

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bromidobis[3-(1*H*-pyrazol-1-yl- κN^2)propionamide- κO]copper(II) bromide methanol monosolvate

Thomas Wagner,^a Cristian G. Hrib,^a Volker Lorenz,^a Frank T. Edelmann^a* and John W. Gilje^b

^aChemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany, and ^bDepartment of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA Correspondence e-mail: frank.edelmann@ovgu.de

Received 2 August 2012; accepted 5 September 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.079; data-to-parameter ratio = 23.0.

The title copper(II) N-pyrazolylpropanamide (PPA) complex, [CuBr(PPA)₂]Br, was obtained in 78% yield by treatment of CuBr₂ with an excess of the ligand in methanol. Crystallization from the mother liquid afforded the title compound, *i.e.* the methanol solvate [CuBr(C₆H₉N₃O)₂]Br·CH₃OH or [CuBr(P-PA)₂]Br·MeOH, as bright green crystals. In the solid state, the title salt comprises isolated [CuBr(PPA)₂]⁺ cations, separated bromide ions and methanol of crystallization. In the cation, the central Cu^{II} ion is coordinated by two N,O-chelating PPA ligands and one Br⁻ ion. The coordination geometry around the Cu^{II} ion is distorted trigonal-bipyramidal with the bromide ligand and the amide O atoms occupying the equatorial positions [Cu-Br = 2.4443 (4) Å; Cu-O =2.035 (2) and 2.179 (2) Å], while the pyrazole N atoms coordinate in the axial positions [Cu-N = 1.975 (2)] and 1.976 (2) Å]. In the crystal, the three constituents are linked by N-H···Br, O-H···Br, and N-H···O hydrogen bonds, forming a three-dimensional network.

Related literature

For related complexes containing multifunctional ligands with substituted pyrazole groups, see: Gracia-Anton *et al.* (2003); Mukherjee (2000); Pal *et al.* (2005); Shaw *et al.* (2004). For acrylamide complexes, see: Girma *et al.* (2005*a,b,c,* 2006). For related complexes containing 3-pyrazol-1-yl-propionamide, see: Girma *et al.* (2008); Wagner *et al.* (2012).

Experimental

Crystal data [CuBr(C₆H₉N₃O)₂]Br·CH₄O $M_r = 533.73$ Monoclinic, $P2_1/n$ a = 10.5075 (4) Å b = 12.6951 (4) Å c = 15.1551 (7) Å $\beta = 102.821$ (3)°

$V = 1971.19 (13) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 5.19 mm⁻¹ T = 150 K 0.40 \times 0.40 \times 0.30 mm

Data collectionStoe IPDS 2T diffractometer
Absorption correction: multi-scan
(Blessing, 1995)
 $T_{min} = 0.046, T_{max} = 0.139$ 22729 measured reflections
5320 independent reflections
4728 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.048$ Refinement
 $R[F^2 > 2\sigma(F^2)] = 0.041$
 $wR(F^2) = 0.079$ H atoms treated by a mixture of
independent and constrained

independent and constrained refinement $\Delta \rho_{max} = 0.74 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.70 \text{ e} \text{ Å}^{-3}$

Table	1	

5320 reflections

231 parameters

S = 1.21

Hydrogen-b	ond geometry	/ (A,	°).

D 11 4	D 11		D (D 11 4
$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N1-H1NB\cdots O3^{i}$	0.88	2.07	2.926 (3)	163
$N1 - H1NA \cdots Br2$	0.88	2.56	3.434 (3)	173
N4-H4NA···O3 ⁱⁱ	0.88	2.09	2.956 (3)	168
O3−H1O···Br2	0.81 (5)	2.41 (5)	3.215 (3)	175 (5)
$N4 - H4NB \cdot \cdot \cdot Br2^{iii}$	0.88	2.71	3.548 (3)	160
Symmetry codes: ((i) $-x + 2, -$	y + 1, -z; (i	i) $x - \frac{1}{2}, -y + \frac{1}{2}$	$\frac{3}{2}, z - \frac{1}{2};$ (iii)
-x + 2, -y + 2, -z.				

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QK2039).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2005a). Coord. Chem. Rev. 249, 1283–1293.
- Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2005b). Z. Anorg. Allg. Chem. 631, 1419–1422.
- Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2005c). Z. Anorg. Allg. Chem. 631, 2763–2769.
- Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2006). Z. Anorg. Allg. Chem. 632, 1874–1878.
- Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2008). Z. Anorg. Allg. Chem. 634, 267–273.
- Gracia-Anton, G., Pons, J., Solans, X., Font-Bardia, M. & Ros, J. (2003). *Eur. J. Inorg. Chem.* pp. 2992–3000.
- Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.
- Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). *Inorg. Chem.* 44, 3880– 3889.
- Shaw, J. L., Cardon, T. B., Lorigan, G. A. & Ziegler, C. J. (2004). Eur. J. Inorg. Chem. pp. 1073–1080.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie. (2002). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.
- Wagner, T., Hrib, C. G., Lorenz, V., Edelmann, F. T., Amenta, D. S., Burnside, C. J. & Gilje, J. W. (2012). Z. Anorg. Allg. Chem. 638. In the press. doi:10.1002/zaac.201200139.

supporting information

Acta Cryst. (2012). E68, m1253–m1254 [https://doi.org/10.1107/S1600536812038111] Bromidobis[3-(1*H*-pyrazol-1-yl-κ/N²)propionamide-κO]copper(II) bromide methanol monosolvate

Thomas Wagner, Cristian G. Hrib, Volker Lorenz, Frank T. Edelmann and John W. Gilje

S1. Comment

Currently there is a considerable interest in the use of multifunctional ligands containing substituted pyrazole groups because of their potential applications in catalysis and their ability to form complexes that mimic structural and catalytic functions in metalloproteins (Gracia-Anton et al., 2003; Mukherjee, 2000; Pal et al., 2005; Shaw et al., 2004). As part of our continuing interest in the coordination chemistry of acrylamide (Girma et al., 2005a; Girma et al., 2005b; Girma et al., 2005c; Girma et al., 2006) and acrylamide-based ligands we have earlier synthesized and characterized an acrylamide-derived pyrazole ligand, N-pyrazolylpropanamide (= PPA) (Girma et al., 2008). This ligand is readily accessible in large quantities by base-catalyzed Michael addition of pyrazole to acrylamide. The first PPA complexes to be reported were (PPA)₂CuCl₂ and (PPA)₄Co₃Cl₆ with copper(II) and cobalt(II) chlorides, respectively. Both complexes contain the ligand in a seven-membered ring N,O-chelating fashion. Especially remarkable was the unusual zwitterionic structure of the trinuclear cobalt complex, which additionally comprises bridging N-pyrazolylpropanamide ligands (Girma et al., 2008). Most recently, the syntheses and single-crystal X-ray structures of several new first-row transition metal complexes containing the multifunctional acrylamide-derived PPA have been reported. The general synthesis involved treatment of the appropriate transition metal salts with an excess of PPA in ethanolic solution in the presence of triethylorthoformate as dehydrating agent. This way the perchlorates of iron(II) and cobalt(II) afforded the complexes $[(PPA)_2M(EtOH)_2](ClO_4)_2$ (M = Fe, Co) in good yields (82% resp. 85%). Light green (PPA)_2NiCl₂ has been obtained analogously from NiCl₂.6H₂O. Hydration of (PPA)₂NiCl₂ afforded the dark green cationic nickel(II) complex $[(PPA)_2Ni(H_2O)_4]Cl_2$. In the complexes with M = Fe, Co, and Ni the N-pyrazolylpropanamide acts as N,O-chelating ligand. In contrast, monodentate N-coordination via the pyrazolyl ring was found for the dicoordinate silver(I) complex [(PPA)₂Ag]NO₃.H₂O (Wagner *et al.*, 2012).

In the course of these investigations we now studied the reaction of copper(II) dibromide with PPA. A reaction carried out in methanol solution using an excess over 2 equivalents of PPA afforded a green, microcrystalline solid which was shown by elemental analysis and its IR spectrum to be the bromide analogue of the previously reported (PPA)₂CuCl₂ (Girma *et al.*, 2008), *i.e.* (PPA)₂CuBr₂. Comparison of the IR spectra of the free ligand PPA and (PPA)₂CuBr₂ revealed a significant decrease to lower wavenumbers in the CO absorptions (1690 cm⁻¹ in PPA *vs.* 1661 cm⁻¹ in (PPA)₂CuBr₂ and 1664 cm⁻¹ in (PPA)₂CuCl₂). This CO absorption shift is consistent with a decrease in the electron density of the amide carbonyl moiety resulting from coordination to the cationic copper(II) center. Crystallization of (PPA)₂CuBr₂ directly from the mother liquid afforded the title compound, *i.e.* the methanol-solvate, as bright green, X-ray quality single crystals. Surprisingly, the X-ray crystal structure determination revealed the presence of the ionic product [CuBr(PPA)₂]⁺ cations, separated bromide ions and methanol of crystallization (Fig. 1). In the cation, the central Cu²⁺ ion

is coordinated by two *N*,*O*-chelating PPA ligands and one Br⁻ ion. The coordination geometry around copper can be best described as distorted trigonal-bipyramidal with the bromo ligand and the amide O atoms occupying the equatorial positions (Cu—Br 2.4443 (4) Å; Cu—O 2.035 (2) and 2.179 (2) Å), while the pyrazolyl N-atoms coordinate in the axial positions (Cu—N 1.975 (2) and 1.976 (2) Å). This is in contrast to the neutral hexacoordinate chloro-analogue (PPA)₂CuCl₂ in which the coordination geometry around the central Cu²⁺ ion is octahedral (Girma *et al.*, 2008). The angles at Cu in the equatorial plane of the [CuBr(PPA)₂]⁺ cation are 109.30 (8)° (O1—Cu—O2), 116.80 (6)° (O2—Cu—Br1), and 133.76 (6)° (O1—Cu—Br1), respectively. The axial angle at Cu (N3—Cu—N6) is 174.53 (9)°. The planes of the opposing pyrazole rings are inclined to each other by ~71°.

Like all previously reported transition metal PPA complexes (Wagner *et al.*, 2012), the title compound also forms a hydrogen-bonded network in the solid state (Fig. 2). The crystal structure consists of chains of $[CuBr(PPA)_2]^+$ cations linked by N—H···Br, O—H···Br, and N—H···O hydrogen bonds. The uncoordinated bromide ions are connected *via* O—H···Br hydrogen bonds to the methanol of crystallization and *via* two N—H···Br interactions with the amide NH₂ groups of different cations. N—H···O hydrogen bonds between amide NH₂ groups and the methanol of crystallization interconnect the chains.

S2. Experimental

A solution of CuBr_2 (0.6 g, 1.69 mmol) in methanol (50 ml) was combined with a solution of *N*-pyrazolylpropanamide (= PPA, 0.8 g, 5.5 mmol) in methanol (30 ml). After stirring for 24 h at room temperature, the reaction mixture was concentrated *in vacuo* to a total volume of *ca* 50 ml, whereupon a large quantity of the title compound precipitated in its unsolvated form [CuBr(PPA)₂]Br in the form of a green, microcrystalline solid in 78% yield (1.05 g). Bright green, X-ray quality crystals of the title compound [CuBr(PPA)₂]Br.MeOH were obtained upon standing of the mother liquid at room temperature for 14 d.

Anal. Calcd. for unsolvated $C_{12}H_{18}Br_2CuN_6O_2$ ($M_r = 501.66$): C 28.73%; H 3.62%; N 16.75%; Br 31.86%. Found: C 28.35%; H 3.46%; N 17.03%; Br 31.47%. IR (KBr): 3436m v(N—H), 3336m v(N—H), 3298m, 3188m, 3020w, 2964m, 2847w, 1661s v(C=O), 1594m; v(C=C), 1494w, 1450m, 1429m, 1418m, 1375w, 1325m, 1285m, 1262s, 1230m, 1175m, 1098vs, 1022vs, 957m, 949m, 868w, 801vs, 768m, 759m, 628m cm⁻¹.

S3. Refinement

The hydrogen atoms were included in idealized positions using a riding model, with N—H = 0.88 Å, aromatic C—H = 0.95 Å, methylene C—H = 0.99 Å [U_{iso} (H) = 1.2 U_{eq} (C)] and methyl C—H = 0.98 Å [U_{iso} (H) = 1.5 U_{eq} (C)]. The O—H proton of methanol was freely refined.

Figure 1

The ion-pair of the title compound in the crystal. Thermal ellipsoids represent 50% probability levels. H-atom radii are arbitrary.

Figure 2

Packing diagram of the title compound. Hydrogen bonds: 1 N(1)—H(1NB)···O(3)ⁱ, 2 N(1)—H(1NA)···Br(2), 3 N(4)—H(4NA)···O(3)ⁱⁱ, 4 O(3)—H(1O)···Br(2), 5 N(4)—H(4NB)···Br(2)ⁱⁱⁱ. See Table 1 for details.

Bromidobis[3-(1*H*-pyrazol-1-yl- κN^2)propionamide- κO]copper(II) bromide methanol monosolvate

Crystal data

 $[CuBr(C_6H_9N_3O)_2]Br \cdot CH_4O$ $M_r = 533.73$ Monoclinic, $P2_1/n$ a = 10.5075 (4) Å b = 12.6951 (4) Å c = 15.1551 (7) Å $\beta = 102.821$ (3)° V = 1971.19 (13) Å³ Z = 4

Data collection

Stoe IPDS 2T diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 6.67 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.046, T_{\max} = 0.139$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.079$ S = 1.21 F(000) = 1060 $D_x = 1.798 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 30970 reflections $\theta = 2.0-29.6^{\circ}$ $\mu = 5.19 \text{ mm}^{-1}$ T = 150 KPrism, red $0.40 \times 0.40 \times 0.30 \text{ mm}$

22729 measured reflections 5320 independent reflections 4728 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 29.2^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -14 \rightarrow 14$ $k = -16 \rightarrow 17$ $l = -20 \rightarrow 20$

5320 reflections231 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0324P)^2 + 1.2084P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta ho_{ m max} = 0.74 \ { m e} \ { m \AA}^{-3}$
H atoms treated by a mixture of independent	$\Delta ho_{ m min}$ = -0.70 e Å ⁻³
and constrained refinement	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.8900 (3)	0.6996 (2)	-0.06693 (18)	0.0305 (5)
C2	0.7834 (3)	0.6821 (3)	-0.15080 (18)	0.0370 (6)
H2A	0.8183	0.6990	-0.2047	0.044*
H2B	0.7594	0.6065	-0.1543	0.044*
C3	0.6616 (3)	0.7466 (2)	-0.15415 (18)	0.0336 (6)
H3A	0.6871	0.8199	-0.1361	0.040*
H3B	0.6096	0.7481	-0.2172	0.040*
C4	0.4774 (3)	0.6412 (3)	-0.1195 (2)	0.0391 (7)
H4	0.4395	0.6181	-0.1792	0.047*
C5	0.4364 (3)	0.6148 (2)	-0.0431 (2)	0.0397 (7)
Н5	0.3648	0.5710	-0.0386	0.048*
C6	0.5219 (3)	0.6655 (2)	0.02672 (19)	0.0319 (5)
H6	0.5181	0.6613	0.0887	0.038*
C7	0.6471 (2)	1.0403 (2)	-0.04321 (17)	0.0261 (5)
C8	0.6850 (3)	1.1169 (2)	0.03418 (19)	0.0338 (6)
H8A	0.6095	1.1633	0.0348	0.041*
H8B	0.7567	1.1619	0.0229	0.041*
C9	0.7282 (3)	1.0670 (2)	0.12653 (17)	0.0294 (5)
H9A	0.7269	1.1211	0.1734	0.035*
H9B	0.6652	1.0113	0.1333	0.035*
C10	0.9713 (3)	1.0667 (2)	0.1824 (2)	0.0355 (6)
H10	0.9809	1.1329	0.2126	0.043*
C11	1.0701 (3)	1.0012 (3)	0.1729 (2)	0.0386 (7)
H11	1.1611	1.0120	0.1948	0.046*
C12	1.0095 (3)	0.9150 (2)	0.12412 (19)	0.0330 (6)
H12	1.0537	0.8558	0.1069	0.040*
C13	0.9020 (4)	0.5691 (3)	0.1716 (3)	0.0615 (11)
H13A	0.8351	0.5250	0.1892	0.092*
H13B	0.8811	0.5784	0.1058	0.092*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H13C	0.9044	0.6380	0.2011	0.092*
N1	0.9979 (3)	0.6464 (2)	-0.06237 (19)	0.0463 (7)
H1NA	1.0636	0.6541	-0.0154	0.056*
H1NB	1.0049	0.6030	-0.1063	0.056*
N2	0.5811 (2)	0.70573 (19)	-0.09558 (15)	0.0310 (5)
N3	0.6103 (2)	0.72132 (17)	-0.00452 (14)	0.0268 (4)
N4	0.6262 (2)	1.0830 (2)	-0.12477 (15)	0.0340 (5)
H4NA	0.6005	1.0434	-0.1731	0.041*
H4NB	0.6379	1.1511	-0.1307	0.041*
N5	0.8581 (2)	1.02134 (18)	0.14175 (14)	0.0279 (4)
N6	0.8801 (2)	0.92774 (17)	0.10504 (14)	0.0269 (4)
O1	0.8780 (2)	0.76128 (17)	-0.00574 (13)	0.0347 (4)
O2	0.63174 (19)	0.94471 (15)	-0.03194 (13)	0.0311 (4)
O3	1.0247 (2)	0.51986 (18)	0.19866 (14)	0.0375 (5)
Br1	0.69094 (3)	0.80080 (2)	0.204039 (17)	0.03143 (7)
Br2	1.23867 (3)	0.66180 (2)	0.131810 (19)	0.03514 (8)
Cu1	0.74194 (3)	0.82447 (2)	0.05558 (2)	0.02424 (8)
H1O	1.078 (5)	0.559 (4)	0.184 (3)	0.065 (14)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	U ²³
C1	0.0342 (13)	0.0303 (13)	0.0272 (12)	0.0011 (11)	0.0074 (10)	-0.0035 (10)
C2	0.0414 (15)	0.0441 (17)	0.0247 (12)	0.0063 (13)	0.0054 (11)	-0.0076 (11)
C3	0.0390 (15)	0.0367 (15)	0.0235 (11)	0.0061 (12)	0.0033 (10)	-0.0008 (10)
C4	0.0333 (14)	0.0382 (15)	0.0401 (15)	0.0011 (12)	-0.0040 (12)	-0.0116 (12)
C5	0.0337 (14)	0.0304 (14)	0.0536 (18)	-0.0014 (12)	0.0066 (13)	-0.0055 (13)
C6	0.0340 (13)	0.0264 (13)	0.0349 (13)	0.0019 (11)	0.0066 (11)	0.0021 (10)
C7	0.0242 (11)	0.0241 (11)	0.0289 (11)	0.0065 (9)	0.0034 (9)	0.0009 (9)
C8	0.0427 (15)	0.0227 (12)	0.0331 (13)	0.0043 (11)	0.0020 (11)	-0.0025 (10)
C9	0.0324 (13)	0.0264 (12)	0.0293 (12)	0.0019 (10)	0.0064 (10)	-0.0043 (10)
C10	0.0378 (14)	0.0306 (14)	0.0350 (14)	-0.0056 (12)	0.0011 (11)	-0.0061 (11)
C11	0.0291 (14)	0.0406 (16)	0.0427 (15)	-0.0041 (12)	0.0008 (12)	-0.0059 (13)
C12	0.0283 (13)	0.0360 (14)	0.0331 (13)	0.0015 (11)	0.0038 (10)	-0.0034 (11)
C13	0.065 (2)	0.058 (2)	0.073 (3)	0.027 (2)	0.039 (2)	0.025 (2)
N1	0.0405 (14)	0.0560 (17)	0.0387 (13)	0.0153 (13)	0.0012 (11)	-0.0196 (12)
N2	0.0329 (11)	0.0318 (12)	0.0247 (10)	0.0035 (9)	-0.0010 (8)	-0.0022 (9)
N3	0.0312 (11)	0.0234 (10)	0.0237 (9)	0.0026 (8)	0.0013 (8)	-0.0005 (8)
N4	0.0432 (13)	0.0277 (11)	0.0292 (11)	0.0018 (10)	0.0040 (10)	0.0035 (9)
N5	0.0307 (11)	0.0259 (11)	0.0259 (10)	-0.0003 (9)	0.0034 (8)	-0.0050 (8)
N6	0.0276 (10)	0.0257 (10)	0.0267 (10)	0.0028 (8)	0.0045 (8)	-0.0039 (8)
01	0.0329 (10)	0.0386 (11)	0.0322 (9)	0.0020 (9)	0.0063 (8)	-0.0129 (8)
O2	0.0359 (10)	0.0240 (9)	0.0295 (9)	0.0021 (8)	-0.0008 (7)	0.0014 (7)
O3	0.0475 (13)	0.0313 (11)	0.0350 (10)	0.0007 (9)	0.0118 (9)	0.0026 (8)
Br1	0.03704 (14)	0.03321 (14)	0.02379 (11)	0.00164 (11)	0.00622 (9)	0.00264 (9)
Br2	0.03229 (14)	0.03990 (16)	0.03307 (14)	-0.00045 (11)	0.00691 (10)	0.00324 (11)
Cu1	0.02684 (15)	0.02305 (14)	0.02175 (14)	0.00120 (12)	0.00305 (11)	-0.00200 (10)

Geometric parameters (Å, °)

C1—01	1.241 (3)	С9—Н9В	0.9900
C1—N1	1.309 (4)	C10—N5	1.343 (3)
C1—C2	1.513 (4)	C10-C11	1.363 (5)
C2—C3	1.510 (4)	C10—H10	0.9500
C2—H2A	0.9900	C11—C12	1.393 (4)
C2—H2B	0.9900	C11—H11	0.9500
C3—N2	1.451 (4)	C12—N6	1.336 (3)
С3—НЗА	0.9900	C12—H12	0.9500
С3—Н3В	0.9900	C13—O3	1.410 (4)
C4—N2	1.347 (4)	C13—H13A	0.9800
C4—C5	1.365 (5)	C13—H13B	0.9800
C4—H4	0.9500	C13—H13C	0.9800
C5—C6	1.385 (4)	N1—H1NA	0.8800
С5—Н5	0.9500	N1—H1NB	0.8800
C6—N3	1.336 (4)	N2—N3	1.360 (3)
С6—Н6	0.9500	N3—Cu1	1.975 (2)
C7—O2	1.241 (3)	N4—H4NA	0.8800
C7—N4	1.323 (3)	N4—H4NB	0.8800
С7—С8	1.507 (4)	N5—N6	1.354 (3)
C8—C9	1.511 (4)	N6—Cu1	1.976 (2)
C8—H8A	0.9900	O1—Cu1	2.035 (2)
C8—H8B	0.9900	O2—Cu1	2.179 (2)
C9—N5	1.453 (3)	O3—H1O	0.81 (5)
С9—Н9А	0.9900	Br1—Cu1	2.4443 (4)
01—C1—N1	121.1 (3)	C10—C11—H11	127.3
O1—C1—C2	122.8 (3)	C12—C11—H11	127.3
N1—C1—C2	116.1 (2)	N6-C12-C11	110.1 (3)
C3—C2—C1	114.3 (2)	N6—C12—H12	124.9
C3—C2—H2A	108.7	C11—C12—H12	124.9
C1—C2—H2A	108.7	O3—C13—H13A	109.5
C3—C2—H2B	108.7	O3—C13—H13B	109.5
C1—C2—H2B	108.7	H13A—C13—H13B	109.5
H2A—C2—H2B	107.6	O3—C13—H13C	109.5
N2—C3—C2	113.0 (2)	H13A—C13—H13C	109.5
N2—C3—H3A	109.0	H13B—C13—H13C	109.5
С2—С3—НЗА	109.0	C1—N1—H1NA	120.0
N2—C3—H3B	109.0	C1—N1—H1NB	120.0
С2—С3—Н3В	109.0	H1NA—N1—H1NB	120.0
НЗА—СЗ—НЗВ	107.8	C4—N2—N3	110.4 (2)
N2—C4—C5	108.1 (3)	C4—N2—C3	126.8 (2)
N2—C4—H4	126.0	N3—N2—C3	122.5 (2)
C5—C4—H4	126.0	C6—N3—N2	105.3 (2)
C4—C5—C6	105.1 (3)	C6—N3—Cu1	131.25 (19)
C4—C5—H5	127.5	N2—N3—Cu1	122.79 (18)
С6—С5—Н5	127.5	C7—N4—H4NA	120.0

N3—C6—C5	111.1 (3)	C7—N4—H4NB	120.0
N3—C6—H6	124.4	H4NA—N4—H4NB	120.0
С5—С6—Н6	124.4	C10—N5—N6	110.5 (2)
O2—C7—N4	122.0 (2)	C10—N5—C9	127.4 (2)
O2—C7—C8	122.9 (2)	N6—N5—C9	121.7 (2)
N4—C7—C8	115.0 (2)	C12—N6—N5	106.0 (2)
C7—C8—C9	115.0 (2)	C12—N6—Cu1	128.97 (19)
С7—С8—Н8А	108.5	N5—N6—Cu1	124.08 (17)
С9—С8—Н8А	108.5	C1—O1—Cu1	141.98 (19)
С7—С8—Н8В	108.5	C7—O2—Cu1	134.49 (17)
С9—С8—Н8В	108.5	C13—O3—H1O	107 (3)
H8A—C8—H8B	107.5	N3—Cu1—N6	174.53 (9)
N5-C9-C8	113 1 (2)	N3-Cu1-O1	91 11 (9)
N5-C9-H9A	109.0	N6-Cu1-O1	84 46 (9)
C8-C9-H9A	109.0	N3—Cu1—O2	87 74 (8)
N5-C9-H9B	109.0	N6-Cu1-O2	90 72 (8)
C8 - C9 - H9B	109.0	01-Cu1-02	$109\ 30\ (8)$
$H_{0}A = C_{0} = H_{0}B$	107.8	$N_3 C_{\mu} D_{\mu} B_{r} D_{\mu}$	93 94 (7)
N5_C10_C11	107.9 (3)	N6-Cu1-Br1	91.43(7)
N5 C10 H10	107.9 (3)	$\Omega_1 = C_{11} = Br_1$	91.43(7)
$C_{11} C_{10} H_{10}$	120.0	$O_1 = Cu_1 = Br_1$	135.70 (0)
$C_{10} = C_{10} = C_{10}$	120.0	02—Cui—Bii	110.00 (0)
010-011-012	105.4 (5)		
O1 $C1$ $C2$ $C3$	0.5(4)	C0 N5 N6 C12	173.5(2)
01 - 01 - 02 - 03	0.3(4)	$C_{2} = N_{2} = N_{2} = N_{2} = 0$	1/3.3(2)
N1 - C1 - C2 - C3	-1/8.8(3)	C_{10} N5 N6 C_{21}	1/0.00(19)
C1 = C2 = C3 = N2	-70.5(3)	C_{9} NJ C_{1} C_{1} C_{2}	-16.9(3)
$N_2 - C_4 - C_5 - C_6$	-0.8(3)	NI = CI = OI = CuI	-150.9(3)
C4 - C5 - C6 - N3	0.0(3)	C2-CI-OI-Cui	29.7(5)
02-07-08-09	11.3 (4)	N4-C7-O2-Cu1	136.7(2)
N4-C/-C8-C9	-1/1.4(3)	C8 = C/=O2 = Cul	-46.1 (4)
C/C8C9N5	/4.4 (3)	C6—N3—Cu1—O1	137.5 (2)
N5—C10—C11—C12	0.3 (4)	N2—N3—Cul—Ol	-52.8 (2)
C10—C11—C12—N6	0.0 (4)	C6—N3—Cu1—O2	-113.2 (2)
C5—C4—N2—N3	0.7 (3)	N2—N3—Cu1—O2	56.5 (2)
C5—C4—N2—C3	175.0 (3)	C6—N3—Cu1—Br1	3.5 (2)
C2—C3—N2—C4	-95.8 (3)	N2—N3—Cu1—Br1	173.20 (19)
C2—C3—N2—N3	77.8 (3)	C12—N6—Cu1—O1	-29.6 (2)
C5—C6—N3—N2	-0.2 (3)	N5—N6—Cu1—O1	163.2 (2)
C5—C6—N3—Cu1	170.8 (2)	C12—N6—Cu1—O2	-139.0 (2)
C4—N2—N3—C6	-0.4 (3)	N5—N6—Cu1—O2	53.9 (2)
C3—N2—N3—C6	-174.9 (2)	C12—N6—Cu1—Br1	104.2 (2)
C4—N2—N3—Cu1	-172.32 (19)	N5—N6—Cu1—Br1	-62.93 (19)
C3—N2—N3—Cu1	13.2 (3)	C1—O1—Cu1—N3	12.4 (3)
C11—C10—N5—N6	-0.4 (3)	C1—O1—Cu1—N6	-164.4 (3)
C11-C10-N5-C9	-173.0 (3)	C1	-75.5 (3)
C8—C9—N5—C10	94.8 (3)	C1—O1—Cu1—Br1	109.0 (3)
C8—C9—N5—N6	-77.1 (3)	C7—O2—Cu1—N3	-177.4 (3)
C11—C12—N6—N5	-0.3 (3)	C7—O2—Cu1—N6	-2.6(3)

supporting information

C11—C12—N6—Cu1	-169.2 (2)	C7—O2—Cu1—O1	-87.0 (3)
C10—N5—N6—C12	0.4 (3)	C7—O2—Cu1—Br1	89.4 (3)

Hydrogen-bond geometry (Å, °)

D—H	H···A	$D \cdots A$	D—H…A
0.88	2.07	2.926 (3)	163
0.88	2.56	3.434 (3)	173
0.88	2.09	2.956 (3)	168
0.81 (5)	2.41 (5)	3.215 (3)	175 (5)
0.88	2.71	3.548 (3)	160
	<i>D</i> —H 0.88 0.88 0.88 0.81 (5) 0.88	D—H H…A 0.88 2.07 0.88 2.56 0.88 2.09 0.81 (5) 2.41 (5) 0.88 2.71	DHH···AD···A0.882.072.926 (3)0.882.563.434 (3)0.882.092.956 (3)0.81 (5)2.41 (5)3.215 (3)0.882.713.548 (3)

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) *x*-1/2, -*y*+3/2, *z*-1/2; (iii) -*x*+2, -*y*+2, -*z*.