Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[μ_3 -aqua-aqua(μ_3 -3,5-dinitrobenzoato- κO^1 : O^3 : O^5)caesium]

Graham Smith

Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia Correspondence e-mail: g.smith@qut.edu.au

Received 21 August 2012; accepted 28 August 2012

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.048; data-to-parameter ratio = 14.8.

In the structure of the title complex, $[Cs(C_7H_3N_2O_6)(H_2O)_2]_n$, the Cs salt of 3,5-dinitrobenzoic acid, the metal complex centres have have irregular CsO_8 coordination, comprising two water molecules (one triply bridging and the other monodentate) and four O-atom donors from two nitro groups and one bridging carboxylate O-atom donor from the ligand. Intra-unit $O-H\cdots O$ hydrogen-bonding interactions involving both water molecules are observed in the threedimensional polymeric complex structure.

Related literature

For examples of structures of alkali metal complexes with 3,5dinitrobenzoic acid, see: Yang & Ng (2007) (Li, Na); Tiekink *et al.* (1990); Jones *et al.* (2005); Madej *et al.* (2007) (Na); Miao & Fan (2011); Miao *et al.* (2011) (Rb). For examples of Cs complexes with nitrobenzoic acids, see: Smith & Wermuth (2011*a*,*b*).

Crystal data $[Cs(C_7H_3N_2O_6)(H_2O)_2]$ $M_r = 380.06$ Monoclinic, $P2_1/n$

a = 15.1249 (5) Åb = 4.6223 (1) Åc = 17.1024 (6) Å $\beta = 107.782 \ (4)^{\circ}$ $V = 1138.54 \ (7) \ Å^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Oxford Diffraction Gemini-S CCDdetector diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2012) $T_{\min} = 0.792, T_{\max} = 0.980$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.048$ S = 1.052652 reflections 179 parameters $\mu = 3.29 \text{ mm}^{-1}$ T = 200 K $0.28 \times 0.15 \times 0.06 \text{ mm}$

metal-organic compounds

7596 measured reflections 2652 independent reflections 2336 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{\rm max}=0.47~{\rm e}~{\rm \AA}^{-3}\\ &\Delta\rho_{\rm min}=-0.56~{\rm e}~{\rm \AA}^{-3} \end{split}$$

Table 1 Selected bond lengths (Å).

Cs1 - O1W	3.087 (2)	$Cs1 - O1W^{ii}$	3.261 (2)
Cs1 - O2W	3.282 (2)	Cs1-O32 ⁱⁱⁱ	3.244 (2)
Cs1-O12	3.1751 (16)	$Cs1 - O1W^{iv}$	3.346 (2)
Cs1–O12 ⁱ	3.1120 (17)	$Cs1 - O52^{v}$	3.271 (2)
	4 (**)		. 3 . 1 . 3 (1)

Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) -x + 1, -y, -z + 2; (v) $x + \frac{1}{2}, -y - \frac{1}{2}, z + \frac{1}{2}$.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H11W···O2W	0.80 (4)	1.98 (4)	2.734 (3)	159 (3)
$O1W-H12W\cdots O12^{iv}$	0.83 (4)	2.25 (4)	3.016 (3)	155 (4)
$O2W-H21WO11^{vi}$	0.83 (4)	1.94 (4)	2.764 (3)	174 (3)
$O2W - H22W \cdots O11^{vii}$	0.85 (4)	1.96 (4)	2.797 (3)	168 (3)
Symmetry codes: (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.	-x + 1, -y, -	z + 2; (vi)	-x+1, -y+1,	-z + 2; (vii)

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) within *WinGX* (Farrugia, 1999); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5289).

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Jones, H. P., Gillon, A. L. & Davey, R. J. (2005). Acta Cryst. E61, m1131m1132.

Madej, A., Oleksin, B. J. & Śliwiński, J. (2007). Pol. J. Chem. 81, 1201-1218.

- Miao, Y. & Fan, T. (2011). Acta Cryst. E67, m1040.
- Miao, Y., Zhang, X. & Liu, C. (2011). Acta Cryst. E67, m1002.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G. & Wermuth, U. D. (2011a). J. Chem. Crystallogr. 41, 688-692.
- Smith, G. & Wermuth, U. D. (2011b). Acta Cryst. E67, m1047-m1048.

(Cs SS	0,- <u>N</u> , Q		2
	<u>کنب (</u>	20	, ~~OH₂	0
	\square	0	Cs	N O
N N		O'H		OH ₂
	~	Cs Cs	5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Cs

Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Tiekink, E. R. T., Hundal, M. S., Sood, G., Kapoor, P. & Poonia, N. S. (1990). Z. Kristallogr. 192, 103–109.

Yang, G. & Ng, S. W. (2007). Cryst. Res. Technol. 42, 201–206.

supporting information

Acta Cryst. (2012). E68, m1241–m1242 [https://doi.org/10.1107/S1600536812037130] Poly[μ_3 -aqua-aqua(μ_3 -3,5-dinitrobenzoato- $\kappa O^1:O^3:O^5$)caesium]

Graham Smith

S1. Comment

3,5-Dinitrobenzoic acid (DNBA) has been a popular ligand used alone or in mixed-ligand applications for metal complexation and the structures of a large number of its complexes have been reported. With the alkali metals the structures of the complex salts with Li and Na (Yang & Ng, 2007; Jones *et al.*, 2005): the complex salt adduct with Na (Tiekink *et al.*, 1990; Madej *et al.*, 2007) and the Rb complex salt and salt adduct (Miao & Fan, 2011; Miao *et al.*, 2011) are known but the structure of the Cs complex salt has not been reported. The reaction of 3,5-dinitrobenzoic acid with caesium hydroxide in aqueous ethanol gave crystals of the title compound $[Cs(C_7H_3N_2O_6)(H_2O)_2]_n$ and the structure is reported here. In the Rb and Cs complexes with the nitro-substituted aromatic carboxylic acids, expanded metal coordination spheres together with polymeric structures are common, in which ligands are bridging, *e.g.* anhydrous rubidium 3,5-dinitrobenzoate (8-coordinate) (Miao & Fan, 2011); tetracaesium bis(5-nitroisophthalate) heptahydrate (6- and 8-coordinate) (Smith & Wermuth, 2011*a*) and caesium bis(2-nitroanthranilate) dihydrate (7- and 9-coordinate) (Smith & Wermuth, 2011*b*).

In the structure of the title compound the CsO₈ complex unit (Fig. 1) is irregular 8-coordinate [Cs—O range, 3.087 (2)– 3.346 (2) Å] (Table 1), comprising two water molecules (one triply bridging, the other monodentate) and four O-donors from two nitro groups and one bridging carboxyl-O donor group from the ligand. In the three-dimensional polymeric complex structure (Fig. 2), the rings of the DNBA ligands layer down the short *b* axis of the unit cell with a ring centroid separation of 4.6223 (1) Å (the *b* cell dimension) (Fig. 3). Present also are intra-polymer O—H…O hydrogen-bonding interactions involving both water molecules (Table 2).

S2. Experimental

The title compound was synthesized by heating together under reflux for 10 minutes, 0.5 mmol of caesium hydroxide and 0.5 mmol of 3,5-dinitrobenzoic acid in 20 ml of 10% ethanol–water. Room temperature evaporation of the solution to incipient dryness gave yellow needle crystals of the title complex from which a specimen was cleaved for the X-ray analysis.

S3. Refinement

Hydrogen atoms of the coordinated water molecules were located in a difference-Fourier synthesis and both positional and isotropic displacement parameters were allowed to refine. Other H-atoms were included at calculated positions and were allowed to ride, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

The molecular configuration and atom-numbering scheme for the title compound, with non-H atoms drawn as 50% probability ellipsoids. For symmetry codes: see Table 1.

A section of the three-dimensional coordination polymer showing inter-unit Cs…Cs associations and 30% probability ellipsoids.

Figure 3

The packing in the unit cell viewed down the the *b* axial direction showing intra-unit hydrogen-bonding associations as dashed lines. Non-interactive H atoms are omitted. For symmetry codes, see Fig. 1 and Table 2.

Poly[μ_3 -aqua-aqua(μ_3 -3,5-dinitrobenzoato- κO^1 : O^3 : O^5)caesium]

Crystal data	
$[Cs(C_7H_3N_2O_6)(H_2O)_2]$ $M_r = 380.06$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 15.1249 (5) Å b = 4.6223 (1) Å c = 17.1024 (6) Å $\beta = 107.782$ (4)° V = 1138.54 (7) Å ³ 7 = 4	F(000) = 728 $D_x = 2.217 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 3275 reflections $\theta = 3.2-28.8^{\circ}$ $\mu = 3.29 \text{ mm}^{-1}$ T = 200 K Needle, yellow $0.28 \times 0.15 \times 0.06 \text{ mm}$
<i>Z</i> = 4 <i>Data collection</i>	
Oxford Diffraction Gemini-S CCD-detector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator Detector resolution: 16.077 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2012) $T_{min} = 0.792, T_{max} = 0.980$	7596 measured reflections 2652 independent reflections 2336 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 28.9^{\circ}, \ \theta_{min} = 3.2^{\circ}$ $h = -20 \rightarrow 20$ $k = -6 \rightarrow 5$ $l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.048$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
2652 reflections	and constrained refinement
179 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0172P)^2]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.47 \; { m e} \; { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cs1	0.63127 (1)	0.11431 (3)	0.94980 (1)	0.0232 (1)
O1W	0.57824 (16)	-0.3598 (5)	1.05448 (13)	0.0315 (7)
O2W	0.69998 (16)	0.0306 (5)	1.14991 (13)	0.0311 (7)
O11	0.37491 (13)	0.6190 (4)	0.75558 (11)	0.0278 (6)
O12	0.52278 (14)	0.6236 (3)	0.83580 (11)	0.0266 (6)
O31	0.74660 (14)	0.3113 (4)	0.68972 (12)	0.0315 (6)
O32	0.71260 (15)	-0.0756 (4)	0.61600 (12)	0.0351 (7)
O51	0.39421 (16)	-0.3890 (4)	0.51426 (12)	0.0351 (7)
O52	0.28880 (15)	-0.1482 (4)	0.54804 (12)	0.0381 (7)
N3	0.69218 (16)	0.1222 (4)	0.65482 (13)	0.0234 (7)
N5	0.36953 (17)	-0.2001 (5)	0.55368 (12)	0.0246 (7)
C1	0.48439 (18)	0.3386 (5)	0.71545 (14)	0.0169 (7)
C2	0.57543 (18)	0.3203 (5)	0.71383 (14)	0.0177 (7)
C3	0.59685 (18)	0.1317 (5)	0.65956 (15)	0.0186 (7)
C4	0.53156 (19)	-0.0458 (5)	0.60715 (14)	0.0191 (7)
C5	0.44224 (19)	-0.0198 (5)	0.60976 (14)	0.0187 (7)
C6	0.41608 (18)	0.1685 (5)	0.66192 (14)	0.0187 (7)
C11	0.45850 (19)	0.5455 (5)	0.77413 (15)	0.0186 (7)
H2	0.62150	0.43370	0.74890	0.0210*
H4	0.54740	-0.17570	0.57210	0.0230*
H6	0.35450	0.18100	0.66120	0.0220*
H11W	0.616 (3)	-0.280 (7)	1.091 (2)	0.038 (10)*
H12W	0.559 (3)	-0.478 (7)	1.081 (2)	0.055 (12)*
H21W	0.677 (3)	0.124 (6)	1.180 (2)	0.052 (12)*
H22W	0.750 (3)	-0.041 (6)	1.1818 (19)	0.037 (9)*

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cs1	0.0226 (1)	0.0231 (1)	0.0235 (1)	-0.0002 (1)	0.0063 (1)	0.0030(1)
O1W	0.0308 (13)	0.0405 (12)	0.0214 (10)	-0.0117 (10)	0.0053 (9)	0.0000 (10)
O2W	0.0259 (12)	0.0355 (11)	0.0284 (11)	0.0046 (10)	0.0032 (10)	-0.0094 (10)
O11	0.0174 (10)	0.0373 (11)	0.0279 (10)	0.0052 (8)	0.0059 (8)	-0.0072 (8)
O12	0.0229 (11)	0.0330 (10)	0.0210 (9)	-0.0005 (8)	0.0023 (8)	-0.0092 (8)
O31	0.0204 (11)	0.0385 (11)	0.0356 (11)	-0.0040 (9)	0.0084 (9)	-0.0042 (9)
O32	0.0310 (12)	0.0442 (12)	0.0324 (11)	0.0130 (9)	0.0130 (10)	-0.0079 (9)
O51	0.0492 (15)	0.0248 (10)	0.0266 (10)	-0.0040 (9)	0.0045 (10)	-0.0093 (8)
O52	0.0252 (12)	0.0548 (13)	0.0342 (11)	-0.0143 (10)	0.0089 (9)	-0.0132 (10)
N3	0.0223 (13)	0.0294 (12)	0.0180 (11)	0.0075 (10)	0.0055 (9)	0.0042 (9)
N5	0.0304 (15)	0.0246 (11)	0.0169 (11)	-0.0075 (10)	0.0044 (10)	-0.0012 (9)
C1	0.0203 (14)	0.0179 (11)	0.0128 (11)	-0.0002 (10)	0.0055 (10)	0.0013 (9)
C2	0.0171 (13)	0.0182 (11)	0.0161 (12)	-0.0004 (10)	0.0024 (10)	0.0025 (10)
C3	0.0188 (14)	0.0198 (12)	0.0178 (12)	0.0039 (10)	0.0067 (10)	0.0057 (10)
C4	0.0278 (15)	0.0153 (11)	0.0141 (12)	0.0013 (10)	0.0063 (10)	-0.0001 (9)
C5	0.0244 (15)	0.0175 (11)	0.0130 (11)	-0.0039 (11)	0.0039 (10)	-0.0005 (10)
C6	0.0197 (14)	0.0207 (12)	0.0152 (11)	-0.0023 (10)	0.0048 (10)	0.0034 (10)
C11	0.0220 (14)	0.0192 (12)	0.0168 (12)	-0.0014 (10)	0.0091 (10)	0.0022 (10)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cs1—O1W	3.087 (2)	O1W—H11W	0.80 (4)	
Cs1—O2W	3.282 (2)	O2W—H21W	0.83 (4)	
Cs1-012	3.1751 (16)	O2W—H22W	0.85 (4)	
Cs1—O12 ⁱ	3.1120 (17)	N3—C3	1.469 (4)	
Cs1—O1W ⁱⁱ	3.261 (2)	N5—C5	1.476 (3)	
Cs1—O32 ⁱⁱⁱ	3.244 (2)	C1—C2	1.388 (4)	
Cs1—O1W ^{iv}	3.346 (2)	C1—C6	1.395 (3)	
Cs1—O52 ^v	3.271 (2)	C1—C11	1.522 (3)	
O11—C11	1.253 (4)	C2—C3	1.382 (3)	
O12—C11	1.250 (3)	C3—C4	1.382 (4)	
O31—N3	1.224 (3)	C4—C5	1.371 (4)	
O32—N3	1.224 (3)	C5—C6	1.388 (3)	
O51—N5	1.229 (3)	C2—H2	0.9300	
O52—N5	1.219 (4)	C4—H4	0.9300	
O1W—H12W	0.82 (4)	C6—H6	0.9300	
01W—Cs1— $02W$	50 74 (6)	H11W—01W—H12W	100 (4)	
01W - Cs1 - 012	134.87 (6)	$Cs1^i - O1W - H11W$	123 (3)	
$01W - Cs1 - 012^{i}$	70.44 (5)	$Cs1^{iv}$ $O1W$ $H11W$	108 (3)	
$O1W$ — $Cs1$ — $O1W^{ii}$	93.43 (6)	$Cs1^{i}$ — $O1W$ — $H12W$	90 (3)	
$01W$ —Cs1— 032^{iii}	149.39 (6)	$Cs1^{iv}$ — $O1W$ — $H12W$	75 (3)	
$O1W$ — $Cs1$ — $O1W^{iv}$	80.87 (6)	Cs1-O1W-H11W	83 (2)	
$01W - Cs1 - 052^{v}$	60.79 (6)	H21W—O2W—H22W	105 (3)	
O2W—Cs1—O12	131.87 (5)	Cs1—O2W—H22W	131 (2)	

O2W-Cs1-O12 ⁱ	120.39 (5)	Cs1—O2W—H21W	122 (2)
O1W ⁱⁱ —Cs1—O2W	64.41 (6)	O32—N3—C3	117.8 (2)
O2W—Cs1—O32 ⁱⁱⁱ	112.44 (6)	O31—N3—C3	118.5 (2)
O1W ^{iv} —Cs1—O2W	93.38 (6)	O31—N3—O32	123.7 (3)
$O2W$ —Cs1— $O52^{v}$	55.78 (6)	051—N5—052	124.1 (2)
$012 - Cs1 - 012^{i}$	94 64 (4)	051—N5—C5	117.8(2)
$01W^{ii}$ —Cs1—O12	67 47 (5)	052 - N5 - C5	117.0(2) 118.0(2)
$012 - Cs1 - 032^{iii}$	75 75 (5)	C6-C1-C11	110.0(2) 119.9(2)
012^{i} 032^{i}	55.02 (5)	$C_2 - C_1 - C_6$	119.5(2)
$012 - C_{\rm S1} - 052^{\rm V}$	164 29 (6)	$C_2 - C_1 - C_{11}$	119.5(2) 120.5(2)
012 - 031 - 032	104.29(0) 135.75(6)	$C_2 = C_1 = C_1^2$	120.3(2)
012^{i} Cs1 022 ⁱⁱⁱ	133.75(0) 113.00(5)	$C_1 - C_2 - C_3$	119.3(2) 122.8(3)
O12 - Cs1 - O32	115.90 (5) 85.25 (5)	$C_2 = C_3 = C_4$	122.8(3)
$O12i$ $C_{2}1$ $O52y$	83.33(3)	$N_{3} = C_{3} = C_{4}$	119.4(2)
012 - Cs1 - 032	90.21 (3)	$N_{3} = C_{3} = C_{4}$	117.7(2)
$01W^{ii} = C_{1} = 0.1W^{ii}$	100.85 (5)	$C_3 - C_4 - C_5$	116.3 (2)
OIW^{ii} CsI OIW^{ii}	50.88 (6)	C4—C5—C6	123.6 (2)
$O1W^n$ —Cs1—O52 ^v	118.15 (5)	N5—C5—C6	118.0 (3)
$O1W^{iv}$ —Cs1—O32 ⁱⁱⁱ	128.87 (5)	N5—C5—C4	118.4 (2)
$O32^{m}$ — $Cs1$ — $O52^{v}$	88.62 (5)	C1—C6—C5	118.4 (3)
$O1W^{iv}$ —Cs1—O52 ^v	140.47 (5)	011—C11—O12	126.9 (2)
Cs1—O1W—Cs1 ⁱ	93.43 (6)	011—C11—C1	116.5 (2)
Cs1—O1W—Cs1 ^{iv}	99.13 (6)	O12—C11—C1	116.6 (2)
Cs1 ⁱ —O1W—Cs1 ^{iv}	129.12 (7)	C1—C2—H2	120.00
Cs1—O12—C11	115.28 (13)	С3—С2—Н2	120.00
Cs1—O12—Cs1 ⁱⁱ	94.64 (5)	С3—С4—Н4	122.00
Cs1 ⁱⁱ —O12—C11	149.86 (14)	C5—C4—H4	122.00
Cs1 ^{vi} —O32—N3	148.16 (18)	C1—C6—H6	121.00
Cs1 ^{vii} —O52—N5	117.78 (15)	С5—С6—Н6	121.00
Cs1—O1W—H12W	174 (3)		
O2W—Cs1—O1W—Cs1 ⁱ	-127.44(9)	$O1W$ —Cs1—O1 W^{iv} —Cs1 iv	0.00 (6)
O2W—Cs1—O1W—Cs1 ^{iv}	102.04 (8)	O2W—Cs1—O1W ^{iv} —Cs1 ^{iv}	-49.33 (6)
012—Cs1—01W—Cs1 ⁱ	118.81 (6)	$O12$ — $Cs1$ — $O1W^{iv}$ — $Cs1^{iv}$	169.89 (8)
012—Cs1—O1W—Cs1 ^{iv}	-11.71(9)	$O1W$ — $Cs1$ — $O52^v$ — $N5^v$	-167.08(18)
012^{i} Cs1 $-01W$ Cs1 ⁱ	42.25 (5)	$02W - Cs1 - 052^{v} - N5^{v}$	-106.86(18)
012^{i} Cs1 010^{i} Cs1	-88.27(6)	$C_{1} = 012 = C_{11} = 011$	122.9(2)
012^{ii} C_{s1} $01W$ C_{s1}^{ii}	179.98 (9)	$C_{s1} = 012 = C_{11} = C_{11}$	-570(3)
$O1W^{ii}$ Cs1 $O1W$ Cs1	19.98 (5)	$C_{s1}^{ii} = 012$ C11 011	-49.7(5)
O_{22}^{iii} C_{s1} O_{1W} C_{s1}^{ii}	-61.86(12)	$C_{s1}^{ii} = 012 - 011 - 011$	+9.7(3)
$O_{32} = C_{31} = O_1 W = C_{31}$	167.61.(7)	$C_{s1} = 0.12 = 0.11 = 0.11$	-0.6(4)
O_{32} C_{31} O_{1W} C_{31}	107.01(7)	$C_{S1} = 0.052 = 0.051$	-0.0(4)
O1Wiy = Cs1 = O1W = Cs1	130.33(0)	$C_{S1} = 0.52 = N_{5} = 0.51$	1/9.48 (19)
OIW = CSI = OIW = CSI	-0.02(12)	$C_{S1} = 0.52 = N_{5} = 0.51$	12.2 (3)
052° Cs1 $-01W$ Cs1 ¹	-59.47 (6)	$Cs1^{vii}$ — $O52$ — $N5$ — $C5$	-169.48 (15)
$U52^{\circ}$ — $Cs1$ — $U1W$ — $Cs1^{\circ}$	1/0.01 (8)	U_{31} N_{3} C_{3} C_{2}	-11.0 (3)
01w—Cs1—012—C11	-63.1 (2)	031—N3—C3—C4	167.3 (2)
O1W—Cs1—O12—Cs1 ⁱⁱ	113.15 (7)	O32—N3—C3—C2	169.0 (2)
O2W—Cs1—O12—C11	-135.23 (18)	O32—N3—C3—C4	-12.7 (3)
O2W—Cs1—O12—Cs1 ⁱⁱ	41.03 (9)	O51—N5—C5—C4	8.4 (3)

3.7 (2)	O51—N5—C5—C6	-172.0 (2)
-180.00 (7)	O52—N5—C5—C4	-170.0 (2)
-134.4 (2)	O52—N5—C5—C6	9.6 (3)
41.90 (6)	C6—C1—C2—C3	-0.5 (3)
117.2 (2)	C11—C1—C2—C3	-179.6 (2)
-66.50 (5)	C2-C1-C6-C5	1.5 (3)
-77.3 (2)	C11—C1—C6—C5	-179.4 (2)
98.99 (7)	C2-C1-C11-O11	158.1 (2)
-43.76 (6)	C2-C1-C11-O12	-22.1 (3)
129.5 (4)	C6-C1-C11-O11	-21.0 (3)
-34.52 (8)	C6-C1-C11-O12	158.9 (2)
138.7 (4)	C1—C2—C3—N3	177.0 (2)
180.00 (7)	C1—C2—C3—C4	-1.2 (4)
-6.8 (4)	N3—C3—C4—C5	-176.4 (2)
179.98 (9)	C2—C3—C4—C5	1.9 (4)
137.03 (8)	C3—C4—C5—N5	178.7 (2)
-42.25 (5)	C3—C4—C5—C6	-0.9 (4)
-174.4 (3)	N5-C5-C6-C1	179.7 (2)
-124.7 (3)	C4—C5—C6—C1	-0.8 (4)
5.1 (3)		
	3.7 (2) -180.00 (7) -134.4 (2) 41.90 (6) 117.2 (2) -66.50 (5) -77.3 (2) 98.99 (7) -43.76 (6) 129.5 (4) -34.52 (8) 138.7 (4) 180.00 (7) -6.8 (4) 179.98 (9) 137.03 (8) -42.25 (5) -174.4 (3) -124.7 (3) 5.1 (3)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*, *y*+1, *z*; (iii) -*x*+3/2, *y*+1/2, -*z*+3/2; (iv) -*x*+1, -*y*, -*z*+2; (v) *x*+1/2, -*y*-1/2, *z*+1/2; (vi) -*x*+3/2, *y*-1/2, -*z*+3/2; (vii) *x*-1/2, -*y*-1/2, *z*+1/2; (vi) -*x*+3/2, *y*-1/2, -*z*+3/2; (vii)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
O1 <i>W</i> —H11 <i>W</i> ···O2 <i>W</i>	0.80 (4)	1.98 (4)	2.734 (3)	159 (3)
O1 <i>W</i> —H12 <i>W</i> ···O12 ^{iv}	0.83 (4)	2.25 (4)	3.016 (3)	155 (4)
O2W—H21W···O11 ^{viii}	0.83 (4)	1.94 (4)	2.764 (3)	174 (3)
O2 <i>W</i> —H22 <i>W</i> ···O11 ^{ix}	0.85 (4)	1.96 (4)	2.797 (3)	168 (3)

Symmetry codes: (iv) -*x*+1, -*y*, -*z*+2; (viii) -*x*+1, -*y*+1, -*z*+2; (ix) *x*+1/2, -*y*+1/2, *z*+1/2.