

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368

Bis(methanol- κ O)bis(1,2-diamino-2hydroxyiminoethanone oximato- $\kappa^2 N, N'$)copper(II) bis(oxamide dioxime) methanol disolvate

Daying Liu, Ruihong Zhang, Hui Hu, Jing Qi and Guangming Yang*

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: yanggm@nankai.edu.cn

Received 1 July 2012; accepted 25 August 2012

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.086; data-to-parameter ratio = 16.2.

In the title compound, $[Cu(C_2H_5N_4O_2)_2(CH_3OH)_2]\cdot 2C_2H_6-N_4O_2\cdot 2CH_3OH$, the Cu^{II} atom, lying on an inversion center, is coordinated by four N atoms from two 1,2-diamino-2-hydroxyiminoethanone oximate anion and two O atoms from two methanol molecules in a distorted octahedral geometry. The two uncoordinating oxamide dioxime molecules, each lying on an inversion center, adopt a *trans* conformation. In the crystal, $O-H\cdots O$, $N-H\cdots O$ and $N-H\cdots N$ hydrogen bonds link the complex molecules and the oxamide dioxime and methanol molecules.

Related literature

For related structures, see: Bélombé *et al.* (2006); Belombe *et al.* (2007); Egharevba *et al.* (1982); Endres (1980); Endres & Schlicksupp (1980); Endres *et al.* (1983); Gunasekaran *et al.* (1995).

Experimental

Crystal data

$Cu(C_2H_5N_4O_2)_2(CH_4O)_2]$	$\beta = 103.327 \ (9)^{\circ}$
$2C_2H_6N_4O_2 \cdot 2CH_4O$	$\gamma = 104.957 \ (5)^{\circ}$
$M_r = 662.13$	$V = 682.5 (5) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 1
u = 7.567 (3) Å	Mo $K\alpha$ radiation
p = 8.874 (4) Å	$\mu = 0.89 \text{ mm}^{-1}$
r = 10.867 (5) Å	T = 113 K
$\alpha = 92.046 \ (4)^{\circ}$	$0.28 \times 0.24 \times 0.2$

Data collection

Rigaku Saturn724 CCD
diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
$T_{\rm min} = 0.790, T_{\rm max} = 0.829$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	
$wR(F^2) = 0.086$	
S = 0.99	
3212 reflections	
198 parameters	

 $\mu = 0.89 \text{ mm}^{-1}$ T = 113 K 0.28 × 0.24 × 0.22 mm 7216 measured reflections

3212 independent reflections 2252 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O1^{i}$	0.84	1.96	2.737 (3)	154
O3−H3···O5 ⁱⁱ	0.84	1.92	2.744 (3)	166
O4−H4···O1 ⁱⁱⁱ	0.84	1.79	2.621 (3)	169
$O5-H5\cdots O1^{iv}$	0.81(2)	1.87 (3)	2.657 (3)	164 (2)
$O6-H6\cdots O5^{v}$	0.79 (3)	1.94 (3)	2.721 (3)	173 (3)
$N3-H3A\cdots N7^{vi}$	0.88	2.50	3.195 (3)	136
$N3-H3B\cdots O6^{vii}$	0.88	2.32	3.167 (3)	162
$N4-H4A\cdots O4^{viii}$	0.88	2.35	3.112 (3)	145
$N4 - H4B \cdots O6^{vii}$	0.88	2.00	2.878 (3)	172
$N6-H6A\cdots O3^{ix}$	0.88	2.26	3.097 (3)	159
$N6-H6B\cdots N7^{vii}$	0.88	2.19	3.007 (3)	155
$N8-H8A\cdots O4^{ix}$	0.88	2.20	3.043 (3)	159
$N8 - H8B \cdot \cdot \cdot N5^{x}$	0.88	2.21	3.031 (3)	154

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 2, -y + 1, -z + 1; (iii) x, y + 1, z - 1; (iv) x, y, z - 1; (v) x, y, z + 1; (vi) -x + 1, -y + 1, -z + 2; (vii) x - 1, y, z; (viii) -x, -y + 1, -z + 1; (ix) -x + 1, -y + 1, -z + 1; (x) x, y - 1, z.

Data collection: *CrystalClear* (Rigaku, 2009); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (Nos. 20941004, 21071084 and 90922032) and the MOE (IRT-0927), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2572).

References

Belombe, M. M., Nenwa, J., Bebga, G., Fokwa, B. P. T. & Dronskowski, R. (2007). Acta Cryst. E63, m2037–m2038.

- Bélombé, M., Nenwa, J., Kammoe, A. L. & Poudeu, P. F. P. (2006). Acta Cryst. E62, m2583-m2585.
- Egharevba, G. O., Mégnamisi-Bélombé, M., Endres, H. & Rossato, E. (1982). *Acta Cryst.* B**38**, 2901–2903. Endres, H. (1980). *Acta Cryst.* B**36**, 57–60.
- Endres, H. & Schlicksupp, L. (1980). Acta Cryst. B36, 715-716.
- Endres, H., Genc, N. & Nöthe, D. (1983). Acta Cryst. C39, 701-703.
- Gunasekaran, A., Jayachandran, T., Boyer, J. H. & Trudell, M. L. (1995). J. Heterocycl. Chem. 32, 1405-1407.
- Rigaku (2009). *CrystalClear*. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

supporting information

Acta Cryst. (2012). E68, m1235–m1236 [https://doi.org/10.1107/S1600536812036811] Bis(methanol- κO)bis(1,2-diamino-2-hydroxyiminoethanone oximato- $\kappa^2 N, N'$)copper(II) bis(oxamide dioxime) methanol disolvate

Daying Liu, Ruihong Zhang, Hui Hu, Jing Qi and Guangming Yang

S1. Comment

Owing to the variety of structures and unique properties, transition metal complexes of oxamide oxime (diaminoglyoxime, oaoH₂) are of great interest. So far, most of the published work concerns 4-coordinated transition metal oxamide oximate complexs (Endres, 1980; Endres & Schlicksupp, 1980; Endres *et al.*, 1983). The 6-coordinated transition metal oxamide oximate complexes have not been reported hitherto (Bélombé *et al.*, 2006; Belombe *et al.*, 2007; Egharevba *et al.*, 1982). We used oxamide oxime as ligands (Gunasekaran *et al.*, 1995) and obtained green crystals of the title compound from a methanol solution.

In the title compound, the Cu^{II} atom, lying on an inversion center, is surrounded in an octahedral environment defined by four N atoms from two oaoH ligands and two O atoms from two methanol molecules (Fig. 1). The methanol molecules are weakly coordinated to the Cu atom with a Cu—O distance of 2.797 (2) Å. In the crystal, O—H···O, N— H···O and N—H···N hydrogen bonds (Table 1) link the complex molecules and the oxamide oxime and methanol molecules.

S2. Experimental

A methanol solution (10 ml) of copper acetate (0.1 mmol) was added dropwise to a methanol solution (10 ml) of oxamide oxime (0.1 mmol). The title compound was obtained as green crystals by slow evaporation of the filtrate in air at room temperature 5 days later. Analysis, calculated for $C_{12}H_{38}CuN_{16}O_{12}$: C 21.77, H 5.78, N 33.85, O 29.00%; found: C 21.79, H 5.76, N 33.88, O 29.02%.

S3. Refinement

H atoms of methanol molecules were located from a difference Fourier map and refined isotropically with $U_{iso}(H) = 1.5U_{eq}(O)$. The other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.98, N—H = 0.88 and O—H = 0.84 Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl and hydroxyl})U_{eq}(C,N,O)$.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1-x, -y, 2-z; (ii) -x, 2-y, 1-z; (iii) 1-x, 1-y, 1-z.]

Bis(methanol- κO)bis(oxamide oxime oximato- $\kappa^2 N$, N')copper(II) bis(oxamide dioxime) methanol disolvate

Crystal data

$[Cu(C_2H_5N_4O_2)_2(CH_4O)_2] \cdot 2C_2H_6N_4O_2 \cdot 2CH_4O$ $M_r = 662.13$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.567 (3) Å b = 8.874 (4) Å c = 10.867 (5) Å a = 92.046 (4)° $\beta = 103.327$ (9)° $\gamma = 104.957$ (5)° V = 682.5 (5) Å ³	Z = 1 F(000) = 347 $D_x = 1.611 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2266 reflections $\theta = 1.9-27.9^{\circ}$ $\mu = 0.89 \text{ mm}^{-1}$ T = 113 K Block, green $0.28 \times 0.24 \times 0.22 \text{ mm}$
Data collection Rigaku Saturn724 CCD diffractometer Radiation source: rotating anode Multilayer monochromator Detector resolution: 14.22 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2009) $T_{\min} = 0.790, T_{\max} = 0.829$	7216 measured reflections 3212 independent reflections 2252 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 27.9^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -9 \rightarrow 9$ $k = -11 \rightarrow 11$ $l = -11 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.086$ S = 0.99	 3212 reflections 198 parameters 0 restraints Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0231P)^2]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
and constrained refinement	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.2733 (3)	0.1538 (3)	1.0896 (2)	0.0102 (5)
C2	0.2003 (3)	0.1293 (3)	0.9482 (2)	0.0102 (5)
C3	0.0546 (3)	0.9542 (3)	0.47271 (19)	0.0089 (5)
C4	0.5721 (3)	0.4615 (3)	0.53280 (19)	0.0092 (5)
C5	0.6807 (3)	0.4989 (3)	0.2349 (2)	0.0207 (6)
H5A	0.7195	0.5685	0.3141	0.031*
H5B	0.5433	0.4548	0.2126	0.031*
H5C	0.7183	0.5586	0.1666	0.031*
C6	0.7357 (4)	0.3711 (3)	0.9294 (2)	0.0317 (7)
H6C	0.7999	0.4807	0.9621	0.048*
H6D	0.5989	0.3535	0.9151	0.048*
H6E	0.7658	0.3478	0.8490	0.048*
Cu1	0.5000	0.0000	1.0000	0.01296 (13)
N1	0.3058 (2)	0.0743 (2)	0.89207 (16)	0.0131 (4)
N2	0.4170 (2)	0.0981 (2)	1.12976 (16)	0.0105 (4)
N3	0.1956 (2)	0.2296 (2)	1.16254 (18)	0.0165 (5)
H3A	0.2423	0.2452	1.2454	0.020*
H3B	0.0982	0.2636	1.1274	0.020*
N4	0.0410 (2)	0.1635 (2)	0.89006 (17)	0.0163 (5)
H4A	0.0011	0.1485	0.8067	0.020*
H4B	-0.0236	0.2010	0.9353	0.020*
N5	0.1797 (2)	1.0348 (2)	0.41876 (16)	0.0100 (4)
N6	0.0166 (3)	0.7998 (2)	0.48310 (18)	0.0168 (5)
H6A	0.0792	0.7436	0.4517	0.020*
H6B	-0.0710	0.7546	0.5214	0.020*
N7	0.7401 (2)	0.5552 (2)	0.58021 (17)	0.0118 (4)
N8	0.5201 (2)	0.3067 (2)	0.53953 (18)	0.0172 (5)
H8A	0.6030	0.2596	0.5788	0.021*
H8B	0.4030	0.2519	0.5047	0.021*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

0.50028 (19)	0.11732 (19)	1.25853 (13)	0.0127 (4)
0.2404 (2)	0.0421 (2)	0.76012 (14)	0.0200 (4)
0.3155	0.0041	0.7315	0.030*
0.86131 (19)	0.46482 (19)	0.63897 (15)	0.0158 (4)
0.9731	0.5217	0.6610	0.024*
0.2651 (2)	0.93020 (19)	0.36628 (14)	0.0130 (4)
0.3493	0.9817	0.3336	0.019*
0.7699 (2)	0.3745 (2)	0.25156 (15)	0.0168 (4)
0.688 (3)	0.305 (3)	0.267 (2)	0.025*
0.7980 (2)	0.2702 (2)	1.02027 (16)	0.0238 (5)
0.791 (4)	0.308 (3)	1.085 (3)	0.036*
	0.50028 (19) 0.2404 (2) 0.3155 0.86131 (19) 0.9731 0.2651 (2) 0.3493 0.7699 (2) 0.688 (3) 0.7980 (2) 0.791 (4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0102 (11)	0.0089 (13)	0.0107 (12)	-0.0007 (10)	0.0048 (9)	0.0005 (9)
C2	0.0085 (11)	0.0089 (13)	0.0121 (12)	-0.0014 (10)	0.0041 (9)	0.0038 (9)
C3	0.0072 (11)	0.0099 (13)	0.0082 (11)	0.0025 (10)	-0.0006 (9)	0.0002 (9)
C4	0.0116 (11)	0.0100 (13)	0.0073 (11)	0.0026 (10)	0.0054 (9)	0.0003 (9)
C5	0.0196 (13)	0.0204 (16)	0.0233 (14)	0.0076 (12)	0.0047 (11)	0.0038 (11)
C6	0.0400 (17)	0.0313 (19)	0.0320 (17)	0.0188 (15)	0.0132 (13)	0.0151 (14)
Cu1	0.0131 (2)	0.0178 (3)	0.0095 (2)	0.00752 (19)	0.00211 (16)	0.00014 (17)
N1	0.0129 (10)	0.0201 (13)	0.0062 (10)	0.0060 (9)	0.0005 (8)	0.0006 (8)
N2	0.0082 (9)	0.0146 (11)	0.0079 (10)	0.0026 (8)	0.0010 (7)	0.0004 (8)
N3	0.0149 (10)	0.0232 (13)	0.0136 (11)	0.0109 (10)	0.0019 (8)	-0.0016 (9)
N4	0.0150 (10)	0.0236 (13)	0.0110 (10)	0.0086 (10)	0.0013 (8)	-0.0006 (9)
N5	0.0102 (9)	0.0090 (11)	0.0126 (10)	0.0047 (8)	0.0038 (8)	0.0002 (8)
N6	0.0185 (11)	0.0108 (12)	0.0279 (12)	0.0046 (9)	0.0177 (9)	0.0049 (9)
N7	0.0083 (9)	0.0109 (11)	0.0171 (10)	0.0055 (8)	0.0017 (8)	0.0025 (8)
N8	0.0085 (9)	0.0082 (11)	0.0307 (12)	0.0021 (9)	-0.0032 (8)	0.0016 (9)
01	0.0122 (8)	0.0186 (10)	0.0067 (8)	0.0030 (7)	0.0025 (6)	0.0010(7)
O2	0.0206 (9)	0.0349 (12)	0.0080 (8)	0.0158 (9)	0.0013 (7)	-0.0009 (8)
O3	0.0085 (8)	0.0121 (10)	0.0238 (9)	0.0039 (7)	-0.0030 (7)	0.0029 (7)
O4	0.0143 (8)	0.0118 (9)	0.0185 (9)	0.0053 (7)	0.0131 (7)	0.0032 (7)
05	0.0125 (9)	0.0142 (11)	0.0210 (10)	-0.0002 (8)	0.0031 (7)	0.0030 (8)
06	0.0330(10)	0.0288(12)	0.0191 (10)	0.0202(9)	0.0114(8)	0.0069 (8)

Geometric parameters (Å, °)

C1—N2	1.300 (3)	Cu1—N2 ⁱⁱⁱ	1.9349 (18)
C1—N3	1.344 (3)	Cu1—N2	1.9349 (18)
C1—C2	1.496 (3)	Cu1—O6	2.797 (2)
C2—N1	1.285 (3)	N1—O2	1.397 (2)
C2—N4	1.340 (3)	N2—O1	1.380 (2)
C3—N5	1.299 (3)	N3—H3A	0.8800
C3—N6	1.340 (3)	N3—H3B	0.8800
C3-C3 ⁱ	1.494 (4)	N4—H4A	0.8800
C4—N7	1.302 (3)	N4—H4B	0.8800

supporting information

C4—N8	1.337 (3)	N5—O4	1.430(2)
C4—C4 ⁱⁱ	1.493 (4)	N6—H6A	0.8800
C5—O5	1.431 (3)	N6—H6B	0.8800
С5—Н5А	0.9800	N7—O3	1.428 (2)
С5—Н5В	0.9800	N8—H8A	0.8800
С5—Н5С	0.9800	N8—H8B	0.8800
C6—O6	1.437 (3)	O2—H2	0.8400
С6—Н6С	0.9800	O3—H3	0.8400
C6—H6D	0.9800	O4—H4	0.8400
С6—Н6Е	0.9800	O5—H5	0.81 (3)
Cu1—N1 ⁱⁱⁱ	1 9314 (18)	06—H6	0.79(2)
Cu1—N1	1 9314 (18)		0.73 (2)
Cui IVI	1.9514 (10)		
N2—C1—N3	125.9 (2)	N1—Cu1—O6	97.31 (8)
N2-C1-C2	112.90 (18)	N2 ⁱⁱⁱ —Cu1—O6	90.37 (7)
N3—C1—C2	121.17 (19)	N2—Cu1—O6	89.63 (7)
N1	125.4 (2)	C2—N1—O2	115.67 (16)
N1—C2—C1	112.98 (18)	C2—N1—Cu1	116.25 (15)
N4—C2—C1	121.63 (19)	O2—N1—Cu1	126.33 (13)
N5—C3—N6	126.10 (19)	C1—N2—O1	118.35 (17)
N5-C3-C3 ⁱ	115.4 (3)	C1—N2—Cu1	115.95 (15)
N6-C3-C3 ⁱ	118.5 (3)	O1—N2—Cu1	125.67 (13)
N7—C4—N8	125.9 (2)	C1—N3—H3A	120.0
N7-C4-C4 ⁱⁱ	115.2 (3)	C1—N3—H3B	120.0
N8-C4-C4 ⁱⁱ	118.8 (2)	H3A—N3—H3B	120.0
O5—C5—H5A	109.5	C2—N4—H4A	120.0
O5—C5—H5B	109.5	C2—N4—H4B	120.0
H5A—C5—H5B	109.5	H4A—N4—H4B	120.0
O5—C5—H5C	109.5	C3—N5—O4	108.74 (18)
H5A—C5—H5C	109.5	C3—N6—H6A	120.0
H5B—C5—H5C	109.5	C3—N6—H6B	120.0
O6—C6—H6C	109.5	H6A—N6—H6B	120.0
06—C6—H6D	109.5	C4—N7—O3	108.65 (19)
H6C—C6—H6D	109.5	C4—N8—H8A	120.0
06—C6—H6E	109.5	C4—N8—H8B	120.0
Н6С—С6—Н6Е	109.5	H8A—N8—H8B	120.0
H6D—C6—H6E	109.5	N1-02-H2	109.5
$N1^{iii}$ —Cu1—N1	179,999 (1)	N7-03-H3	109.5
$N1^{iii}$ —Cu1— $N2^{iii}$	80.90 (8)	N5-04-H4	109.5
$N1 - Cu1 - N2^{iii}$	99 10 (8)	C5-05-H5	101.6 (18)
$N1^{iii}$ —Cu1—N2	99.10 (8)	C6	108.13(15)
N1 - Cu1 - N2	80.90 (8)	С6—О6—Н6	104 (2)
$N2^{iii}$ —Cu1—N2	179 999 (1)	Cu106H6	97 (2)
$N1^{ii}$ —Cu1—O6	82.69 (8)	Cui 00 110	27 (2)
111 041 00	02.07 (0)		
N2-C1-C2-N1	-7.5 (3)	N3—C1—N2—Cu1	-178.33(18)
N3—C1—C2—N1	171.1 (2)	C2-C1-N2-Cu1	0.2 (3)
N2-C1-C2-N4	172.8 (2)	N1 ⁱⁱⁱ —Cu1—N2—C1	-175.60 (18)
	× /		(-)

supporting information

$N3-C1-C2-N4 \\ N4-C2-N1-O2 \\ C1-C2-N1-O2 \\ N4-C2-N1-Cu1 \\ C1-C2-N1-Cu1 \\ N2^{iii}-Cu1-N1-C2 \\ N2-Cu1-N1-C2 \\ O6-Cu1-N1-C2 \\ N2^{iii}-Cu1-N1-O2 \\ N2-Cu1-N1-O2 \\ N2-Cu1-N1-O2 \\ N3-C1-N2-O1 \\ N3-C1-N2$	$\begin{array}{r} -8.6 (4) \\ -3.1 (4) \\ 177.20 (19) \\ -168.98 (19) \\ 11.3 (3) \\ 171.00 (17) \\ -9.00 (17) \\ -97.45 (18) \\ 6.80 (19) \\ -173.20 (19) \\ 98.35 (17) \\ -0.2 (4) \end{array}$	$\begin{array}{c} N1-Cu1-N2-C1\\ 06-Cu1-N2-C1\\ N1^{iii}-Cu1-N2-O1\\ N1-Cu1-N2-O1\\ 06-Cu1-N2-O1\\ 06-Cu1-N2-O1\\ N6-C3-N5-O4\\ C3^{i}-C3-N5-O4\\ N8-C4-N7-O3\\ C4^{ii}-C4-N7-O3\\ C4^{ii}-C4-N7-O3\\ N1^{iii}-Cu1-O6-C6\\ N1-Cu1-O6-C6\\ N2^{iii}-Cu1-O6-C6\\ \end{array}$	$\begin{array}{c} 4.40\ (18)\\ 101.86\ (18)\\ 6.43\ (18)\\ -173.57\ (18)\\ -76.10\ (17)\\ 2.8\ (3)\\ -177.3\ (2)\\ 1.0\ (3)\\ -179.8\ (2)\\ 169.14\ (15)\\ -10.87\ (15)\\ 88.36\ (15) \end{array}$
N3—C1—N2—O1	-0.2 (4)	N2 ⁱⁱⁱ —Cu1—O6—C6	88.36 (15)
C2—C1—N2—O1	178.31 (17)	N2—Cu1—O6—C6	-91.64 (15)

Symmetry codes: (i) -*x*, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*, -*z*+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O2—H2···O1 ⁱⁱⁱ	0.84	1.96	2.737 (3)	154
O3—H3···O5 ^{iv}	0.84	1.92	2.744 (3)	166
O4—H4···O1 ^v	0.84	1.79	2.621 (3)	169
O5—H5···O1 ^{vi}	0.81 (2)	1.87 (3)	2.657 (3)	164 (2)
O6—H6····O5 ^{vii}	0.79 (3)	1.94 (3)	2.721 (3)	173 (3)
N3—H3A····N7 ^{viii}	0.88	2.50	3.195 (3)	136
N3—H3 <i>B</i> ···O6 ^{ix}	0.88	2.32	3.167 (3)	162
N4—H4 <i>A</i> ···O4 ^x	0.88	2.35	3.112 (3)	145
N4—H4 <i>B</i> ···O6 ^{ix}	0.88	2.00	2.878 (3)	172
N6—H6A····O3 ⁱⁱ	0.88	2.26	3.097 (3)	159
N6—H6B···N7 ^{ix}	0.88	2.19	3.007 (3)	155
N8—H8A····O4 ⁱⁱ	0.88	2.20	3.043 (3)	159
N8—H8 <i>B</i> ···N5 ^{xi}	0.88	2.21	3.031 (3)	154

Symmetry codes: (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*, -*z*+2; (iv) -*x*+2, -*y*+1, -*z*+1; (v) *x*, *y*+1, *z*-1; (vi) *x*, *y*, *z*-1; (vii) *x*, *y*, *z*+1; (viii) -*x*+1, -*y*+1, -*z*+2; (ix) *x*-1, *y*, *z*; (x) -*x*, -*y*+1, -*z*+1; (xi) *x*, *y*-1, *z*.