

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Iodido[5-methyl-1*H*-benzimidazole-2(3*H*)thione-κS]bis(triphenylphosphane-κ*P*)copper(I) methanol monosolvate

Yu-Han Jiang,^a Qi-Ming Qiu,^a Rui-Xia Jiang,^b Xu Huang^a and Qiong-Hua Jin^a*

^aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and ^bQingdao Hygain Chemical (Group) Co. Ltd, Qingdao 266044, People's Republic of China Correspondence e-mail: jinqh204@163.com

Received 2 September 2012; accepted 13 September 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.039; *wR* factor = 0.088; data-to-parameter ratio = 15.7.

In the title compound, $[CuI(C_8H_8N_2S)(C_{18}H_{15}P)_2]\cdot CH_3OH$, the coordination environment around the Cu^I atom is distorted tetrahedral, defined by two P atoms of two triphenylphosphane ligands, one S atom of a 5-methyl-1*H*benzimidazole-2(3*H*)-thione ligand and one I atom. The complex molecules and the methanol solvent molecules are connected *via* N-H···O and O-H···I hydrogen bonds, forming a chain along [010]. An intramolecular N-H···I hydrogen bond is also observed.

Related literature

For the structures and properties of transition metal complexes with phosphanes, see: Baxter *et al.* (1994); Kita-gawa *et al.* (1995); Lewis *et al.* (1996). For complexes with a 2-mercapto-5-methylbenzimidazole ligand, see: Ozturk *et al.* (2009); Schneider *et al.* (2008). For related structures, see: Aslanidis *et al.* (1993); Li *et al.* (2004); Lobana *et al.* (2005).

Experimental

 $\begin{array}{ll} Crystal \ data \\ [CuI(C_8H_8N_2S)(C_{18}H_{15}P)_2] \cdot CH_4O & V = 4263.8 \ (5) \ \text{\AA}^3 \\ M_r = 911.27 & Z = 4 \\ \text{Monoclinic, } P2_1/c & \text{Mo } K\alpha \ radiation \\ a = 15.6081 \ (11) \ \text{\AA} & \mu = 1.40 \ \text{mm}^{-1} \\ b = 10.5938 \ (8) \ \text{\AA} & T = 298 \ \text{K} \\ c = 25.976 \ (2) \ \text{\AA} & 0.43 \times 0.38 \times 0.35 \ \text{mm} \\ \beta = 96.919 \ (1)^{\circ} \end{array}$

 $R_{\rm int} = 0.037$

20808 measured reflections

7504 independent reflections

5465 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{min} = 0.585, T_{max} = 0.641$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	478 parameters
$wR(F^2) = 0.088$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.75 \ {\rm e} \ {\rm \AA}^{-3}$
7504 reflections	$\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^i$	0.86	1.97	2.755 (7)	152
$N2-H2\cdots I1$	0.86	2.80	3.539 (3)	145
$O1-H1A\cdots I1$	0.82	2.67	3.469 (5)	164

Symmetry code: (i) x, y + 1, z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (grant No. 21171119), the National High Technology Research and Development Program of China (863 Program) (2012 A A063201), Beijing Personnel Bureau, the National Keystone Basic Research Program (973 Program) (grant Nos. 2007CB310408 and 2006CB302901) and and the Committee of Education of the Beijing Foundation of China (grant No. KM201210028020).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2586).

References

- Aslanidis, P., Hadjikakou, S. K., Karagiannidis, P., Gdaniec, M. & Kosturkiewicz, Z. (1993). *Polyhedron*, **12**, 2221–2226.
- Baxter, P., Lehn, J. M., Fischer, J. & Youinou, M. T. (1994). Angew. Chem. Int. Ed. Engl. 33, 2284–2287.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kitagawa, S., Kondo, M., Kawata, S., Wada, S., Maekawa, M. & Munakata, M. (1995). *Inorg. Chem.* 34, 1455–1465.
- Lewis, J. S., Zweit, J., Dearling, J. L. J., Rooney, B. C. & Blower, P. J. (1996). *Chem. Commun.* pp. 1093–1094.
- Li, D., Luo, Y.-F., Wu, T. & Ng, S. W. (2004). Acta Cryst. E60, m726-m727.
- Lobana, T. S., Rekha, Sidhu, B.S., Castineiras, A., Bermejo, E. & Nishioka, T. (2005). J. Coord. Chem. 58, 803–809.
- Ozturk, I. I., Hadjikakou, S. K., Hadjiliadis, N., Kourkoumelis, N., Kubicki, M., Tasiopoulos, A. J., Scleiman, H., Barsan, M. M., Butler, I. S. & Balzarini, J. (2009). *Inorg. Chem.* **48**, 2233–2245.
- Schneider, J., Lee, Y. A., Perez, J., Brennessel, W. W., Flaschenriem, C. & Eisenberg, R. (2008). *Inorg. Chem.* 47, 957–968.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m1295 [https://doi.org/10.1107/S1600536812039165]

Iodido[5-methyl-1*H*-benzimidazole-2(3*H*)-thione- κ *S*]bis(triphenylphosphane- κ *P*)copper(I) methanol monosolvate

Yu-Han Jiang, Qi-Ming Qiu, Rui-Xia Jiang, Xu Huang and Qiong-Hua Jin

S1. Comment

Various transition metal complexes with bridging phosphanes or functionalized phosphanes have drawn much attention in recent years for their special structures, novel reactivity performances, catalytic properties and luminescence (Baxter *et al.*, 1994; Kitagawa *et al.*, 1995; Lewis *et al.*, 1996). The 2-mercapto-5-methylbenzimidazole (MMBI) ligand, with an - SH group and two potential coordination N atoms, is excellent in building supramolecular structures (Ozturk *et al.*, 2009; Schneider *et al.*, 2008). However, to our best knowledge, Cu(I) complexes with the MMBI ligand have not been reported. In this paper, one Cu(I) complex with PPh₃ and MMBI is reported.

In the title compound, MMBI acts as a neutral, monodentate ligand with the S atom as a coordination atom. Other sites of the coordination tetrahedron are occupied by two P atoms from two PPh₃ ligands and an iodide anion (Fig. 1). The Cu —S, Cu—P and Cu—I bond lengths agree with those in $[CuI(H_2itsc)(Ph_3P)_2]$ ($H_2itsc = isatin-3$ -thiosemicarbazones) (Lobana *et al.*, 2005) and $[CuI(C_4H_6N_2S)(C_{18}H_{15}P)_2]$ (Li *et al.*, 2004). Similarly, in the title complex, angles around the Cu atom ranging from 102.31 (4) to 122.72 (4)° are close to those in $[CuI(PPh_3)_2(pymtH)]$ (pymtH = pyrimidine-2-thione) (Aslanidis *et al.*, 1993). The complex molecules and the solvent methanol molecules are connected *via* N—H···O and O —H···I hydrogen bonds (Table 1), forming a chain along [0 1 0]. An intramolecular N—H···I hydrogen bond is also observed.

S2. Experimental

A mixture of CuI (0.2 mmol) and 2-mercapto-5-methylbenzimidazole (0.2 mmol) in MeOH and CH_2Cl_2 (10 ml, v/v = 1:1) was stirred for 2 h. PPh₃ (0.2 mmol) was added to the mixture, which was stirred for another 4 h. The insoluble residues were removed by filtration, and filtrate was evaporated slowly at room temperature for a week to yield colorless crystalline products.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (CH₃), N—H = 0.86 and O—H = 0.82 Å and with U_{iso} (H) = 1.2(1.5 for methyl and hydroxyl) U_{eq} (C,N,O).

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Iodido[5-methyl-1*H*-benzimidazole-2(3*H*)-thione- κ*S*]bis(triphenylphosphane-κ*P*)copper(I) methanol monosolvate

Crystal data

$[CuI(C_8H_8N_2S)(C_{18}H_{15}P)_2]$ ·CH ₄ O	F(000) = 1848
$M_r = 911.27$	$D_{\rm x} = 1.420 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 8084 reflections
a = 15.6081 (11) Å	$\theta = 2.3 - 26.4^{\circ}$
b = 10.5938 (8) Å	$\mu = 1.40 \text{ mm}^{-1}$
c = 25.976 (2) Å	T = 298 K
$\beta = 96.919 (1)^{\circ}$	Block, colorless
V = 4263.8 (5) Å ³	$0.43 \times 0.38 \times 0.35 \text{ mm}$
Z = 4	
Data collection	

Bruker APEX CCD	20808 measured reflections
diffractometer	7504 independent reflections
Radiation source: fine-focus sealed tube	5465 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.037$
φ and ω scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.3^\circ$
Absorption correction: multi-scan	$h = -18 \rightarrow 17$
(SADABS; Bruker, 2001)	$k = -12 \rightarrow 11$
$T_{\min} = 0.585, \ T_{\max} = 0.641$	$l = -24 \rightarrow 30$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.088$	neighbouring sites
S = 1.09	H-atom parameters constrained
7504 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0172P)^2 + 5.6518P]$
478 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.75 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.54 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.29356 (3)	0.60884 (4)	0.391446 (18)	0.03756 (13)
I1	0.426976 (18)	0.44881 (3)	0.414919 (13)	0.05740 (11)
N1	0.4673 (2)	0.9549 (3)	0.43122 (14)	0.0537 (9)
H1	0.4405	1.0245	0.4233	0.064*
N2	0.4928 (2)	0.7598 (3)	0.45022 (14)	0.0538 (10)
H2	0.4850	0.6814	0.4569	0.065*
01	0.3820 (4)	0.1429 (4)	0.3723 (3)	0.134 (2)
H1A	0.4018	0.2133	0.3794	0.201*
P1	0.18454 (6)	0.53857 (10)	0.43498 (4)	0.0349 (2)
P2	0.27571 (7)	0.64671 (10)	0.30391 (4)	0.0392 (3)
S1	0.32156 (7)	0.81432 (10)	0.42639 (5)	0.0535 (3)
C1	0.4289 (3)	0.8418 (4)	0.43596 (15)	0.0453 (10)
C2	0.5732 (3)	0.8173 (4)	0.45291 (16)	0.0499 (11)
C3	0.5561 (3)	0.9423 (4)	0.44091 (16)	0.0481 (10)
C4	0.6229 (3)	1.0295 (4)	0.44001 (19)	0.0647 (14)
H4	0.6114	1.1140	0.4323	0.078*
C5	0.7071 (3)	0.9861 (5)	0.4510 (2)	0.0641 (14)
C6	0.7220 (3)	0.8599 (5)	0.46243 (19)	0.0668 (14)
H6	0.7786	0.8322	0.4698	0.080*
C7	0.6563 (3)	0.7739 (5)	0.46341 (19)	0.0663 (14)
H7	0.6678	0.6892	0.4709	0.080*
C8	0.7824 (3)	1.0764 (5)	0.4514 (3)	0.100 (2)
H8A	0.8228	1.0612	0.4817	0.151*
H8B	0.7618	1.1617	0.4521	0.151*
H8C	0.8103	1.0636	0.4209	0.151*

C9	0.1375 (3)	0.3813 (4)	0.42121 (15)	0.0431 (10)
C10	0.1941 (3)	0.2831 (4)	0.41679 (17)	0.0565 (12)
H10	0.2530	0.2991	0.4187	0.068*
C11	0.1638 (4)	0.1607 (5)	0.4095 (2)	0.0775 (16)
H11	0.2026	0.0946	0.4075	0.093*
C12	0.0777 (5)	0.1367 (6)	0.4053 (2)	0.0850 (19)
H12	0.0577	0.0545	0.3999	0.102*
C13	0.0205(4)	0.2325 (6)	0.4090(2)	0.0826 (18)
H13	-0.0384	0.2154	0.4062	0.099*
C14	0.0498(3)	0.3555 (5)	0.41675(17)	0.0596 (13)
H14	0.0106	0.4208	0.4190	0.072*
C15	0.0922(2)	0.6456(4)	0 42431 (15)	0.072 0.0376(9)
C16	0.0922(2)	0.7184(4)	0.46264(17)	0.0378(11)
H16	0.0869	0.7103	0.4969	0.057*
C17	-0.0048(3)	0.8032(4)	0.4501(2)	0.057
H17	-0.0248	0.8515	0.4760	0.076*
C18	-0.0240	0.0515	0.3999(2)	0.070
U10 H18	-0.0863	0.8741	0.3999 (2)	0.081*
C19	-0.0132(3)	0.7459(5)	0.3518 0.3618 (2)	0.0672(15)
U1) H10	-0.0388	0.7545	0.3018 (2)	0.081*
C^{20}	0.0537 (3)	0.7545	0.3277 0.37340 (18)	0.051 0.0578 (12)
U20 H20	0.0537 (5)	0.6137	0.37340 (10)	0.0578 (12)
C21	0.0732 0.2100 (2)	0.0137 0.5320 (3)	0.5470	0.009
C_{21}	0.2100(2) 0.1545(3)	0.3320(3) 0.4788(4)	0.50509(14) 0.53712(16)	0.0537(9)
U22	0.1345 (3)	0.4788 (4)	0.53712 (10)	0.0530 (12)
C23	0.1023 0.1752 (3)	0.4443 0.4750(5)	0.5225 0.50040 (18)	0.004°
U23	0.1752 (5)	0.4739 (3)	0.59040 (18)	0.0032(14)
П23 С24	0.1309 0.2522 (2)	0.4409 0.5247 (5)	0.0112 0.61240 (17)	0.078°
U24	0.2323 (3)	0.5247(3)	0.01249(17)	0.0037 (13)
H24 C25	0.2003	0.5251	0.0485	$0.0/6^{*}$
C25	0.3087(3)	0.3739(3)	0.58182 (17)	0.0014 (13)
H25	0.3015	0.6076	0.5968	$0.0/4^{\circ}$
C26	0.2874(3)	0.5804 (4)	0.52855 (16)	0.0468 (11)
H26	0.3256	0.6164	0.5079	0.056*
C27	0.2603(2)	0.50/1 (4)	0.26301 (15)	0.0449 (10)
C28	0.2276 (3)	0.4022 (5)	0.2840 (2)	0.0696 (14)
H28	0.2157	0.4035	0.3182	0.083*
C29	0.2119 (4)	0.2933 (6)	0.2545 (3)	0.098 (2)
H29	0.1882	0.2230	0.2688	0.11/*
C30	0.2309 (4)	0.2887 (7)	0.2047 (3)	0.094 (2)
H30	0.2210	0.2154	0.1853	0.113*
C31	0.2642 (4)	0.3912 (7)	0.1840 (2)	0.0859 (19)
H31	0.2773	0.3882	0.1500	0.103*
C32	0.2792 (3)	0.5009 (5)	0.21231 (18)	0.0669 (14)
H32	0.3022	0.5710	0.1973	0.080*
C33	0.3667 (3)	0.7297 (4)	0.28087 (16)	0.0481 (11)
C34	0.4472 (3)	0.7145 (5)	0.30815 (18)	0.0585 (13)
H34	0.4540	0.6615	0.3369	0.070*
C35	0.5177 (3)	0.7767 (6)	0.2934 (2)	0.0873 (19)

H35	0.5714	0.7668	0.3127	0.105*
C36	0.5095 (4)	0.8528 (6)	0.2506 (2)	0.093 (2)
H36	0.5576	0.8928	0.2403	0.111*
C37	0.4308 (4)	0.8694 (6)	0.2234 (2)	0.101 (2)
H37	0.4248	0.9223	0.1946	0.122*
C38	0.3591 (3)	0.8083 (6)	0.2381 (2)	0.0815 (18)
H38	0.3054	0.8203	0.2190	0.098*
C39	0.1847 (3)	0.7474 (4)	0.27877 (15)	0.0443 (10)
C40	0.1187 (3)	0.7103 (5)	0.24166 (18)	0.0624 (13)
H40	0.1197	0.6300	0.2273	0.075*
C41	0.0506 (3)	0.7915 (6)	0.2253 (2)	0.0832 (17)
H41	0.0064	0.7650	0.2005	0.100*
C42	0.0491 (4)	0.9100 (6)	0.2459 (2)	0.0891 (19)
H42	0.0045	0.9651	0.2342	0.107*
C43	0.1126 (4)	0.9482 (5)	0.2836 (2)	0.0821 (16)
H43	0.1105	1.0283	0.2981	0.099*
C44	0.1801 (3)	0.8674 (5)	0.3002 (2)	0.0683 (14)
H44	0.2229	0.8936	0.3261	0.082*
C45	0.3990 (8)	0.1101 (10)	0.3249 (4)	0.204 (5)
H45A	0.4585	0.1275	0.3217	0.306*
H45B	0.3628	0.1576	0.2994	0.306*
H45C	0.3880	0.0216	0.3197	0.306*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0345 (3)	0.0433 (3)	0.0356 (3)	-0.0078 (2)	0.0072 (2)	-0.0013 (2)
I1	0.04338 (17)	0.04799 (18)	0.0800(2)	-0.00010 (14)	0.00389 (15)	0.00189 (16)
N1	0.063 (2)	0.034 (2)	0.064 (2)	-0.0099 (18)	0.0073 (19)	-0.0053 (17)
N2	0.055 (2)	0.043 (2)	0.061 (2)	-0.0163 (19)	-0.0026 (19)	0.0114 (18)
01	0.152 (5)	0.051 (3)	0.198 (6)	0.022 (3)	0.022 (5)	0.008 (3)
P1	0.0314 (5)	0.0405 (6)	0.0333 (6)	-0.0095 (4)	0.0057 (4)	-0.0015 (4)
P2	0.0362 (6)	0.0484 (6)	0.0332 (6)	-0.0073 (5)	0.0047 (5)	0.0012 (5)
S 1	0.0521 (7)	0.0440 (6)	0.0647 (8)	-0.0101 (5)	0.0080 (6)	-0.0121 (5)
C1	0.055 (3)	0.042 (2)	0.039 (2)	-0.013 (2)	0.005 (2)	-0.0073 (19)
C2	0.057 (3)	0.046 (3)	0.043 (3)	-0.017 (2)	-0.004 (2)	0.001 (2)
C3	0.050 (3)	0.047 (3)	0.048 (3)	-0.011 (2)	0.008 (2)	-0.011 (2)
C4	0.076 (4)	0.037 (3)	0.083 (4)	-0.017 (2)	0.019 (3)	-0.013 (2)
C5	0.054 (3)	0.065 (3)	0.075 (4)	-0.018 (3)	0.015 (3)	-0.025 (3)
C6	0.056 (3)	0.070 (4)	0.073 (4)	-0.008 (3)	0.001 (3)	-0.009 (3)
C7	0.062 (3)	0.058 (3)	0.076 (4)	-0.008 (3)	-0.004 (3)	0.009 (3)
C8	0.069 (4)	0.076 (4)	0.161 (6)	-0.029 (3)	0.035 (4)	-0.045 (4)
C9	0.048 (3)	0.046 (3)	0.036 (2)	-0.018 (2)	0.0087 (19)	-0.0029 (19)
C10	0.061 (3)	0.048 (3)	0.060 (3)	-0.013 (2)	0.007 (2)	-0.002 (2)
C11	0.110 (5)	0.045 (3)	0.077 (4)	-0.008 (3)	0.011 (3)	-0.003 (3)
C12	0.128 (6)	0.067 (4)	0.062 (4)	-0.054 (4)	0.021 (4)	-0.011 (3)
C13	0.083 (4)	0.100 (5)	0.067 (4)	-0.058 (4)	0.020 (3)	-0.017 (3)
C14	0.050 (3)	0.071 (3)	0.059 (3)	-0.028 (2)	0.012 (2)	-0.010 (2)

supporting information

C15	0.031 (2)	0.045 (2)	0.037 (2)	-0.0108 (17)	0.0059 (18)	0.0059 (18)
C16	0.042 (2)	0.054 (3)	0.046 (3)	-0.003 (2)	0.001 (2)	-0.003 (2)
C17	0.054 (3)	0.053 (3)	0.083 (4)	0.004 (2)	0.009 (3)	-0.004 (3)
C18	0.043 (3)	0.065 (3)	0.094 (4)	0.009 (2)	0.002 (3)	0.026 (3)
C19	0.044 (3)	0.097 (4)	0.059 (3)	0.002 (3)	-0.002(2)	0.032 (3)
C20	0.039 (3)	0.086 (4)	0.049 (3)	-0.004(2)	0.009 (2)	0.008 (2)
C21	0.034 (2)	0.035 (2)	0.038 (2)	-0.0019 (17)	0.0062 (17)	-0.0004 (17)
C22	0.046 (3)	0.073 (3)	0.040 (3)	-0.015 (2)	0.004 (2)	0.008 (2)
C23	0.062 (3)	0.089 (4)	0.046 (3)	-0.019 (3)	0.013 (2)	0.017 (3)
C24	0.076 (4)	0.079 (4)	0.035 (3)	-0.015 (3)	-0.001 (2)	0.008 (2)
C25	0.054 (3)	0.080 (4)	0.047 (3)	-0.018 (3)	-0.008(2)	0.003 (2)
C26	0.045 (2)	0.056 (3)	0.039 (2)	-0.012 (2)	0.0033 (19)	0.003 (2)
C27	0.034 (2)	0.063 (3)	0.036 (2)	0.000 (2)	-0.0015 (18)	-0.006 (2)
C28	0.081 (4)	0.062 (3)	0.067 (3)	-0.020 (3)	0.016 (3)	-0.022 (3)
C29	0.106 (5)	0.074 (4)	0.112 (6)	-0.025 (4)	0.008 (4)	-0.032 (4)
C30	0.074 (4)	0.100 (5)	0.101 (6)	0.014 (4)	-0.021 (4)	-0.063 (4)
C31	0.074 (4)	0.123 (6)	0.057 (4)	0.024 (4)	-0.006 (3)	-0.037 (4)
C32	0.068 (3)	0.091 (4)	0.042 (3)	0.009 (3)	0.009 (2)	-0.007 (3)
C33	0.041 (3)	0.063 (3)	0.041 (3)	-0.011 (2)	0.007 (2)	0.005 (2)
C34	0.043 (3)	0.077 (3)	0.056 (3)	-0.011 (2)	0.010 (2)	0.015 (2)
C35	0.041 (3)	0.138 (6)	0.084 (4)	-0.023 (3)	0.010 (3)	0.029 (4)
C36	0.058 (4)	0.133 (6)	0.090 (4)	-0.038 (4)	0.021 (3)	0.029 (4)
C37	0.079 (4)	0.144 (6)	0.080 (4)	-0.045 (4)	0.009 (3)	0.051 (4)
C38	0.056 (3)	0.118 (5)	0.068 (4)	-0.024 (3)	-0.002 (3)	0.041 (3)
C39	0.040 (2)	0.054 (3)	0.039 (2)	-0.006 (2)	0.0040 (19)	0.005 (2)
C40	0.057 (3)	0.076 (3)	0.052 (3)	0.005 (3)	-0.003 (2)	-0.004 (3)
C41	0.064 (4)	0.118 (5)	0.061 (4)	0.022 (4)	-0.017 (3)	-0.001 (3)
C42	0.086 (4)	0.099 (5)	0.081 (4)	0.037 (4)	0.000 (3)	0.029 (4)
C43	0.089 (4)	0.056 (3)	0.099 (5)	0.011 (3)	0.001 (4)	0.011 (3)
C44	0.067 (3)	0.054 (3)	0.081 (4)	0.000 (3)	-0.007 (3)	0.003 (3)
C45	0.287 (15)	0.139 (9)	0.187 (12)	0.045 (9)	0.035 (11)	0.054 (8)

Geometric parameters (Å, °)

Cu1—P1	2.2786 (10)	C19—C20	1.383 (6)
Cu1—P2	2.2925 (11)	C19—H19	0.9300
Cu1—S1	2.3786 (12)	C20—H20	0.9300
Cu1—I1	2.6974 (6)	C21—C26	1.379 (5)
N1C1	1.352 (5)	C21—C22	1.380 (5)
N1—C3	1.386 (5)	C22—C23	1.383 (6)
N1—H1	0.8600	C22—H22	0.9300
N2—C1	1.341 (5)	C23—C24	1.370 (6)
N2—C2	1.389 (5)	С23—Н23	0.9300
N2—H2	0.8600	C24—C25	1.368 (6)
O1—C45	1.334 (10)	C24—H24	0.9300
O1—H1A	0.8200	C25—C26	1.385 (6)
P1—C15	1.829 (4)	C25—H25	0.9300
P1—C21	1.833 (4)	C26—H26	0.9300

supporting information

P1—C9	1.839 (4)	C27—C28	1.363 (6)
P2—C27	1.820 (4)	C27—C32	1.386 (6)
P2—C33	1.831 (4)	C28—C29	1.390 (7)
P2—C39	1.833 (4)	C28—H28	0.9300
S1—C1	1.689 (4)	C29—C30	1.361 (8)
C2—C7	1.373 (6)	C29—H29	0.9300
C2—C3	1.378 (6)	C30—C31	1.344 (8)
C3—C4	1.395 (6)	C30—H30	0.9300
C4—C5	1.389 (7)	C31—C32	1.380(7)
C4—H4	0.9300	C31—H31	0.9300
C5-C6	1 383 (7)	C32—H32	0.9300
C5-C8	1.503 (7)	C33 - C34	1 376 (6)
C6-C7	1.374 (6)	C_{33} C_{38}	1 382 (6)
С6—Н6	0.9300	C_{34} C_{35}	1.302 (0)
С7—Н7	0.9300	C34—H34	0.9300
C8—H8A	0.9500	C_{35} C_{36}	1 367 (7)
C8—H8B	0.9600	C35—H35	0.9300
	0.9600	C_{36} C_{37}	1.352(7)
C_{9}	1 378 (6)	C36—H36	0.9300
$C_{P} = C_{10}$	1.378 (0)	$C_{30} = 1150$	1 385 (6)
C_{10}	1.385 (6)	C37—C38	0.9300
C10_H10	0.9300	C38—H38	0.9300
C_{11} C_{12}	1 360 (8)	$C_{39} - C_{40}$	1 380 (6)
C11—H11	0.9300	$C_{39} - C_{44}$	1 393 (6)
C_{12} C_{13}	1 362 (8)	C40-C41	1.393(0) 1.392(7)
C12—H12	0.9300	C40 - H40	0.9300
C13 - C14	1 389 (7)	C41 - C42	1 367 (8)
C13—H13	0.9300	C41—H41	0.9300
C14—H14	0.9300	C42-C43	1 369 (8)
C15-C16	1 385 (5)	C42 - H42	0.9300
$C_{15} - C_{20}$	1 394 (5)	C43-C44	1384(7)
C16-C17	1.397 (6)	C43—H43	0.9300
C16—H16	0.9300	C44—H44	0.9300
C17— $C18$	1 368 (7)	C45—H45A	0.9600
C17—H17	0.9300	C45—H45B	0.9600
C18-C19	1.358(7)	C45 - H45C	0.9600
C18—H18	0.9300		0.9000
	0.9500		
P1—Cu1—P2	122.72 (4)	C18—C19—H19	119 9
P1-Cu1-S1	102.91(4)	C20-C19-H19	119.9
P2— $Cu1$ — $S1$	102.31(4)	C19 - C20 - C15	120.7(5)
P1—Cu1—I1	106.54 (3)	C19—C20—H20	119.7
P2—Cu1—I1	109.42 (3)	C15—C20—H20	119.7
S1—Cu1—I1	112.81 (3)	C26—C21—C22	118.5 (4)
C1—N1—C3	110.1 (4)	C26—C21—P1	119.3 (3)
C1—N1—H1	125.0	C22—C21—P1	122.2 (3)
C3—N1—H1	125.0	C21—C22—C23	120.9 (4)
C1—N2—C2	111.5 (3)	C21—C22—H22	119.6
	X- /		

C1—N2—H2	124.2	C23—C22—H22	119.6
C2—N2—H2	124.2	C24—C23—C22	119.9 (4)
C45—O1—H1A	109.5	С24—С23—Н23	120.1
C15—P1—C21	104.32 (17)	С22—С23—Н23	120.1
C15—P1—C9	104.08 (18)	C25—C24—C23	120.0 (4)
C21—P1—C9	101.16 (17)	C25—C24—H24	120.0
C15—P1—Cu1	110.15 (12)	C23—C24—H24	120.0
C21—P1—Cu1	115.16 (12)	C24—C25—C26	120.1 (4)
C9—P1—Cu1	120.27 (13)	C24—C25—H25	120.0
$C_{27} = P_{2} = C_{33}$	104 65 (19)	$C_{26} = C_{25} = H_{25}$	120.0
$C_{27} P_{2} C_{39}$	107.86 (19)	$C_{20} = C_{20} = C_{20}$	120.0 120.7(4)
$C_{23} = P_{2} = C_{39}$	102.00(19) 101.65(19)	$C_{21} = C_{20} = C_{20}$	110 7
$C_{22} = P_2 = C_{11}$	101.03(1)) 115.37(14)	$C_{21} = C_{20} = H_{20}$	110.7
$C_2 / - 12 - C_{u1}$	113.37(14) 113.70(14)	$C_{23} = C_{20} = H_{20}$	119.7 118.2 (4)
$C_{20} = R_2 = C_{11}$	115.70(14) 116.95(12)	$C_{20} = C_{27} = C_{32}$	117.2(2)
$C_{1} = C_{1} = C_{1}$	110.83(15) 110.22(15)	$C_{20} = C_{27} = P_{2}$	117.5(3)
	110.32 (15)	$C_{32} = C_{27} = P_{2}$	124.4 (4)
N2—CI—NI	106.0 (4)	$C_2 / - C_{28} - C_{29}$	120.4 (5)
N2—C1—S1	128.4 (3)	C27—C28—H28	119.8
NI-CI-SI	125.6 (4)	С29—С28—Н28	119.8
C7—C2—C3	121.3 (4)	C30—C29—C28	120.6 (6)
C7—C2—N2	133.6 (4)	С30—С29—Н29	119.7
C3—C2—N2	105.2 (4)	С28—С29—Н29	119.7
C2—C3—N1	107.2 (4)	C31—C30—C29	119.4 (6)
C2—C3—C4	121.0 (4)	С31—С30—Н30	120.3
N1—C3—C4	131.8 (4)	С29—С30—Н30	120.3
C5—C4—C3	117.9 (4)	C30—C31—C32	121.0 (6)
С5—С4—Н4	121.0	С30—С31—Н31	119.5
C3—C4—H4	121.0	С32—С31—Н31	119.5
C6—C5—C4	119.6 (4)	C31—C32—C27	120.3 (5)
C6—C5—C8	120.0 (5)	C31—C32—H32	119.9
C4—C5—C8	120.5 (5)	С27—С32—Н32	119.9
C7—C6—C5	122.7 (5)	C34—C33—C38	118.0 (4)
С7—С6—Н6	118.7	C34—C33—P2	118.1 (3)
C5—C6—H6	118.7	C38—C33—P2	123.9(3)
$C^2 - C^7 - C^6$	117.5 (5)	$C_{33} - C_{34} - C_{35}$	120.8(4)
$C_2 - C_7 - H_7$	121.2	C33—C34—H34	119.6
C6-C7-H7	121.2	$C_{35} - C_{34} - H_{34}$	119.6
C_{5} C_{8} H_{8A}	100.5	$C_{36} C_{35} C_{34}$	120.6(5)
$C_5 = C_8 = H_8 P$	109.5	$C_{30} = C_{33} = C_{34}$	120.0(3)
	109.5	$C_{30} = C_{30} = H_{35}$	119.7
$H_0A - C_0 - H_0C$	109.5	$C_{34} = C_{35} = H_{35}$	119.7
	109.5	$C_{37} = C_{30} = C_{33}$	119.4 (3)
H8A - C8 - H8C	109.5	$C_{3} = C_{30} = H_{30}$	120.3
$H\delta B - U\delta - H\delta U$	109.5	$C_{30} - C_{30} - H_{30}$	120.5
C10 - C9 - C14	118.7 (4)	$C_{30} - C_{37} - C_{38}$	120.6 (5)
C10-C9-P1	11/.1 (3)	$C_{30} = C_{37} = H_{37}$	119.7
C14—C9—P1	124.2 (4)	C38—C37—H37	119.7
C9—C10—C11	120.4 (5)	C33—C38—C37	120.6 (5)
C9—C10—H10	119.8	С33—С38—Н38	119.7

C11—C10—H10	119.8	C37—C38—H38	119.7
C12—C11—C10	120.2 (5)	C40—C39—C44	117.9 (4)
C12—C11—H11	119.9	C40—C39—P2	124.4 (4)
C10-C11-H11	119.9	C44—C39—P2	117.6 (3)
C11—C12—C13	120.4 (5)	C39—C40—C41	121.0 (5)
C11—C12—H12	119.8	C39—C40—H40	119.5
C13—C12—H12	119.8	C41—C40—H40	119.5
C12—C13—C14	120.1 (5)	C42—C41—C40	119.8 (5)
C12—C13—H13	119.9	C42—C41—H41	120.1
C14—C13—H13	119.9	C40—C41—H41	120.1
C9-C14-C13	120.1 (5)	C41 - C42 - C43	1204(5)
C9-C14-H14	119.9	C41-C42-H42	119.8
C13—C14—H14	119.9	C43 - C42 - H42	119.8
C_{16} C_{15} C_{20}	118.2 (4)	C42 - C43 - C44	119.9 (5)
C16-C15-P1	1244(3)	C42 - C43 - H43	120.1
C_{20} C_{15} P_{1}	1173(3)	C44 - C43 - H43	120.1
C_{15} C_{16} C_{17}	1201(4)	C43 - C44 - C39	120.1 120.9(5)
C_{15} C_{16} H_{16}	110.0	C43 - C44 - H44	119.5
C17 - C16 - H16	110.0	$C_{43} = C_{44} = H_{44}$	119.5
$C_{18}^{18} C_{17}^{17} C_{16}^{16}$	120.6 (5)	$O_1 C_{45} H_{45A}$	109.5
$C_{18} = C_{17} = C_{10}$	120.0 (3)	O1 C45 H45B	109.5
C16 C17 H17	110.7	$H_{45A} = C_{45} = H_{45B}$	109.5
$C_{10} = C_{17} = M_{17}$	119.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{19} = C_{18} = C_{17}$	120.0 (3)	H_{45} C_{45} H_{45} C_{45}	109.5
C17 C18 H18	120.0	H45A - C45 - H45C	109.5
C_{1}^{1} C_{10}^{10} C_{20}^{20}	120.0	H43B-C43-H43C	109.5
018-019-020	120.3 (3)		
P2—Cu1—P1—C15	-55 75 (15)	C20-C15-C16-C17	0.4(6)
S1-Cu1-P1-C15	58 28 (14)	P1-C15-C16-C17	175.6 (3)
II - CuI - PI - CI5	177.16 (14)	C_{15} C_{16} C_{17} C_{18}	-0.3(7)
P_{2} C_{11} P_{1} C_{21}	-17336(13)	C16 - C17 - C18 - C19	0.4(7)
S1-Cu1-P1-C21	-59.33(14)	C17 - C18 - C19 - C20	-0.6(8)
II = Cu1 = P1 = C21	59 55 (14)	C18 - C19 - C20 - C15	0.0(0)
$P_{-C_{11}} = P_{1-C_{9}}$	65 20 (17)	$C_{16} - C_{15} - C_{20} - C_{19}$	-0.6(6)
S1 = Cu1 = P1 = C9	179 23 (16)	P1-C15-C20-C19	-1762(3)
II - CuI - PI - C9	-61.90(16)	C15 - P1 - C21 - C26	-1143(3)
P1-Cu1-P2-C27	-69.86(15)	C9-P1-C21-C26	1379(3)
S1-Cu1-P2-C27	175 81 (14)	C_{11} P_{1} C_{21} C_{20}	6 6 (4)
11-Cu1-P2-C27	55 97 (15)	C_{15} P1 C_{21} C_{22}	66 4 (4)
P1 - Cu1 - P2 - C33	169 21 (16)	C9-P1-C21-C22	-415(4)
S1-Cu1-P2-C33	54 88 (17)	C_{11} P_{1} C_{21} C_{22}	-172.8(3)
$11-Cu1-P^2-C^{33}$	-64.96(16)	C_{26} C_{21} C_{22} C_{23}	10(7)
P1—Cu1—P2—C39	51 22 (16)	P1-C21-C22-C23	-179.6(4)
S1-Cu1-P2-C39	-63 11 (16)	$C_{21} - C_{22} - C_{23} - C_{24}$	-0.9(7)
I1-Cu1-P2-C39	177 05 (15)	$C_{22} = C_{23} = C_{24} = C_{25}$	-0.2(8)
P1 = Cu1 = S1 = C1	139 24 (16)	$C_{22} = C_{23} = C_{24} = C_{25} = C_{26}$	1 2 (8)
P2-Cu1-S1-C1	-92 61 (16)	$C_{22} = C_{21} = C_{25} = C_{25}$	-0.1.(6)
12 cut 51	24.83 (16)	P1_C21_C26_C25	-1705(3)
	27.0J (10)	11 021 020 023	1/2.2 (2)

C2 N2 $C1$ N1	22(5)	C24 C25 C26 C21	1.0.(7)
$C_2 = N_2 = C_1 = N_1$	-2.5(3)	C_{24} C_{23} C_{20} C_{21} C_{22} C_{23} C_{23} C_{23} C_{23} C_{23} C_{23} C_{23}	-1.0(7)
$C_2 = N_2 = C_1 = S_1$	1/8.0(5)	$C_{33} = P_2 = C_2 / = C_{28}$	102 ((4)
$C_3 = N_1 = C_1 = N_2$	2.0 (5)	$C_{39} = P_2 = C_2 / = C_{28}$	-103.6(4)
C3—NI—CI—SI	-1/8.8(3)	Cu1 - P2 - C27 - C28	24.8 (4)
Cul—Sl—Cl—N2	-34.4(4)	C_{33} P2 C_{27} C32	-29.7 (4)
Cu1—S1—C1—N1	146.7 (3)	C39—P2—C27—C32	76.2 (4)
C1—N2—C2—C7	-177.0 (5)	Cu1—P2—C27—C32	-155.4 (3)
C1—N2—C2—C3	1.7 (5)	C32—C27—C28—C29	-1.6 (8)
C7—C2—C3—N1	178.5 (4)	P2—C27—C28—C29	178.2 (4)
N2—C2—C3—N1	-0.4 (5)	C27—C28—C29—C30	1.7 (9)
C7—C2—C3—C4	-1.3 (7)	C28—C29—C30—C31	-0.8 (10)
N2—C2—C3—C4	179.8 (4)	C29—C30—C31—C32	-0.1 (9)
C1—N1—C3—C2	-1.0 (5)	C30—C31—C32—C27	0.1 (8)
C1—N1—C3—C4	178.7 (4)	C28—C27—C32—C31	0.7 (7)
C2—C3—C4—C5	0.7 (7)	P2-C27-C32-C31	-179.1 (4)
N1—C3—C4—C5	-179.0 (4)	C27—P2—C33—C34	-99.1 (4)
C3—C4—C5—C6	-0.2 (7)	C39—P2—C33—C34	154.1 (4)
C3—C4—C5—C8	-179.1 (5)	Cu1—P2—C33—C34	27.7 (4)
C4—C5—C6—C7	0.1 (8)	C27—P2—C33—C38	81.9 (5)
C8—C5—C6—C7	179.0 (5)	C39—P2—C33—C38	-24.9 (5)
C3—C2—C7—C6	1.2 (7)	Cu1—P2—C33—C38	-151.4 (4)
N2-C2-C7-C6	179.7 (5)	C38—C33—C34—C35	0.6 (8)
C5—C6—C7—C2	-0.6 (8)	P2-C33-C34-C35	-178.5 (4)
C15—P1—C9—C10	168.4 (3)	C33—C34—C35—C36	-1.5 (9)
C21—P1—C9—C10	-83.6 (3)	C34—C35—C36—C37	1.7 (11)
Cu1—P1—C9—C10	44.5 (4)	C35—C36—C37—C38	-1.1 (11)
C15—P1—C9—C14	-13.8 (4)	C34—C33—C38—C37	0.0 (9)
C21—P1—C9—C14	94.3 (4)	P2-C33-C38-C37	179.1 (5)
Cu1—P1—C9—C14	-137.7 (3)	C36—C37—C38—C33	0.3 (11)
C14—C9—C10—C11	-1.8 (7)	C27—P2—C39—C40	6.5 (4)
P1C9C10C11	176.1 (4)	C33—P2—C39—C40	114.6 (4)
C9-C10-C11-C12	1.7 (8)	Cu1—P2—C39—C40	-121.0 (4)
C10-C11-C12-C13	-0.9 (8)	C27—P2—C39—C44	-176.4 (4)
C11—C12—C13—C14	0.3 (9)	C33—P2—C39—C44	-68.2 (4)
C10-C9-C14-C13	1.2 (7)	Cu1—P2—C39—C44	56.1 (4)
P1-C9-C14-C13	-176.6 (4)	C44—C39—C40—C41	1.4 (7)
C12—C13—C14—C9	-0.5 (8)	P2-C39-C40-C41	178.5 (4)
C21—P1—C15—C16	9.9 (4)	C39—C40—C41—C42	0.5 (8)
C9—P1—C15—C16	115.6 (3)	C40—C41—C42—C43	-2.0(9)
Cu1—P1—C15—C16	-114.2 (3)	C41—C42—C43—C44	1.5 (9)
C21—P1—C15—C20	-174.9 (3)	C42—C43—C44—C39	0.5 (8)
C9—P1—C15—C20	-69.2 (3)	C40—C39—C44—C43	-1.9 (7)
Cu1—P1—C15—C20	61.0 (3)	P2-C39-C44-C43	-179.2(4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱ	0.86	1.97	2.755 (7)	152

Acta Cryst. (2012). E68, m1295

			supportin	supporting information	
N2—H2…I1	0.86	2.80	3.539 (3)	145	
01—H1A…I1	0.82	2.67	3.469 (5)	164	

Symmetry code: (i) x, y+1, z.