.9300
C1-N1	1.381 (2)	C7-O1	1.253 (2)
C1-H1	0.9300	$\mathrm{C} 7-\mathrm{O} 2$	1.255 (2)
C2-N2	1.373 (2)	C7-C8	1.496 (3)
C2-H2	0.9300	C8-C8 ${ }^{\text {ii }}$	1.326 (4)
C3-N1	1.310 (2)	C8-H8	0.9300
$\mathrm{C} 3-\mathrm{N} 2$	1.348 (2)	N1—Ni1	2.0670 (15)
C3-H3	0.9300	Ni1-O1	2.0443 (15)
C4-C5	1.379 (3)	Ni1-O1 ${ }^{\text {iii }}$	2.0443 (15)
$\mathrm{C} 4-\mathrm{C} 6^{\text {i }}$	1.381 (3)	Ni1-N1 $1^{\text {iii }}$	2.0671 (15)
C4-H4	0.9300	Ni1-O3 ${ }^{\text {iii }}$	2.1247 (13)
C5-C6	1.375 (3)	Ni1-O3	2.1247 (13)
C5-N2	1.425 (2)	O3-H3Y	0.8500
C6- $\mathrm{C}^{\text {i }}$	1.381 (3)	O3-H3X	0.8501

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	109.66 (16)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	125.2
N1-C1-H1	125.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	106.02 (17)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	127.0
N2-C2-H2	127.0
N1-C3-N2	111.46 (16)
N1-C3-H3	124.3
N2-C3-H3	124.3
C5-C4- $\mathrm{C}^{\text {i }}$	119.07 (18)
C5-C4-H4	120.5
C6 ${ }^{\text {i }}$ - 4 - 44	120.5
C6-C5-C4	120.85 (16)
C6-C5-N2	119.55 (16)
C4-C5-N2	119.57 (16)
C5-C6- $\mathrm{C}^{\text {i }}$	120.07 (18)
C5-C6-H6	120.0
C4- C^{i} - H 6	120.0
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$	126.58 (16)
O1-C7-C8	116.29 (16)
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8$	117.06 (16)
C8 $8^{\text {ii }}-\mathrm{C} 8-\mathrm{C} 7$	122.8 (2)
C8ii- $\mathrm{C} 8-\mathrm{H} 8$	118.6
C7-C8-H8	118.6
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	105.67 (15)
N1-C1-C2-N2	0.8 (2)
C6- ${ }^{\text {C }} 4-\mathrm{C} 5-\mathrm{C} 6$	0.6 (4)
C6- $\mathrm{C}^{\mathbf{4}-\mathrm{C} 5-\mathrm{N} 2}$	178.9 (2)
C4-C5-C6- $\mathrm{C} 4^{\mathrm{i}}$	-0.6 (4)
N2-C5-C6-C4 ${ }^{\text {i }}$	-178.9 (2)
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8{ }^{\text {ii }}$	-16.9 (2)
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8{ }^{\text {ii }}$	160.34 (12)
N2-C3-N1-C1	-0.2 (2)
N2-C3-N1-Ni1	-177.88 (12)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	-0.4 (2)
C2-C1-N1-Ni1	177.04 (15)
N1-C3-N2-C2	0.7 (2)
N1-C3-N2-C5	-179.97 (17)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	-0.9 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 5$	179.80 (19)
C6-C5-N2-C3	36.0 (3)
C4-C5-N2-C3	-142.3 (2)
C6-C5-N2-C2	-144.8 (2)

C3-N1-Ni1	123.47 (13)
C1-N1-Ni1	130.81 (12)
C3-N2-C2	107.19 (15)
C3-N2-C5	125.53 (15)
C2-N2-C5	127.28 (15)
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 1^{\text {iii }}$	175.41 (8)
O1-Ni1-N1	89.42 (5)
O1iii-Ni1-N1	93.80 (5)
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1^{\text {iii }}$	93.79 (5)
$\mathrm{O} 1{ }^{\text {iii- }}$ - $\mathrm{Ni} 1-\mathrm{N} 1^{\text {iii }}$	89.42 (5)
N1-Ni1-N1 $1^{\text {iii }}$	91.04 (9)
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 3{ }^{\text {iii }}$	87.80 (5)
$\mathrm{O} 1^{\text {iii- }}$ - $\mathrm{Ni} 1-\mathrm{O}^{3 i i}$	88.96 (5)
N1-Ni1-O33ii	177.19 (5)
N1 ${ }^{\text {iii }}$-Nil-O3 ${ }^{\text {iii }}$	89.51 (6)
O1-Ni1-O3	88.96 (5)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ni} 1-\mathrm{O} 3$	87.79 (5)
N1-Nil-O3	89.50 (6)
$\mathrm{N} 1^{\text {iii- }}$-Ni1-O3	177.19 (5)
O3iii- ${ }^{\text {in }}$ - $11-\mathrm{O} 3$	90.09 (8)
C7-O1-Ni1	130.74 (12)
Ni1-O3-H3Y	109.6
Ni1-O3-H3X	109.3
H3Y-O3-H3X	109.5
C4-C5-N2-C2	36.9 (3)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 1$	45.30 (16)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 1$	-131.70 (17)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{Ol}^{\text {iii }}$	-131.42 (15)
C1-N1-Ni1-O1 ${ }^{\text {iii }}$	51.58 (17)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 1{ }^{\text {iii }}$	139.09 (17)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 1{ }^{\text {iii }}$	-37.91 (15)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 3{ }^{\text {iii }}$	38.0 (12)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 3{ }^{\text {iii }}$	-139.0 (10)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 3$	-43.66 (15)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 3$	139.33 (17)
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 1-\mathrm{Ni} 1$	2.1 (3)
C8-C7-O1-Ni1	179.05 (13)
O1 ${ }^{\text {iii }}$ - $\mathrm{Ni1}-\mathrm{O} 1-\mathrm{C} 7$	-73.40 (17)
N1-Ni1-O1-C7	152.04 (17)
N1 ${ }^{\text {iii }}-\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{C} 7$	61.04 (17)
O3iii- ${ }^{\text {iid }}$ - $\mathrm{O} 1-\mathrm{C} 7$	-28.32 (17)
$\mathrm{O} 3-\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{C} 7$	-118.44 (17)

[^0]
supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 Y \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.85	1.96	$2.7033(18)$	146
$\mathrm{O} 3 — \mathrm{H} 3 X \cdots 2^{\mathrm{iv}}$	0.85	2.03	$2.8361(18)$	159
$\mathrm{C} 3 — \mathrm{H} 3 \cdots 2^{\mathrm{iv}}$	0.93	2.49	$3.360(2)$	155

Symmetry codes: (iii) $-x+2, y,-z+3 / 2$; (iv) $x-1 / 2,-y+1 / 2,-z+1$.

[^0]: Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+2, y,-z+1 / 2$; (iii) $-x+2, y,-z+3 / 2$.

