

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[μ_2 -1,4-bis(imidazol-1-ylmethyl)benzene](μ_4 -3,5,9,11-tetraoxo-4,10diazatetracyclo[5.5.2.0^{2,6}.0^{8,12}]tetradec-13-ene-4,10-diido)disilver(I)]

Yongmei Zhang

School of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning 114000, People's Republic of China Correspondence e-mail: chemzhangym@163.com

Received 4 September 2012; accepted 18 September 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.034; wR factor = 0.094; data-to-parameter ratio = 13.3.

In the title complex, $[Ag_2(C_{12}H_8N_2O_4)(C_{14}H_{14}N_4)]_n$, one Ag^I ion, lying on a twofold rotation axis, is coordinated by two N atoms from two 3,5,9,11-tetraoxo-4,10-diazatetracyclo- $[5.5.2.0^{2,6}.0^{8,12}]$ tetradec-13-ene-4,10-diide (*L*) ligands in a nearly linear arrangement. The other Ag^I ion, lying on an inversion center, is coordinated by two O atoms from two *L* ligands and two N atoms from two 1,4-bis(imidazol-1-ylmeth-yl)benzene ligands in a distorted square-planar geometry. An additional $Ag \cdots Ag$ [3.0119 (3) Å] interaction links the Ag^I ions into a chain along [010]. The two types of ligands have mirror symmetry and connect the Ag^I ions into a layer parallel to (100).

Related literature

For the design and synthesis of coordination polymers, see: Liao *et al.* (2008); Song *et al.* (2012); Wang *et al.* (2009). For the van der Waals radius of the Ag atom, see: Bondi (1964).

Experimental

Crystal data

 $\begin{array}{l} \left[Ag_2(C_{12}H_8N_2O_4)(C_{14}H_{14}N_4) \right] \\ M_r = 698.24 \\ Orthorhombic, Pbcm \\ a = 10.1480 \ (11) \ \text{\AA} \\ b = 11.0016 \ (11) \ \text{\AA} \\ c = 21.183 \ (2) \ \text{\AA} \end{array}$

Data collection

Bruker APEXII CCD
diffractometer12177 measured reflections
2402 independent reflections
1454 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.056$ $R_{int} = 0.056$ $R_{int} = 0.056$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	180 parameters
$wR(F^2) = 0.094$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.58 \text{ e} \text{ \AA}^{-3}$
2402 reflections	$\Delta \rho_{\rm min} = -0.59 \text{ e } \text{\AA}^{-3}$

V = 2365.0 (4) Å³

Mo $K\alpha$ radiation

 $0.27 \times 0.21 \times 0.17 \text{ mm}$

 $\mu = 1.71 \text{ mm}^{-1}$

T = 296 K

Z = 4

 Table 1

 Selected bond lengths (Å).

Ag1-N1	2.078 (4)	Ag2-O2	2.693 (3)
Ag2-N2	2.141 (4)	-	

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics:

metal-organic compounds

XP in *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*.

The author thanks Anshan Normal University, Liaoning, China, for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5293).

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2001). *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Liao, C. Y., Chan, K. T., Chiu, P. L., Chen, C. Y. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973–2978.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877–882.
- Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568–m1569.

supporting information

Acta Cryst. (2012). E68, m1289-m1290 [https://doi.org/10.1107/S1600536812039669]

Poly[[μ_2 -1,4-bis(imidazol-1-ylmethyl)benzene](μ_4 -3,5,9,11-tetraoxo-4,10-diaza-tetracyclo[5.5.2.0^{2,6}.0^{8,12}]tetradec-13-ene-4,10-diido)disilver(I)]

Yongmei Zhang

S1. Comment

Metal-organic frameworks (MOFs) are an emerging class of periodic crystalline solid-state materials constructed from metal ions or polynuclear metal-oxygen clusters and multidentate organic ligands. Recently, chemists have devoted themselves to the design and syntheses of coordination polymers, not only owing to their potential applications in the realm of gas adsorption and separation, catalysis, magnetism, luminescence and host–guest chemistry and *etc*, but also for their aesthetic and often complicated architectures and topologies (Liao *et al.*, 2008; Song *et al.*, 2012; Wang *et al.*, 2009). Bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxydiimide (H₂L), prepared by the ammonolysis of bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxydii structures of possible coordination donors (N and O) to ligate metal atoms. Herein, we report a coordination polymer by simultaneous use of the H₂L ligand and a neutral ligand, 1,4-bis-(imidazol-l-ylmethyl)benzene.

As shown in Fig. 1 and Table 1, the title complex contains two crystallographically unique Ag^I ions. The Ag1 atom, lying on a twofold rotation axis, is coordinated by two N atoms from two 3,5,9,11-tetraoxo-4,10-diazatetracyclo [5.5.2.0^{2.6}.0^{8,12}]tetradec-13-ene-4,10-diido (L_1) ligands in a nearly linear arrangement. The Ag2 atom, lying on an inversion center, is coordinated by two O atoms from two L_1 ligands and two N atoms from two 1,4-bis(imidazol-1-ylmethyl)benzene (L_2) ligands in a distorted square-planar geometry. The Ag. Ag separation [3.0119 (3) Å] is shorter than the sum of van der Waals radii for two silver atoms (3.44 Å) (Bondi, 1964), which indicates relatively strong argentophilicity. The L_1 and L_2 ligands, both have a mirror symmetry, connect the Ag^I ions into a layer structure parallel to (1 0 0) (Fig. 2).

S2. Experimental

A mixture of bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (0.2 mmol, 0.050 g), 1,4-bis(imidazol-l-ylmethyl)benzene (0.2 mmol, 0.048 g), silver nitrate (0.4 mmol, 0.068 g) and H_2O (25 ml) was stirred for ten minutes. Dilute ammonia was dropwised into the mixture until the mixture turned to transparent. Colorless block crystals of the title compound were isolated after evaporation of ammonia.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.98 (CH) and 0.97 (CH₂) Å and with U_{iso} (H) = 1.2 U_{eq} (C).

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, y, 1/2 - z; (ii) x, y, 3/2 - z; (iii) -x, -y, 1 - z.]

Figure 2

View of the layer structure of the title compound.

Poly[[μ_2 -1,4-bis(imidazol-1-ylmethyl)benzene](μ_4 -3,5,9,11-tetraoxo- 4,10-diazatetracyclo[5.5.2.0^{2,6}.0^{8,12}]tetradec-13-ene-4,10-diido)disilver(I)]

Crystal data

 $[Ag_{2}(C_{12}H_{8}N_{2}O_{4})(C_{14}H_{14}N_{4})]$ $M_{r} = 698.24$ Orthorhombic, *Pbcm* Hall symbol: -P 2c 2b a = 10.1480 (11) Å b = 11.0016 (11) Å c = 21.183 (2) Å $V = 2365.0 (4) \text{ Å}^{3}$ Z = 4

Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube F(000) = 1384 $D_x = 1.961 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3256 reflections $\theta = 2.8-25.9^{\circ}$ $\mu = 1.71 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.27 \times 0.21 \times 0.17 \text{ mm}$

Graphite monochromator φ and ω scans

Absorption correction: multi-scan	$R_{\rm int} = 0.056$
(SADABS; Bruker, 2001)	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 1.9^\circ$
$T_{\min} = 0.656, \ T_{\max} = 0.760$	$h = -12 \rightarrow 12$
12177 measured reflections	$k = -6 \rightarrow 13$
2402 independent reflections	$l = -26 \rightarrow 24$
1454 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.094$	neighbouring sites
S = 1.00	H-atom parameters constrained
2402 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0389P)^2 + 3.7137P]$
180 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.58 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.59 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	-0.2448 (5)	0.2484 (5)	0.3711 (2)	0.0310 (10)
C2	-0.2537 (5)	0.1795 (4)	0.3080 (2)	0.0280 (11)
H2	-0.3320	0.1274	0.3076	0.034*
C3	-0.2545 (7)	0.2650 (6)	0.2500	0.0272 (16)
Н3	-0.3315	0.3188	0.2500	0.033*
C4	-0.1301 (8)	0.3340 (7)	0.2500	0.0347 (18)
H4	-0.1280	0.4185	0.2500	0.042*
C5	-0.0208 (7)	0.2669 (7)	0.2500	0.0340 (19)
Н5	0.0633	0.3006	0.2500	0.041*
C6	-0.0445 (7)	0.1334 (7)	0.2500	0.0281 (17)
H6	0.0385	0.0879	0.2500	0.034*
C7	-0.1291 (5)	0.1015 (4)	0.3074 (2)	0.0272 (11)
H7	-0.1521	0.0150	0.3070	0.033*
C8	-0.0604 (5)	0.1346 (5)	0.3690 (2)	0.0301 (12)
С9	0.1964 (5)	0.1716 (5)	0.5666 (2)	0.0318 (13)
Н9	0.1268	0.2226	0.5772	0.038*
C10	0.3079 (5)	0.0219 (5)	0.5312 (3)	0.0331 (13)
H10	0.3296	-0.0512	0.5118	0.040*
C11	0.3947 (5)	0.0980 (5)	0.5586 (3)	0.0352 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H11	0.4853	0.0874	0.5619	0.042*	
C12	0.3719 (5)	0.3029 (5)	0.6131 (2)	0.0289 (11)	
H12A	0.3208	0.3726	0.5994	0.035*	
H12B	0.4625	0.3164	0.6003	0.035*	
C13	0.3669 (4)	0.2965 (4)	0.6840 (2)	0.0236 (10)	
C14	0.3774 (5)	0.1894 (5)	0.7176 (2)	0.0308 (12)	
H14	0.3845	0.1161	0.6960	0.037*	
C15	0.3563 (5)	0.4041 (4)	0.7176 (2)	0.0308 (12)	
H15	0.3490	0.4774	0.6959	0.037*	
N1	-0.1358 (4)	0.2134 (4)	0.40402 (18)	0.0290 (10)	
N2	0.1828 (4)	0.0679 (4)	0.53608 (19)	0.0276 (10)	
N3	0.3223 (4)	0.1942 (4)	0.58061 (18)	0.0267 (9)	
O1	-0.3267 (4)	0.3211 (4)	0.38995 (17)	0.0445 (10)	
O2	0.0466 (3)	0.0946 (3)	0.38487 (16)	0.0346 (9)	
Ag1	-0.12096 (5)	0.2500	0.5000	0.02695 (15)	
Ag2	0.0000	0.0000	0.5000	0.03030 (16)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.030 (2)	0.043 (3)	0.020 (2)	-0.001 (3)	0.005 (2)	-0.005 (3)
C2	0.028 (3)	0.030 (3)	0.026 (3)	-0.005 (2)	-0.001 (2)	0.000(2)
C3	0.029 (4)	0.038 (5)	0.015 (3)	0.014 (4)	0.000	0.000
C4	0.042 (5)	0.027 (4)	0.036 (5)	-0.005 (4)	0.000	0.000
C5	0.030 (4)	0.046 (6)	0.026 (4)	-0.006 (4)	0.000	0.000
C6	0.030 (4)	0.038 (5)	0.017 (4)	0.008 (4)	0.000	0.000
C7	0.035 (3)	0.022 (3)	0.024 (3)	0.000 (2)	-0.001 (2)	0.000 (2)
C8	0.040 (3)	0.035 (3)	0.015 (3)	0.000 (3)	0.001 (2)	0.006 (2)
C9	0.030 (3)	0.035 (3)	0.031 (3)	0.002 (2)	-0.010 (2)	0.001 (2)
C10	0.033 (3)	0.035 (3)	0.032 (3)	-0.005 (2)	0.003 (2)	-0.007(2)
C11	0.020 (3)	0.044 (3)	0.042 (3)	-0.004(2)	0.000 (2)	-0.008(3)
C12	0.033 (3)	0.029 (3)	0.024 (3)	-0.008(2)	-0.008(2)	0.001 (2)
C13	0.018 (2)	0.029 (3)	0.024 (2)	-0.002 (2)	-0.003 (2)	0.000(2)
C14	0.038 (3)	0.023 (3)	0.031 (3)	-0.002 (2)	0.004 (2)	-0.011 (2)
C15	0.041 (3)	0.022 (3)	0.029 (3)	0.004 (2)	0.000 (2)	0.003 (2)
N1	0.032 (2)	0.040 (3)	0.015 (2)	0.0025 (19)	0.0010 (18)	-0.0032 (17)
N2	0.031 (2)	0.029 (2)	0.022 (2)	-0.0052 (19)	-0.0065 (18)	0.0016 (19)
N3	0.030 (2)	0.029 (2)	0.020 (2)	-0.0038 (19)	-0.0018 (19)	-0.0005 (19)
O1	0.036 (2)	0.065 (3)	0.033 (2)	0.016 (2)	0.0056 (18)	-0.014 (2)
O2	0.033 (2)	0.047 (2)	0.0235 (19)	0.0068 (18)	-0.0057 (16)	0.0033 (17)
Ag1	0.0308 (3)	0.0334 (3)	0.0167 (3)	0.000	0.000	-0.0039 (2)
Ag2	0.0293 (3)	0.0300 (3)	0.0316 (3)	-0.0038 (2)	-0.0104 (3)	0.0022 (3)

Geometric parameters (Å, °)

C1—01	1.221 (6)	C9—N3	1.334 (6)
C1—N1	1.363 (6)	С9—Н9	0.9300
C1—C2	1.538 (6)	C10—C11	1.347 (7)

supporting information

C2—C7	1.527 (7)	C10—N2	1.370 (6)
C2—C3	1.548 (6)	C10—H10	0.9300
C2—H2	0.9800	C11—N3	1.370 (6)
C3—C4	1.473 (10)	C11—H11	0.9300
C3—C2 ⁱ	1.548 (6)	C12—N3	1.469 (6)
С3—Н3	0.9800	C12—C13	1.505 (6)
C4—C5	1.333 (10)	C12—H12A	0.9700
C4—H4	0.9300	C12—H12B	0.9700
C5—C6	1.487 (9)	C13—C14	1.381 (7)
С5—Н5	0.9300	C13—C15	1.385 (7)
C6–C7 ⁱ	1.530(6)	C14—C14 ⁱⁱ	1.372 (10)
C6—C7	1 530 (6)	C14—H14	0.9300
С6—Н6	0.9800	$C15-C15^{ii}$	1.373(10)
C7-C8	1.524(7)	C15—H15	0.9300
C7 H7	0.9800		2.078(4)
C_{1}^{2}	1 218 (6)	$Ag_1 = N_1$	2.078(4)
$C_{0} = 02$	1.218(0) 1.274(6)	Ag2 - N2	2.141(4)
Co-N1	1.374 (0)	Ag2—O2	2.095 (3)
C9—N2	1.319 (6)	Ag1—Ag2	3.0119 (3)
01—C1—N1	124.7 (4)	N2—C10—H10	124.9
Q1—C1—C2	124.5 (5)	C10—C11—N3	106.0 (5)
N1 - C1 - C2	110.7 (4)	C10—C11—H11	127.0
C7-C2-C1	103 6 (4)	N3-C11-H11	127.0
C7 - C2 - C3	109.8(4)	$N_3 - C_{12} - C_{13}$	1147(4)
$C_1 C_2 C_3$	103.0(4)	$N_3 C_{12} H_{12A}$	108.6
$C_{1} = C_{2} = C_{3}$	110.1	C_{13} C_{12} H_{12A}	108.6
$C_1 = C_2 = H_2$	110.1	N2 C12 H12P	108.0
$C_1 = C_2 = H_2$	110.1	$N_{3} = C_{12} = H_{12}B$	108.0
$C_3 = C_2 = H_2$	110.1		108.0
$C4 - C3 - C2^{-1}$	108.0 (4)	H12A - C12 - H12B	107.0
C4 - C3 - C2	108.0 (4)		118.1 (5)
$C_2 - C_3 - C_2$	105.1 (5)	C14-C13-C12	123.5 (5)
С4—С3—Н3	111.8		118.4 (4)
C2 ¹ —C3—H3	111.8	C14 ⁿ —C14—C13	121.0 (3)
С2—С3—Н3	111.8	C14 ⁿ —C14—H14	119.5
C5—C4—C3	115.3 (7)	C13—C14—H14	119.5
С5—С4—Н4	122.3	C15 ⁱⁱ —C15—C13	120.9 (3)
C3—C4—H4	122.3	C15 ⁱⁱ —C15—H15	119.6
C4—C5—C6	114.3 (7)	C13—C15—H15	119.6
C4—C5—H5	122.8	C1—N1—C8	110.7 (4)
С6—С5—Н5	122.8	C1—N1—Ag1	120.4 (3)
C5-C6-C7 ⁱ	108.5 (4)	C8—N1—Ag1	127.6 (3)
C5—C6—C7	108.5 (4)	C9—N2—C10	105.0 (4)
C7 ⁱ C6C7	105.4 (6)	C9—N2—Ag2	124.6 (3)
С5—С6—Н6	111.4	C10—N2—Ag2	130.3 (3)
C7 ⁱ —C6—H6	111.4	C9—N3—C11	107.1 (4)
С7—С6—Н6	111.4	C9—N3—C12	125.8 (4)
C8—C7—C2	103.8 (4)	C11—N3—C12	127.2 (4)
C8—C7—C6	111.7 (4)	N1—Ag1—N1 ⁱⁱⁱ	171.7 (2)
		0	

С2—С7—С6	110.0 (4)	N1—Ag1—Ag2 ⁱⁱⁱ	101.91 (12)
С8—С7—Н7	110.4	N1 ⁱⁱⁱ —Ag1—Ag2 ⁱⁱⁱ	81.53 (11)
С2—С7—Н7	110.4	N1—Ag1—Ag2	81.53 (11)
С6—С7—Н7	110.4	N1 ⁱⁱⁱ —Ag1—Ag2	101.91 (11)
O2—C8—N1	125.1 (5)	Ag2 ⁱⁱⁱ —Ag1—Ag2	131.898 (18)
O2—C8—C7	123.9 (5)	N2—Ag2—N2 ^{iv}	180.00 (11)
N1—C8—C7	110.9 (4)	N2—Ag2—Ag1 ^{iv}	88.01 (11)
N2—C9—N3	111.7 (5)	N2 ^{iv} —Ag2—Ag1 ^{iv}	91.99 (11)
N2—C9—H9	124.1	N2—Ag2—Ag1	91.99 (11)
N3—C9—H9	124.1	N2 ^{iv} —Ag2—Ag1	88.01 (11)
C11—C10—N2	110.1 (5)	N2—Ag2—O2	92.08 (13)
C11—C10—H10	124.9	O2—Ag2—N2 ^{iv}	87.92 (13)

Symmetry codes: (i) *x*, *y*, -*z*+1/2; (ii) *x*, *y*, -*z*+3/2; (iii) *x*, -*y*+1/2, -*z*+1; (iv) -*x*, -*y*, -*z*+1.