metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$Bis(\mu-4,4''-difluoro-1,1':3',1''-terphenyl-$ 2'-carboxvlato- $\kappa^2 O:O'$)bis[agua(4.4"-difluoro-1,1':3',1"-terphenyl-2'-carboxylato- κO)(pyridine- κN)cobalt(II)] diethyl ether disolvate

Namseok Kim.^a Yeahsel Yoon.^a Ha-Iin Lee^b and Sungho Yoon^a*

^aDepartment of Bio & Nano Chemistry, College of Natural Sciences, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702, Republic of Korea, and ^bJeonju Center, Korea Basic Science Institute (KBSI), 664-14 Dukjin dong 1-ga, Dukjin-gu, Jeonju 561-756, Republic of Korea Correspondence e-mail: yoona@kookmin.ac.kr

Received 23 August 2012; accepted 7 September 2012

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.010 Å; R factor = 0.071; wR factor = 0.239; data-to-parameter ratio = 18.3.

The structure of the title compound, $[Co_2(C_{19}H_{11}F_2O_2)_4-$ (C₅H₅N)₂(H₂O)₂]·2C₄H₁₀O, comprises two Co^{II} atoms in a distorted square pyramidal coordination environment, straddling a crystallographic inversion center with a Co---Co separation of 3.1923 (15) Å. Each Co²⁺ cation is coordinated by three O atoms of three 4,4"-difluoro-1,1':3',1"-terphenyl-2'carboxylate ligands, one water O atom and one pyridine N atom, forming a CoO₄N polyhedron. Strong intramolecular O-H···O hydrogen bonds are observed between terminal metal-bound carboxylate groups and water O atoms.

Related literature

For background to metal complexes with 4,4"-difluoro-1,1':3',1"-terphenyl-2'-carboxylate ligands, see: Kannan et al. (2011) and to water-bridged di-cobalt complexes, see: Lee et al. (2002). Bimetal systems, ligated by four carboxylates and two histidines derived from the side chains of amino acids, are often found in metalloenzyme active sites, see: Holm et al. (1996); Lippard & Berg (1994).

 \times 0.16 \times 0.10 mm

15130 measured reflections

9861 independent reflections 4923 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.042$

Experimental

Crystal data

$[Co_{2}(C_{10}H_{11}F_{2}O_{2})_{4}(C_{5}H_{5}N)_{2}-$	$\beta = 91.182 \ (3)^{\circ}$
$(H_2O)_2]\cdot 2C_4H_{10}O$	$\gamma = 113.336 (3)^{\circ}$
$M_r = 1697.44$	V = 2004.4 (4) Å
Triclinic, $P\overline{1}$	Z = 1
a = 12.0347 (16) Å	Mo $K\alpha$ radiation
b = 14.0597 (18) Å	$\mu = 0.50 \text{ mm}^{-1}$
c = 14.3547 (18) Å	$T = 200 { m K}$
$\alpha = 113.199 \ (3)^{\circ}$	$0.24 \times 0.16 \times 0.1$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min} = 0.403, \ T_{\max} = 1$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.071$	H atoms treated by a mixture of
$wR(F^2) = 0.239$	independent and constrained
S = 1.06	refinement
9861 reflections	$\Delta \rho_{\rm max} = 0.83 \ {\rm e} \ {\rm \AA}^{-3}$
539 parameters	$\Delta \rho_{\rm min} = -1.68 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Co1-O4	2.025 (3)	Co1-N1	2.097 (4)
Co1-O2	2.032 (3)	Co1-O5	2.230 (4)
Co1-O3	2.040 (3)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O5−H5···O6	0.84	1.87	2.602 (5)	145

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0012349).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2042).

References

- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,-Wisconsin, USA.
- Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.
- Kannan, S., Venkatachalam, G., Lee, H.-J., Kim, W., Koo, E., Do, Y. R., Yoon, S. (2011). *Polyhedron*, **30**, 340–346.
- Lee, D., Hung, P.-L., Spingler, B. & Lippard, S. J. (2002). *Inorg. Chem.* 41, 521–531.
- Lippard, S. J. & Berg, J. M. (1994). *Principles of Bioinorganic Chemistry*. Mill Valley, CA: University Science Books.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2012). E68, m1264-m1265 [https://doi.org/10.1107/S1600536812038391]

Bis(μ -4,4''-difluoro-1,1':3',1''-terphenyl-2'-carboxylato- $\kappa^2 O:O'$)bis[aqua(4,4''-difluoro-1,1':3',1''-terphenyl-2'-carboxylato- κO)(pyridine- κN)cobalt(II)] diethyl ether disolvate

Namseok Kim, Yeahsel Yoon, Ha-Jin Lee and Sungho Yoon

S1. Comment

In metalloenzyme active sites, bimetal systems, ligated by four carboxylates and two histidines derived from the side chains of amino acids, are often found (Lippard *et al.* 1994; Holm *et al.* 1996). Here, we report the structure of the water-containing di-nuclear Co(II) complex which crystallizes in the triclinic space group $P\overline{1}$ with one half molecule in the asymmetric unit. Bond distances to the metal are given in Table 1 with the structure of the molecule shown in Fig 1. and its strong intramolecular O—H…O interactions detailed in Table 2.

S2. Experimental

The sodium 4,4"-difluoro-1,1':3',1"-terphenyl-2'-carboxylate (0.200 g, 0.602 mmol) was added into cobalt(II) trifluoromethansulfonate (0.529 g, 1.21 mmol) in 10 ml of tetrahydrofuran at room temperature. After stirring for 30 min, triethylamine (0.122 g, 1.21 mmol) and pyridine (0.134 g, 1.69 mmol) were added. Immediately, the color of solution was changed from light violet to dark purple. After 30 min, water (0.0218 g, 1.21 mmol) was further added. The volatile fractions were removed under the reduced pressure. Resulting purple powder was dissolved in dicloromethane and insoluble fractions were filtered off. Purple block-shaped crystals were collected upon vapor diffusion of diethyl ether. Yield = 2.26% (0.0230 g)

S3. Refinement

H atoms were placed at calculated positions and refined as riding with C–H(aromatic) = 0.95 Å, C–H(CH₃) = 0.98 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ for methyl groups. The O-bound H atoms of waters were located in a difference Fourier map and refined isotropically.

Figure 1

The molecular structure of the title compound, showing the atom-numbering, the hydrogen bonds and with displacement ellipsoids drawn at the 50% probability level.

 $Bis(\mu-4,4''-difluoro-1,1':3',1''-terphenyl-2'-carboxylato- \kappa^2O:O')bis[aqua(4,4''-difluoro-1,1':3',1''-terphenyl-2'-carboxylato-\kappaO)(pyridine-\kappaN)cobalt(II)] diethyl ether disolvate$

Crystal data

$[Co_{2}(C_{19}H_{11}F_{2}O_{2})_{4}(C_{5}H_{5}N)_{2}(H_{2}O)_{2}] \cdot 2C_{4}H_{10}O$ $M_{r} = 1697.44$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 12.0347 (16) Å b = 14.0597 (18) Å c = 14.3547 (18) Å a = 113.199 (3)° $\beta = 91.182$ (3)° $\gamma = 113.336$ (3)° V = 2004.4 (4) Å ³	Z = 1 F(000) = 878 $D_x = 1.406 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3108 reflections $\theta = 2.2-24.3^{\circ}$ $\mu = 0.50 \text{ mm}^{-1}$ T = 200 K Block, pink $0.24 \times 0.16 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer Radiation source: sealed tube Graphite monochromator phi and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000) $T_{min} = 0.403$, $T_{max} = 1$ 15130 measured reflections 9861 independent reflections 4923 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.042$	$k = -18 \rightarrow 17$
$\theta_{\rm max} = 28.4^{\circ}, \theta_{\rm min} = 1.6^{\circ}$	$l = -14 \rightarrow 19$
$h = -16 \rightarrow 15$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.071$	Hydrogen site location: inferred from
$wR(F^2) = 0.239$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
9861 reflections	and constrained refinement
539 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0806P)^2 + 3.4487P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{ m max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.83 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.68 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	0.60580 (6)	0.59297 (6)	0.60114 (5)	0.0361 (2)	
05	0.4457 (3)	0.4290 (3)	0.5772 (3)	0.0395 (8)	
H5	0.4256	0.4347	0.6342	0.059*	
O2	0.4692 (3)	0.6439 (3)	0.6041 (2)	0.0379 (8)	
N1	0.7461 (4)	0.7539 (3)	0.6268 (3)	0.0371 (9)	
03	0.6498 (3)	0.6358 (3)	0.7548 (2)	0.0387 (8)	
O4	0.6902 (3)	0.4936 (3)	0.5279 (2)	0.0381 (8)	
C1	0.3618 (5)	0.6013 (4)	0.5535 (4)	0.0354 (11)	
C29	0.8383 (5)	0.7648 (5)	0.5777 (4)	0.0516 (14)	
H29	0.8413	0.6972	0.5283	0.062*	
O6	0.4785 (3)	0.5124 (3)	0.7781 (3)	0.0457 (9)	
C25	0.2179 (5)	0.4920 (5)	0.6837 (4)	0.0466 (13)	
H25	0.3031	0.5443	0.7098	0.056*	
C22	0.2740 (6)	0.8489 (5)	0.6312 (4)	0.0545 (15)	
H22	0.3024	0.9217	0.6300	0.065*	
C24	0.1389 (5)	0.5206 (5)	0.6390 (4)	0.0422 (12)	
C19	0.1880 (5)	0.6339 (5)	0.6338 (4)	0.0462 (13)	
C3	0.5839 (5)	0.5962 (4)	0.8106 (4)	0.0369 (11)	
C10	0.6781 (5)	0.4879 (5)	0.9112 (4)	0.0410 (12)	
C26	0.4369 (5)	0.8181 (5)	0.5376 (4)	0.0452 (13)	
C21	0.3327 (5)	0.7785 (5)	0.5877 (4)	0.0440 (13)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C4	0.6390 (4)	0.6573 (4)	0.9245 (4)	0.0365 (11)
C8	0.7213 (5)	0.6549 (5)	1.0786 (4)	0.0528 (15)
H8	0.7450	0.6165	1.1109	0.063*
C13	0.7536 (5)	0.4762 (5)	0.8393 (4)	0.0504 (14)
H13	0.7966	0.5380	0.8220	0.061*
C7	0.7322 (6)	0.7639 (5)	1.1381 (4)	0.0543 (15)
H7	0.7640	0.8000	1.2107	0.065*
C14	0.6089 (5)	0.8327 (4)	0.9435 (4)	0.0421 (12)
C18	0.4481 (6)	0.8445 (5)	0.8503 (4)	0.0503 (14)
H18	0.3672	0.8101	0.8097	0.060*
C17	0.6448 (6)	1.0092 (5)	0.9324 (5)	0.0564 (15)
H17	0.6983	1.0869	0.9478	0.068*
C5	0.6501 (5)	0.7689 (5)	0.9859 (4)	0.0413 (12)
C20	0.2899 (5)	0.6711 (4)	0.5899 (4)	0.0387 (12)
C9	0.6757 (5)	0.6000 (4)	0.9712 (4)	0.0402 (12)
C16	0.6841 (5)	0.9464 (5)	0.9671 (4)	0.0504 (14)
H16	0.7650	0.9826	1.0083	0.060*
C15	0.4889 (5)	0.7821 (5)	0.8853 (4)	0.0455 (13)
H15	0.4347	0.7045	0.8696	0.055*
C12	0.6227 (6)	0.2921 (5)	0.8832 (5)	0.0562 (15)
H12	0.5763	0.2278	0.8964	0.067*
C23	0.1297 (6)	0.7061 (6)	0.6760 (4)	0.0572 (16)
H23	0.0593	0.6815	0.7047	0.069*
C11	0.6128 (5)	0.3943 (5)	0.9315 (5)	0.0519 (14)
H11	0.5602	0.4005	0.9797	0.062*
C6	0.6975 (5)	0.8205 (5)	1.0934 (4)	0.0489 (14)
H6	0.7054	0.8956	1.1354	0.059*
C28	0.7429 (5)	0.8496 (4)	0.6971 (4)	0.0505 (14)
H28	0.6764	0.8423	0.7325	0.061*
F1	0.4869 (4)	1.0186 (3)	0.8430 (3)	0.0703 (10)
F3	0.0045 (4)	0.2143 (3)	0.6617 (3)	0.0938 (14)
F2	0.7149 (4)	0.1870 (3)	0.7706 (3)	0.0806 (12)
C45	0.1733 (6)	0.3890 (5)	0.6903 (4)	0.0535 (15)
H45	0.2273	0.3682	0.7185	0.064*
C39	0.0140 (5)	0.4445 (6)	0.6039 (4)	0.0536 (15)
H39	-0.0409	0.4638	0.5750	0.064*
C34	0.4377 (6)	0.7469 (5)	0.4357 (4)	0.0508 (14)
H34	0.3704	0.6728	0.3985	0.061*
C44	0.5280 (6)	0.9570 (5)	0.8759 (4)	0.0499 (14)
C41	0.0492 (7)	0.3168 (5)	0.6554 (5)	0.0603 (17)
C38	0.5357 (6)	0.7841 (5)	0.3893 (4)	0.0565 (16)
H38	0.5355	0.7364	0.3204	0.068*
C42	0.7665 (6)	0.3747 (5)	0.7925 (4)	0.0581 (16)
H42	0.8199	0.3672	0.7451	0.070*
C40	-0.0312 (6)	0.3408 (6)	0.6105 (5)	0.0632 (17)
H40	-0.1162	0.2875	0.5846	0.076*
C36	0.6355 (6)	0.9644 (5)	0.5419 (5)	0.0586 (16)
H36	0.7029	1.0389	0.5771	0.070*

C37	0.6318 (7)	0.8897 (5)	0.4439 (5)	0.0579 (16)
C43	0.7007 (6)	0.2865 (5)	0.8166 (5)	0.0547 (15)
C33	0.1753 (6)	0.8128 (6)	0.6754 (5)	0.0643 (18)
H33	0.1374	0.8622	0.7064	0.077*
C35	0.5366 (6)	0.9270 (5)	0.5876 (5)	0.0577 (16)
H35	0.5370	0.9775	0.6553	0.069*
C32	0.9283 (6)	0.9697 (6)	0.6685 (6)	0.0684 (19)
H32	0.9912	1.0440	0.6831	0.082*
C31	0.8321 (6)	0.9566 (5)	0.7190 (5)	0.0620 (17)
H31	0.8275	1.0226	0.7696	0.074*
C30	0.9310 (6)	0.8715 (6)	0.5956 (5)	0.0635 (17)
H30	0.9957	0.8769	0.5582	0.076*
F4	0.7304 (4)	0.9255 (3)	0.3996 (3)	0.0778 (11)
O7	0.0379 (4)	0.7330 (4)	0.9186 (3)	0.0700 (12)
C47	-0.0130 (6)	0.8100 (6)	0.9638 (5)	0.0666 (18)
H47A	0.0462	0.8774	1.0263	0.080*
H47B	-0.0898	0.7718	0.9848	0.080*
C46	-0.0415 (7)	0.8488 (6)	0.8852 (5)	0.078 (2)
H46A	0.0350	0.8869	0.8650	0.117*
H46B	-0.0772	0.9029	0.9159	0.117*
H46C	-0.1006	0.7817	0.8238	0.117*
C48	0.0575 (7)	0.6834 (6)	0.9825 (5)	0.075 (2)
H48A	-0.0216	0.6417	0.9989	0.090*
H48B	0.1163	0.7441	1.0483	0.090*
C49	0.1097 (7)	0.6012 (7)	0.9234 (6)	0.083 (2)
H49A	0.0526	0.5437	0.8570	0.125*
H49B	0.1204	0.5622	0.9641	0.125*
H49C	0.1899	0.6441	0.9109	0.125*
H2	0.461 (8)	0.368 (8)	0.558 (7)	0.13 (3)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0396 (4)	0.0341 (4)	0.0313 (3)	0.0161 (3)	0.0051 (3)	0.0114 (3)
O5	0.037 (2)	0.036 (2)	0.0378 (19)	0.0103 (17)	0.0062 (16)	0.0154 (16)
O2	0.041 (2)	0.0329 (18)	0.0312 (17)	0.0115 (16)	-0.0016 (15)	0.0108 (15)
N1	0.038 (2)	0.038 (2)	0.032 (2)	0.013 (2)	0.0040 (18)	0.0151 (19)
O3	0.041 (2)	0.047 (2)	0.0231 (16)	0.0160 (17)	0.0015 (14)	0.0142 (15)
O4	0.042 (2)	0.039 (2)	0.0347 (18)	0.0213 (17)	0.0067 (15)	0.0138 (16)
C1	0.049 (3)	0.030 (3)	0.029 (2)	0.018 (2)	0.008 (2)	0.015 (2)
C29	0.051 (3)	0.048 (3)	0.050 (3)	0.020 (3)	0.014 (3)	0.018 (3)
06	0.037 (2)	0.042 (2)	0.042 (2)	0.0055 (17)	0.0018 (16)	0.0152 (17)
C25	0.046 (3)	0.052 (3)	0.036 (3)	0.019 (3)	0.005 (2)	0.016 (3)
C22	0.063 (4)	0.053 (4)	0.055 (3)	0.033 (3)	0.012 (3)	0.024 (3)
C24	0.047 (3)	0.047 (3)	0.027 (2)	0.020 (3)	0.014 (2)	0.011 (2)
C19	0.046 (3)	0.049 (3)	0.036 (3)	0.024 (3)	0.002 (2)	0.010(2)
C3	0.043 (3)	0.042 (3)	0.031 (2)	0.020 (3)	0.007 (2)	0.020 (2)
C10	0.036 (3)	0.044 (3)	0.039 (3)	0.016 (2)	0.004 (2)	0.015 (2)

C26	0.065 (4)	0.037 (3)	0.036 (3)	0.030 (3)	0.005 (3)	0.011 (2)
C21	0.059 (3)	0.045 (3)	0.037 (3)	0.033 (3)	0.011 (3)	0.016 (2)
C4	0.035 (3)	0.036 (3)	0.034 (2)	0.015 (2)	0.009 (2)	0.011 (2)
C8	0.061 (4)	0.066 (4)	0.033 (3)	0.030 (3)	0.008 (3)	0.022 (3)
C13	0.050 (3)	0.054 (4)	0.042 (3)	0.020 (3)	0.011 (3)	0.018 (3)
C7	0.062 (4)	0.058 (4)	0.031 (3)	0.028 (3)	0.006 (3)	0.007 (3)
C14	0.047 (3)	0.031 (3)	0.039 (3)	0.014 (2)	0.009 (2)	0.010 (2)
C18	0.064 (4)	0.049 (3)	0.040 (3)	0.034 (3)	0.007 (3)	0.014 (3)
C17	0.064 (4)	0.037 (3)	0.068 (4)	0.022 (3)	0.028 (3)	0.023 (3)
C5	0.040 (3)	0.045 (3)	0.032 (3)	0.013 (2)	0.011 (2)	0.016 (2)
C20	0.045 (3)	0.047 (3)	0.030 (2)	0.027 (3)	0.004 (2)	0.016 (2)
C9	0.040 (3)	0.044 (3)	0.037 (3)	0.019 (2)	0.012 (2)	0.017 (2)
C16	0.048 (3)	0.039 (3)	0.050 (3)	0.014 (3)	0.015 (3)	0.011 (3)
C15	0.050 (3)	0.037 (3)	0.043 (3)	0.017 (3)	0.005 (3)	0.013 (2)
C12	0.056 (4)	0.048 (4)	0.067 (4)	0.026 (3)	0.013 (3)	0.025 (3)
C23	0.054 (4)	0.066 (4)	0.054 (3)	0.037 (3)	0.010 (3)	0.018 (3)
C11	0.049 (3)	0.056 (4)	0.062 (4)	0.025 (3)	0.019 (3)	0.034 (3)
C6	0.055 (3)	0.049 (3)	0.035 (3)	0.022 (3)	0.007 (3)	0.013 (3)
C28	0.056 (4)	0.029 (3)	0.047 (3)	0.016 (3)	0.008 (3)	0.002 (2)
F1	0.111 (3)	0.061 (2)	0.065 (2)	0.055 (2)	0.026 (2)	0.0334 (19)
F3	0.112 (4)	0.066 (3)	0.101 (3)	0.022 (3)	0.042 (3)	0.051 (3)
F2	0.091 (3)	0.055 (2)	0.084 (3)	0.044 (2)	0.009 (2)	0.008 (2)
C45	0.060 (4)	0.057 (4)	0.045 (3)	0.023 (3)	0.018 (3)	0.027 (3)
C39	0.042 (3)	0.074 (4)	0.040 (3)	0.024 (3)	0.015 (3)	0.020 (3)
C34	0.075 (4)	0.045 (3)	0.038 (3)	0.032 (3)	0.005 (3)	0.018 (3)
C44	0.076 (4)	0.047 (3)	0.041 (3)	0.040 (3)	0.024 (3)	0.020 (3)
C41	0.073 (5)	0.049 (4)	0.057 (4)	0.018 (3)	0.029 (3)	0.029 (3)
C38	0.087 (5)	0.049 (4)	0.043 (3)	0.039 (4)	0.016 (3)	0.020 (3)
C42	0.060 (4)	0.058 (4)	0.045 (3)	0.027 (3)	0.015 (3)	0.010 (3)
C40	0.057 (4)	0.062 (4)	0.052 (4)	0.011 (3)	0.021 (3)	0.022 (3)
C36	0.071 (4)	0.043 (3)	0.056 (4)	0.021 (3)	0.015 (3)	0.021 (3)
C37	0.082 (5)	0.053 (4)	0.051 (3)	0.035 (4)	0.024 (3)	0.029 (3)
C43	0.054 (4)	0.044 (3)	0.056 (4)	0.025 (3)	0.003 (3)	0.009 (3)
C33	0.079 (5)	0.068 (4)	0.065 (4)	0.055 (4)	0.017 (4)	0.024 (4)
C35	0.081 (5)	0.047 (4)	0.043 (3)	0.031 (3)	0.009 (3)	0.014 (3)
C32	0.053 (4)	0.047 (4)	0.086 (5)	0.000 (3)	-0.007 (4)	0.034 (4)
C31	0.067 (4)	0.036 (3)	0.065 (4)	0.016 (3)	0.003 (3)	0.013 (3)
C30	0.055 (4)	0.057 (4)	0.074 (4)	0.014 (3)	0.017 (3)	0.035 (4)
F4	0.101 (3)	0.070 (3)	0.078 (3)	0.041 (2)	0.045 (2)	0.043 (2)
O7	0.074 (3)	0.083 (3)	0.062 (3)	0.043 (3)	0.019 (2)	0.033 (3)
C47	0.050 (4)	0.059 (4)	0.067 (4)	0.014 (3)	0.014 (3)	0.015 (3)
C46	0.070 (5)	0.083 (5)	0.071 (5)	0.042 (4)	-0.003 (4)	0.018 (4)
C48	0.061 (4)	0.081 (5)	0.068 (4)	0.020 (4)	0.001 (4)	0.031 (4)
C49	0.077 (5)	0.100 (6)	0.072 (5)	0.047 (5)	0.008 (4)	0.029 (4)

Geometric parameters (Å, °)

Co1—O4	2.025 (3)	C17—H17	0.9500
Co1—O2	2.032 (3)	C5—C6	1.409 (7)
Co1-03	2.040 (3)	C16—H16	0.9500
Col—N1	2.097 (4)	C15—H15	0.9500
Co1-05	2.230 (4)	C12—C43	1.356 (8)
O5—H5	0.8400	C12—C11	1.383 (8)
О5—Н2	0.89 (9)	C12—H12	0.9500
O2—C1	1.250 (6)	C23—C33	1.381 (9)
N1—C29	1.317 (7)	C23—H23	0.9500
N1—C28	1.342 (6)	C11—H11	0.9500
O3—C3	1.267 (6)	С6—Н6	0.9500
O4—C1 ⁱ	1.273 (5)	C28—C31	1.360 (8)
C1	1.273 (5)	C28—H28	0.9500
C1—C20	1.507 (7)	F1—C44	1.367 (6)
C29—C30	1.385 (8)	F3—C41	1.366 (7)
С29—Н29	0.9500	F2—C43	1.374 (6)
06—06	0.000 (8)	C45—C41	1.372 (8)
O6—C3	1.255 (6)	C45—H45	0.9500
C25—C45	1.375 (8)	C39—C40	1.384 (9)
C25—C24	1.400 (7)	C39—H39	0.9500
С25—Н25	0.9500	C34—C38	1.387 (8)
C22—C33	1.371 (9)	C34—H34	0.9500
C22—C21	1.398 (7)	C41—C40	1.366 (9)
С22—Н22	0.9500	C38—C37	1.357 (9)
C24—C39	1.388 (8)	C38—H38	0.9500
C24—C19	1.498 (8)	C42—C43	1.363 (9)
C19—C20	1.399 (7)	C42—H42	0.9500
C19—C23	1.409 (7)	C40—H40	0.9500
C3—O6	1.255 (6)	C36—C37	1.372 (8)
C3—C4	1.499 (7)	C36—C35	1.389 (9)
C10-C11	1.389 (7)	C36—H36	0.9500
C10-C13	1.394 (7)	C37—F4	1.369 (7)
С10—С9	1.481 (7)	С33—Н33	0.9500
C26—C35	1.394 (8)	С35—Н35	0.9500
C26—C34	1.413 (7)	C32—C31	1.369 (9)
C26—C21	1.483 (8)	C32—C30	1.379 (9)
C21—C20	1.403 (7)	С32—Н32	0.9500
C4—C9	1.411 (7)	C31—H31	0.9500
C4—C5	1.413 (7)	С30—Н30	0.9500
C8—C7	1.378 (8)	O7—C47	1.398 (7)
С8—С9	1.401 (7)	O7—C48	1.418 (8)
C8—H8	0.9500	C47—C46	1.519 (9)
C13—C42	1.392 (8)	C47—H47A	0.9900
С13—Н13	0.9500	C47—H47B	0.9900
С7—С6	1.370 (8)	C46—H46A	0.9800
С7—Н7	0.9500	C46—H46B	0.9800

C14 C16	1 380 (7)	C46 H46C	0.0800
$C_{14} = C_{10}$	1.380(7) 1.300(7)	C_{40}	1 508 (0)
C14 = C13	1.399(7)	$C_{40} = C_{49}$	0.0000
C14 - C3	1.400(7)	C_{40} H_{40}	0.9900
C18 - C44	1.373(0) 1.202(7)	С40—П40В	0.9900
	1.595 (7)	C49—H49A	0.9800
C17 C14	0.9500	C49—H49B	0.9800
C17 - C44	1.356 (8)	C49—H49C	0.9800
C1/-C16	1.385 (8)		
04 01 02	151 04 (12)	C42 C12 C11	1170(()
04 - 01 - 02	151.94 (13)	C43 - C12 - C11	117.9(6)
04-01-03	106.05 (13)	C43—C12—H12	121.0
02-Col-03	99.17 (13)	C11—C12—H12	121.0
O4—Col—NI	98.68 (15)	C33—C23—C19	119.8 (6)
O2—Co1—NI	93.70 (15)	С33—С23—Н23	120.1
O3—Co1—N1	89.24 (14)	С19—С23—Н23	120.1
O4—Co1—O5	86.10 (14)	C12—C11—C10	121.6 (6)
O2—Co1—O5	81.46 (14)	C12—C11—H11	119.2
O3—Co1—O5	90.60 (13)	C10—C11—H11	119.2
N1—Co1—O5	175.07 (16)	C7—C6—C5	120.9 (5)
Co1—O5—H5	109.5	С7—С6—Н6	119.6
Co1—O5—H2	116 (6)	С5—С6—Н6	119.6
H5—O5—H2	101.1	N1-C28-C31	121.9 (6)
C1—O2—Co1	136.2 (3)	N1—C28—H28	119.1
C29—N1—C28	118.7 (5)	C31—C28—H28	119.1
C29—N1—Co1	122.5 (4)	C41—C45—C25	118.4 (6)
C28—N1—Co1	118.8 (4)	C41—C45—H45	120.8
C3—O3—Co1	129.3 (3)	C25—C45—H45	120.8
C1 ⁱ O4Co1	124.6 (3)	C40—C39—C24	120.7 (6)
O2-C1-O4 ⁱ	125.7 (4)	С40—С39—Н39	119.6
O2—C1—C20	116.9 (4)	С24—С39—Н39	119.6
O4 ⁱ —C1—C20	117.3 (4)	C38—C34—C26	120.8 (6)
N1—C29—C30	122.1 (6)	C38—C34—H34	119.6
N1—C29—H29	118.9	С26—С34—Н34	119.6
С30—С29—Н29	118.9	C17—C44—F1	119.0 (5)
O6—O6—C3	0 (10)	C17—C44—C18	122.9 (5)
C45—C25—C24	120.7 (6)	F1—C44—C18	118.0 (6)
C45—C25—H25	119.7	F3—C41—C40	118.4 (6)
С24—С25—Н25	119.7	F3—C41—C45	118.7 (6)
C33—C22—C21	120.0 (6)	C40—C41—C45	122.9 (6)
C33—C22—H22	120.0	C37—C38—C34	118.9 (5)
C21—C22—H22	120.0	С37—С38—Н38	120.5
C39—C24—C25	118.8 (5)	C34—C38—H38	120.5
C39—C24—C19	120.9 (5)	C43—C42—C13	118.3 (6)
C25—C24—C19	120.2 (5)	C43—C42—H42	120.9
C20—C19—C23	119.0 (5)	C13—C42—H42	120.9
C20—C19—C24	122.6 (5)	C41—C40—C39	118.4 (6)
C23—C19—C24	118.4 (5)	C41—C40—H40	120.8
06-C3-06	0.0 (5)	C39—C40—H40	120.8
	··· (-)		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6—C3—O3	125.4 (4)	C37—C36—C35	117.4 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6—C3—O3	125.4 (4)	С37—С36—Н36	121.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6—C3—C4	118.8 (4)	С35—С36—Н36	121.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6—C3—C4	118.8 (4)	C38—C37—F4	119.2 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—C3—C4	115.7 (4)	C38—C37—C36	123.4 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C10—C13	118.2 (5)	F4—C37—C36	117.4 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C10—C9	120.6 (5)	C12—C43—C42	123.5 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C10—C9	121.0 (5)	C12—C43—F2	118.7 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C35—C26—C34	117.2 (6)	C42—C43—F2	117.8 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{35} — C_{26} — C_{21}	121.9 (5)	$C_{22} = C_{33} = C_{23}$	121.4 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{34} C_{26} C_{21}	120.9(5)	С22—С33—Н33	1193
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C^{22} C^{21} C^{20} C^{21} C^{20}	119 5 (5)	C23—C33—H33	119.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{22} = C_{21} = C_{20}$	119.9(5)	$C_{36} = C_{35} = C_{26}$	122 4 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{22} = C_{21} = C_{20}$	121 6 (4)	$C_{36} = C_{35} = H_{35}$	112.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{20} = C_{21} = C_{20}$	121.0(4) 119.8(4)	C_{26} C_{35} H_{35}	118.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{2}^{0} - C_{4}^{0} - C_{3}^{0}$	119.8 (4)	$C_{20} = C_{30} = 1135$	117.8 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{2} = C_{4} = C_{2}$	119.1(4) 1211(4)	$C_{31} = C_{32} = C_{30}$	121.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{3}	121.1(4) 121.1(5)	$C_{31} = C_{32} = H_{32}$	121.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{7} C_{8} H_{8}$	121.1 (5)	$C_{30} = C_{32} = H_{32}$	121.1 120.2(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C = C = H \delta$	119.5	$C_{20} = C_{31} = C_{32}$	120.5 (0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_9 = C_8 = H_8$	119.5	C28—C31—H31	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C42 - C13 - C10	120.5 (6)	C32—C31—H31	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C42—C13—H13	119.8	$C_{32} = C_{30} = C_{29}$	119.2 (6)
C6-C7-C8120.5 (5)C29-C30-H30120.4C6-C7-H7119.8C47-O7-C48113.1 (5)C8-C7-H7119.8O7-C47-C46108.7 (5)C16-C14-C15118.2 (5)O7-C47-H47A110.0C16-C14-C5120.9 (5)C46-C47-H47A110.0C15-C14-C5120.9 (5)C46-C47-H47B110.0C44-C18-C15118.2 (5)C46-C47-H47B110.0C44-C18-H18120.9H47A-C47-H47B100.5C44-C17-C16118.3 (6)C47-C46-H46A109.5C44-C17-H17120.8H46A-C46-H46B109.5C6-C5-C4118.9 (5)H46A-C46-H46C109.5C6-C5-C14118.0 (5)H46B-C46-H46C109.5C6-C5-C14118.9 (5)H46A-C49107.3 (6)C19-C20-C21120.3 (5)C49-C48-H48B110.3C19-C20-C1119.2 (5)O7-C48-H48B110.3C8-C9-C4118.9 (5)H48A-C48-H48B110.3C8-C9-C10117.9 (5)H48A-C48-H48B109.5C14-C16-C17121.7 (6)C48-C49-H49B109.5C14-C16-C17121.7 (6)C48-C49-H49B109.5C14-C16-H16119.1H49A-C49-H49B109.5C14-C16-H16119.1C48-C49-H49B109.5C14-C16-H16119.1C48-C49-H49B109.5C14-C16-H16119.1C48-C49-H49B109.5C14-C16-H16119.1C48-C49-H49C109.5C14-C16-H16119.1C48-C49-H49C109.5C14-C16-H16119.1C	C10—C13—H13	119.8	C32—C30—H30	120.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C/-C8	120.5 (5)	С29—С30—Н30	120.4
C8—C7—H7119.8O7—C47—C46108.7 (5)C16—C14—C15118.2 (5)O7—C47—H47A110.0C16—C14—C5120.9 (5)C46—C47—H47A110.0C15—C14—C5120.7 (5)O7—C47—H47B110.0C44—C18—C15118.2 (5)C46—C47—H47B110.0C44—C18—H18120.9H47A—C47—H47B108.3C15—C14—C16118.3 (6)C47—C46—H46A109.5C44—C17—H17120.8H46A—C46—H46B109.5C44—C17—H17120.8C47—C46—H46C109.5C6—C5—C4118.9 (5)H46A—C46—H46C109.5C6—C5—C14118.0 (5)H46A—C46—H46C109.5C4—C5—C14123.0 (4)O7—C48—C49107.3 (6)C19—C20—C1120.3 (5)C49—C48—H48A110.3C21—C20—C1119.2 (5)O7—C48—H48B110.3C8—C9—C4118.9 (5)H48A—C48—H48B110.3C8—C9—C10117.9 (5)H48A—C48—H48B109.5C14—C16—H16119.1H49A—C49—H49A109.5C14—C16—H16119.1H49A—C49—H49B109.5C14—C16—H16119.1C48—C49—H49B109.5C14—C16—H16119.1C48—C49—H49B109.5C14—C16—H16119.1C48—C49—H49C109.5C14—C16—H16119.1C48—C49—H49C109.5C14—C16—H16119.1C48—C49—H49C109.5C14—C16—H16119.1C48—C49—H49C109.5C14—C16—H16119.1C48—C49—H49C109.5C14—C16—H16119.1C48—C49	С6—С7—Н7	119.8	C47—O7—C48	113.1 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—С7—Н7	119.8	O7—C47—C46	108.7 (5)
C16-C14-C5120.9 (5)C46-C47-H47A110.0C15-C14-C5120.7 (5)07-C47-H47B110.0C44-C18-C15118.2 (5)C46-C47-H47B110.0C44-C18-H18120.9H47A-C47-H47B108.3C15-C18-H18120.9C47-C46-H46A109.5C44-C17-C16118.3 (6)C47-C46-H46B109.5C44-C17-H17120.8H46A-C46-H46B109.5C16-C17-H17120.8C47-C46-H46C109.5C6-C5-C4118.9 (5)H46A-C46-H46C109.5C6-C5-C14118.0 (5)H46B-C46-H46C109.5C4-C5-C14123.0 (4)07-C48-C49107.3 (6)C19-C20-C21120.3 (5)C49-C48-H48A110.3C21-C20-C1119.2 (5)07-C48-H48B110.3C8-C9-C4118.9 (5)H48A-C48-H48B110.3C8-C9-C10117.9 (5)H48A-C48-H48B109.5C4-C16-C17121.7 (6)C48-C49-H49A109.5C14-C16-H16119.1H49A-C49-H49C109.5C17-C16-H16119.1C48-C49-H49C109.5	C16—C14—C15	118.2 (5)	O7—C47—H47A	110.0
C15C14C5120.7 (5) $O7C47H47B$ 110.0C44C18C15118.2 (5)C46C47H47B110.0C44C18H18120.9H47AC47H47B108.3C15C18H18120.9C47C46H46A109.5C44C17C16118.3 (6)C47C46H46B109.5C44C17H17120.8H46AC46H46B109.5C16C17H17120.8C47C46H46C109.5C6C5C4118.9 (5)H46AC46H46C109.5C6C5C14118.0 (5)H46BC46H46C109.5C4C5C14123.0 (4)O7C48C49107.3 (6)C19C20C21120.3 (5)O7C48H48A110.3C19C20C1119.2 (5)O7C48H48B110.3C21C20C1119.2 (5)O7C48H48B110.3C8C9C4118.9 (5)C49C48H48B110.3C8C9C10117.9 (5)H48AC48H48B109.5C14C16C17121.7 (6)C48C49H49B109.5C14C16H16119.1H49AC49H49B109.5C14C16H16119.1C48C49H49C109.5C13C14120.6 (5)H49AC49H49C109.5	C16—C14—C5	120.9 (5)	С46—С47—Н47А	110.0
C44-C18-C15 $118.2 (5)$ $C46-C47-H47B$ 110.0 $C44-C18-H18$ 120.9 $H47A-C47-H47B$ 108.3 $C15-C18-H18$ 120.9 $C47-C46-H46A$ 109.5 $C44-C17-C16$ $118.3 (6)$ $C47-C46-H46B$ 109.5 $C44-C17-H17$ 120.8 $H46A-C46-H46B$ 109.5 $C6-C5-C4$ $118.9 (5)$ $H46A-C46-H46C$ 109.5 $C6-C5-C14$ $118.0 (5)$ $H46B-C46-H46C$ 109.5 $C4-C5-C14$ $118.0 (5)$ $H46B-C46-H46C$ 109.5 $C4-C5-C14$ $123.0 (4)$ $O7-C48-C49$ $107.3 (6)$ $C19-C20-C21$ $120.3 (5)$ $O7-C48-H48A$ 110.3 $C1-C20-C1$ $120.3 (5)$ $C49-C48-H48A$ 110.3 $C21-C20-C1$ $119.2 (5)$ $O7-C48-H48B$ 110.3 $C8-C9-C4$ $118.9 (5)$ $C49-C48-H48B$ 110.3 $C8-C9-C4$ $118.9 (5)$ $C49-C48-H48B$ 100.5 $C4-C9-C10$ $123.0 (4)$ $C48-C49-H49B$ 109.5 $C14-C16-C17$ $121.7 (6)$ $C48-C49-H49B$ 109.5 $C14-C16-H16$ 119.1 $H49A-C49-H49B$ 109.5 $C14-C16-H16$ 119.1 $C48-C49-H49C$ 109.5	C15—C14—C5	120.7 (5)	O7—C47—H47B	110.0
C44—C18—H18120.9H47A—C47—H47B108.3C15—C18—H18120.9C47—C46—H46A109.5C44—C17—C16118.3 (6)C47—C46—H46B109.5C44—C17—H17120.8H46A—C46—H46B109.5C16—C17—H17120.8C47—C46—H46C109.5C6—C5—C4118.9 (5)H46A—C46—H46C109.5C6—C5—C14118.0 (5)H46B—C46—H46C109.5C4—C5—C14123.0 (4)O7—C48—C49107.3 (6)C19—C20—C21120.3 (5)O7—C48—H48A110.3C21—C20—C1119.2 (5)O7—C48—H48B110.3C8—C9—C4118.9 (5)H48A—C48—H48B110.3C8—C9—C4118.9 (5)C49—C48—H48B109.5C4—C16—C17123.0 (4)C48—C49—H49A109.5C14—C16—C17121.7 (6)C48—C49—H49B109.5C14—C16—H16119.1H49A—C49—H49C109.5C14—C16—H16119.1C48—C49—H49C109.5C18—C15—C14120.6 (5)H49A—C49—H49C109.5	C44—C18—C15	118.2 (5)	C46—C47—H47B	110.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C44—C18—H18	120.9	H47A—C47—H47B	108.3
C44—C17—C16118.3 (6)C47—C46—H46B109.5C44—C17—H17120.8H46A—C46—H46B109.5C16—C17—H17120.8C47—C46—H46C109.5C6—C5—C4118.9 (5)H46A—C46—H46C109.5C6—C5—C14118.0 (5)H46B—C46—H46C109.5C4—C5—C14123.0 (4)O7—C48—C49107.3 (6)C19—C20—C21120.3 (5)O7—C48—H48A110.3C19—C20—C1120.3 (5)C49—C48—H48A110.3C21—C20—C1119.2 (5)O7—C48—H48B110.3C8—C9—C4118.9 (5)C49—C48—H48B110.3C8—C9—C10117.9 (5)H48A—C48—H48B108.5C4—C10—C17121.7 (6)C48—C49—H49A109.5C14—C16—H16119.1H49A—C49—H49B109.5C14—C16—H16119.1C48—C49—H49C109.5C18—C15—C14120.6 (5)H49A—C49—H49C109.5	C15—C18—H18	120.9	C47—C46—H46A	109.5
C44—C17—H17120.8H46A—C46—H46B109.5C16—C17—H17120.8C47—C46—H46C109.5C6—C5—C4118.9 (5)H46A—C46—H46C109.5C6—C5—C14118.0 (5)H46B—C46—H46C109.5C4—C5—C14123.0 (4)O7—C48—C49107.3 (6)C19—C20—C21120.3 (5)O7—C48—H48A110.3C19—C20—C1120.3 (5)C49—C48—H48A110.3C21—C20—C1119.2 (5)O7—C48—H48B110.3C8—C9—C4118.9 (5)C49—C48—H48B110.3C4—C9—C10117.9 (5)H48A—C48—H48B109.5C4—C9—C10123.0 (4)C48—C49—H49A109.5C14—C16—C17121.7 (6)C48—C49—H49B109.5C14—C16—H16119.1H49A—C49—H49B109.5C18—C15—C14120.6 (5)H49A—C49—H49C109.5	C44—C17—C16	118.3 (6)	C47—C46—H46B	109.5
C16—C17—H17120.8C47—C46—H46C109.5C6—C5—C4118.9 (5)H46A—C46—H46C109.5C6—C5—C14118.0 (5)H46B—C46—H46C109.5C4—C5—C14123.0 (4)O7—C48—C49107.3 (6)C19—C20—C21120.3 (5)O7—C48—H48A110.3C19—C20—C1120.3 (5)C49—C48—H48A110.3C21—C20—C1119.2 (5)O7—C48—H48B110.3C8—C9—C4118.9 (5)C49—C48—H48B110.3C8—C9—C10117.9 (5)H48A—C48—H48B108.5C4—C9—C10123.0 (4)C48—C49—H49B109.5C14—C16—C17121.7 (6)C48—C49—H49B109.5C14—C16—H16119.1H49A—C49—H49B109.5C18—C15—C14120.6 (5)H49A—C49—H49C109.5	C44—C17—H17	120.8	H46A—C46—H46B	109.5
C6—C5—C4118.9 (5)H46A—C46—H46C109.5C6—C5—C14118.0 (5)H46B—C46—H46C109.5C4—C5—C14123.0 (4)O7—C48—C49107.3 (6)C19—C20—C21120.3 (5)O7—C48—H48A110.3C19—C20—C1120.3 (5)C49—C48—H48A110.3C21—C20—C1119.2 (5)O7—C48—H48B110.3C8—C9—C4118.9 (5)C49—C48—H48B110.3C4—C9—C10117.9 (5)H48A—C48—H48B108.5C4—C9—C10123.0 (4)C48—C49—H49A109.5C14—C16—C17121.7 (6)C48—C49—H49B109.5C14—C16—H16119.1H49A—C49—H49C109.5C18—C15—C14120.6 (5)H49A—C49—H49C109.5	С16—С17—Н17	120.8	C47—C46—H46C	109.5
C6—C5—C14118.0 (5)H46B—C46—H46C109.5C4—C5—C14123.0 (4)O7—C48—C49107.3 (6)C19—C20—C21120.3 (5)O7—C48—H48A110.3C19—C20—C1120.3 (5)C49—C48—H48A110.3C21—C20—C1119.2 (5)O7—C48—H48B110.3C8—C9—C4118.9 (5)C49—C48—H48B110.3C4—C9—C10117.9 (5)H48A—C48—H48B108.5C4—C9—C10123.0 (4)C48—C49—H49A109.5C14—C16—C17121.7 (6)C48—C49—H49B109.5C14—C16—H16119.1H49A—C49—H49B109.5C17—C16—H16119.1C48—C49—H49C109.5C18—C15—C14120.6 (5)H49A—C49—H49C109.5	C6—C5—C4	118.9 (5)	H46A—C46—H46C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C5—C14	118.0 (5)	H46B—C46—H46C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C14	123.0 (4)	O7—C48—C49	107.3 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19—C20—C21	120.3 (5)	O7—C48—H48A	110.3
C21—C20—C1119.2 (5)O7—C48—H48B110.3C8—C9—C4118.9 (5)C49—C48—H48B110.3C8—C9—C10117.9 (5)H48A—C48—H48B108.5C4—C9—C10123.0 (4)C48—C49—H49A109.5C14—C16—C17121.7 (6)C48—C49—H49B109.5C14—C16—H16119.1H49A—C49—H49B109.5C17—C16—H16119.1C48—C49—H49C109.5C18—C15—C14120.6 (5)H49A—C49—H49C109.5	C19—C20—C1	120.3 (5)	C49—C48—H48A	110.3
C8—C9—C4 118.9 (5) C49—C48—H48B 110.3 C8—C9—C10 117.9 (5) H48A—C48—H48B 108.5 C4—C9—C10 123.0 (4) C48—C49—H49A 109.5 C14—C16—C17 121.7 (6) C48—C49—H49B 109.5 C14—C16—H16 119.1 H49A—C49—H49B 109.5 C17—C16—H16 119.1 C48—C49—H49C 109.5 C18—C15—C14 120.6 (5) H49A—C49—H49C 109.5	C21—C20—C1	119.2 (5)	O7—C48—H48B	110.3
C8—C9—C10 117.9 (5) H48A—C48—H48B 108.5 C4—C9—C10 123.0 (4) C48—C49—H49A 109.5 C14—C16—C17 121.7 (6) C48—C49—H49B 109.5 C14—C16—H16 119.1 H49A—C49—H49B 109.5 C17—C16—H16 119.1 C48—C49—H49C 109.5 C18—C15—C14 120.6 (5) H49A—C49—H49C 109.5	C8—C9—C4	118.9 (5)	C49—C48—H48B	110.3
C4—C9—C10123.0 (4)C48—C49—H49A109.5C14—C16—C17121.7 (6)C48—C49—H49B109.5C14—C16—H16119.1H49A—C49—H49B109.5C17—C16—H16119.1C48—C49—H49C109.5C18—C15—C14120.6 (5)H49A—C49—H49C109.5	C8—C9—C10	117.9 (5)	H48A—C48—H48B	108.5
C14—C16—C17121.7 (6)C48—C49—H49B109.5C14—C16—H16119.1H49A—C49—H49B109.5C17—C16—H16119.1C48—C49—H49C109.5C18—C15—C14120.6 (5)H49A—C49—H49C109.5	C4—C9—C10	123.0 (4)	C48—C49—H49A	109.5
C14—C16—H16119.1H49A—C49—H49B109.5C17—C16—H16119.1C48—C49—H49C109.5C18—C15—C14120.6 (5)H49A—C49—H49C109.5	C14—C16—C17	121.7 (6)	C48—C49—H49B	109.5
C17—C16—H16119.1C48—C49—H49C109.5C18—C15—C14120.6 (5)H49A—C49—H49C109.5	C14—C16—H16	119.1	H49A—C49—H49B	109.5
C18—C15—C14 120.6 (5) H49A—C49—H49C 109.5	C17—C16—H16	119.1	C48—C49—H49C	109.5
	C18—C15—C14	120.6 (5)	H49A—C49—H49C	109.5

C18—C15—H15 C14—C15—H15	119.7 119.7		H49B—C49—H49	С	109.5
Symmetry code: (i) $-x+1, -y+1, -z+$	-1.				
Hydrogen-bond geometry (Å	, °)				
н		D—H	H···A	D···· A	D—H···A
O5—H5…O6		0.84	1.87	2.602 (5)	145