

metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[µ-aqua-diaquabis[µ-2-cyano-2-(oxidoimino)acetato]copper(II)dipotassium]

Irina A. Golenya,^a Yulia A. Izotova,^b Natalia I. Usenko,^a Valentina A. Kalibabchuk^c* and Natalia V. Kotova^a

^aKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kiev, Ukraine, ^bDepartment of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, and ^cDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine Correspondence e-mail: kalibabchuk@ukr.net

Received 18 August 2012; accepted 22 August 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.024; w*R* factor = 0.062; data-to-parameter ratio = 15.6.

In the title compound, $[CuK_2(C_3N_2O_3)_2(H_2O)_3]_n$, the Cu²⁺ atom is in a distorted square-pyramidal coordination geometry. Two N atoms belonging to the oxime groups and two O atoms belonging to the carboxylate groups of two *trans*disposed doubly deprotonated residues of 2-cyano-2-(hydroxyimino)acetic acid make up the basal plane and the apical position is occupied by the water molecule. The neighboring Cu-containing moieties are linked into a threedimensional framework by K–O and K–N contacts formed by two potassium cations with the carboxylate and the oxime O atoms and the nitrile N atoms of the ligand. The environments of the K⁺ cations are complemented to octaand nonacoordinated, by K–O contacts with H₂O molecules. The crystal structure features O–H···O hydrogen bonds.

Related literature

For the use of mononuclear complexes in the preparation of polynuclear complexes, see: Kahn (1993); Goodwin *et al.* (2000); Krämer & Fritsky (2000); Fritsky *et al.* (2001, 2003); Wörl *et al.* (2005). For the use of derivatives of 2-hydroxyiminocarboxylic acids and their derivatives as versatile ligands, see: Dvorkin *et al.* (1990*a,b*); Lampeka *et al.* (1989); Skopenko *et al.* (1990); Sachse *et al.* (2008); Fritsky *et al.* (1998, 2006); Kanderal *et al.* (2005); Moroz *et al.* (2008, 2010, 2012). For metal complexes of 2-cyano-2-(hydroxyimino)acetic acid, see: Sliva *et al.* (1998); Mokhir *et al.* (2002); Eddings *et al.* (2004). For related structures, see: Duda *et al.* (1997); Fritsky *et al.* (2004); Onindo *et al.* (1995); Sliva *et al.* (2004). For the synthesis of the ligand, see: Sliva *et al.* (2004). For the

Experimental

Crystal data [CuK₂(C₃N₂O₃)₂(H₂O)₃] $M_r = 419.89$ Monoclinic, P_{2_1}/c a = 8.767 (2) Å b = 12.426 (3) Å c = 13.159 (5) Å $\beta = 108.26$ (3)°

Data collection

Nonius KappaCCD area-detector diffractometer Absorption correction: multi-scan (DENZO/SCALEPACK; Otwi-

nowski & Minor, 1997) $T_{\min} = 0.657, T_{\max} = 0.859$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.062$ S = 1.093189 reflections 205 parameters

cation: SHELXL97.

Mo $K\alpha$ radiation $\mu = 2.27 \text{ mm}^{-1}$ T = 100 K $0.24 \times 0.16 \times 0.07 \text{ mm}$

V = 1361.3 (7) Å³

Z = 4

9166 measured reflections 3189 independent reflections 3006 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$

4 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.56 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.56 \text{ e } \text{ Å}^{-3}$

Table 1

		0	
Hydrogen-bond	geometry	(A,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$O1W-H11W\cdots O3A^{i}$	0.89	1.85	2.7257 (19)	171	
$O1W - H21W \cdot \cdot \cdot O3^{ii}$	0.80	1.96	2.6910 (19)	151	
$O2W - H12W \cdot \cdot \cdot O1^{iii}$	0.81	2.19	2.993 (2)	173	
$O2W-H22W\cdots O3A^{i}$	0.92	2.02	2.926 (2)	164	
Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x - 1, y, z$.					

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2009); software used to prepare material for publi-

This work was supported by the State Fund for Fundamental Researches of Ukraine (grant No. F40.3/041), the Russian Fund for Basic Research (grants11–03-00262 and 11– 03-90417) and the Federal Targeted Program Scientific and Scientific-Pedagogical Personnel of Innovative Russia in 2009–2013 (contract P1294 from 09/06/2010). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2047).

References

- Brandenburg, K. (2009). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De
- Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T.,
- Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, I., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859.
- Dvorkin, A. A., Fritskii, I. O., Simonov, I. A., Lampeka, R. D., Mazus, M. D. & Malinovskii, T. I. (1990a). Dokl. Akad. Nauk SSSR, **310**, 87–90.
- Dvorkin, A. A., Simonov, I. A., Skopenko, V. V., Fritskii, I. O. & Lampeka, R. D. (1990b). Dokl. Akad. Nauk SSSR, 313, 98–101.
- Eddings, D., Barnes, C., Gerasimchuk, N., Durham, P. & Domasevich, K. (2004). Inorg. Chem. 43, 3894–3909.
- Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). *Chem. Commun.* pp. 4125–4127.
- Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.
- Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221– 1231.
- Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Inorg. Chim. Acta, 346, 111–118.
- Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). *Inorg. Chim. Acta*, 357, 3746–3752.
- Goodwin, J. C., Sessoli, R. & Gatteschi, D. (2000). J. Chem. Soc. Dalton Trans. pp. 1835–1840.
- Kahn, O. (1993). In Molecular Magnetism. New York: VCH.
- Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). *Dalton Trans.* pp. 1428–1437.

- Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880-881.
- Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.
- Lampeka, R. D., Dvorkin, A. A., Simonov, Y. A., Fritsky, I. O. & Skopenko, V. V. (1989). Ukr. Khim. Zh. 55, 458–461.
- Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). *Inorg. Chim. Acta*, **329**, 113–121.
- Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). *Inorg. Chem.* 51, 7445–7447.
- Moroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). *Inorg. Chem.* 47, 5656–5665.
- Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). *Inorg. Chem.* 49, 4750–4752.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). *J. Chem. Soc. Dalton Trans.* pp. 3911–3915.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Skopenko, V. V., Lampeka, R. D. & Fritskii, I. O. (1990). Dokl. Akad. Nauk SSSR, 312, 123–128.
- Sliva, T. Y., Dobosz, A., Jerzykiewicz, L., Karaczyn, A., Moreeuw, A. M., Świątek-Kozłowska, J., Głowiak, T. & Kozłowski, H. (1998). J. Chem. Soc. Dalton Trans. pp. 1863–1868.
- Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.
- Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.
- Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29.

supporting information

Acta Cryst. (2012). E68, m1303-m1304 [https://doi.org/10.1107/S1600536812036641]

Poly[µ-aqua-diaquabis[µ-2-cyano-2-(oxidoimino)acetato]copper(II)dipotassium] Irina A. Golenya, Yulia A. Izotova, Natalia I. Usenko, Valentina A. Kalibabchuk and Natalia V. Kotova

S1. Comment

Many reported mononuclear complexes of 3 d-metals contains vacant donor atoms or chelate centers, so that they can be considered as ligands for preparation of homo- and heteropolynuclear systems which are widely used in bioinorganic modeling, catalysis and in molecular magnetism (Kahn, 1993; Goodwin *et al.*, 2000; Krämer *et al.*, 2000; Fritsky *et al.*, 2001; Fritsky *et al.*, 2003; Wörl *et al.*, 2005). Polydentate ligands containing oxime and carboxylic groups attract particular attention due to their potential for the bridging mode of coordination and mediation of strong magnetic exchange interactions between metal ions (Lampeka *et al.*, 1989; Dvorkin *et al.*, 1990*a*, 1990*b*; Skopenko *et al.*, 1990; Sachse *et al.*, 2008; Moroz *et al.*, 2008, 2010, 2012) and for preparation of metal complexes with efficient stabilization of unusually high oxidation states of 3 d-metal ions like copper(III) and nickel(III) (Fritsky *et al.*, 1998; Kanderal *et al.*, 2005; Fritsky *et al.*, 2006). 2-cyano-2-(hydroxyimino)acetic acid (aaco) is an efficient chelating ligand for Cu(II) and Ni(II) ions (Sliva *et al.*, 1998; Mokhir *et al.*, 2002). To date, only one heterometallic complex containing this ligand K₂[Pd(aaco-2H)₂].4H₂O has been structurally characterized (Eddings *et al.*, 2004). Herein we report the second heterometallic complex based on 2-cyan-2-hydroxyiminoacetic acid.

The title compound, [K₂Cu(C₃N₂O₃)₂(H₂O)₃]_n, has an ionic structure containing 2- charged Cu(II)-centered complex anions, potassium cations and water molecules (Fig. 1). The Cu atom is in a distorted square-pyramidal geometry, defined by two N atoms belonging to the oxime groups and two O atoms belonging to the carboxylic groups of two *trans*disposed doubly deprotonated residues of 2-cyano-2-(hydroxyimino)acetic acid. The apical position is occupied by the water molecule O1W which also serves as a bridge between Cu1 and K1 ions. The coordination bond lengths Cu—N and Cu—O (Table 1) are typical for square-pyramidal Cu(II) complexes with deprotonated oxime and carboxylate donors (Sliva *et al.*, 1997; Kanderal *et al.*, 2005). The bite angles around the central atom deviate from an ideal square-planar configuration [*e.g.* O2—Cu1—N1 = 82.89 (6)°], which is a consequence of the formation of five-membered chelate rings. The bond lengths C—O, N—O and C—N in the coordinated 2-oximinocarboxylate ligand are typical for copper(II) complexes with cyanoximes and carboxylates (Onindo *et al.*, 1995; Duda *et al.*, 1997; Fritsky *et al.*, 2004;).

The potassium cations K1 and K2 are bound to the copper(II) complex anion in a chelate fashion *via* the oxime oxygen (O1A and O1, respectively) and the carboxylic oxygen (O2 and O2A, respectively) atoms. Such coordination of two potassium cations from the different side of the complex anion results in a closed metallamacrocylic framework. Both potassium cations also forms additional K—O and K—N contacts with the carboxylic and the oxime O atoms and the nitrile N atoms of the neighboring Cu complex anions thus uniting them in a three-dimensional framework (Fig. 2). The environments of K1 and K2 potassium cation are complemented to octa- and nona-coordinated, respectively, by K—O contacts with H₂O molecules. The K—O and K—N bond lengths are normal for potassium cations and close to those reported in the structures of the carboxylate and the oximate complexes (Fritsky *et al.*, 1998; Świątek-Kozłowska *et al.*,

2000; Kovbasyuk *et al.*, 20040). The crystal structure involves intermolecular O—H…O hydrogen bonds where the water molecules act as donors, and the carboxylic and the oxime O atoms act as acceptors (Table 2).

S2. Experimental

 $Cu(NO_3)_2.3H_2O$ (0.242 g, 1 mmol) was dissolved in water (3 ml) and added to the methanolic solution (15 ml) of 2cyano-2-(hydroxyimino)acetic acid (0.228 g, 2 mmol), synthesizsed according to Sliva *et al.*, 1998). To the obtained mixture, aqueous solution of potassium hydroxide (1*M*, 4 ml) was added with vigorous stirring at room temperature. The obtained transparent solution was stirred 20 min. and then set aside for crystallization at ambient temperature. Bright brown crystals were separated by filtration after 72 h, washed with cold water (10 ml) and dried (yield 78%). Analysis calculated for C₆H₆Cu $K_2N_4O_9$: C 17.16, H 1.44, N 13.34%; found: C 17.10, H 1.53, N 13.42%.

S3. Refinement

The H atoms of the water molecule were located at the difference Fourier map and their coordinates were allowed to ride on the coordinates of the parent atom with $U_{iso}(H) = 1.5U_{eq}$.

Figure 1

A view of compound (I), with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. Symmetry codes: (i) -*x*, -*y* + 1, -*z*; (ii) -*x* + 1, *y* - 1/2, -*z* + 1/2; (iii) -*x* + 1, -*y* + 1, -*z*; (iv) *x* - 1, -*y* + 1/2, *z* - 1/2; (v) -*x* + 1, *y* + 1/2, -*z* + 1/2; (vi) *x* + 1, -*y* + 3/2, *z* + 1/2; (vii) -*x* + 2, *y* + 1/2, -*z* + 1/2.

Figure 2

A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines.

Poly[µ-aqua-diaquabis[µ-2-cyano-2-(oxidoimino)acetato]copper(II)dipotassium]

Crystal data	
$[CuK_2(C_3N_2O_3)_2(H_2O)_3]$	F(000) = 836
$M_r = 419.89$	$D_{\rm x} = 2.049 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3744 reflections
a = 8.767 (2) Å	$\theta = 1.0-27.5^{\circ}$
b = 12.426 (3) Å	$\mu = 2.27 \text{ mm}^{-1}$
c = 13.159(5) Å	T = 100 K
$\beta = 108.26 (3)^{\circ}$	Block, brown
V = 1361.3 (7) Å ³	$0.24 \times 0.16 \times 0.07 \text{ mm}$
Z = 4	
Data collection	
Nonius KappaCCD area-detector	9166 measured reflections
diffractometer	3189 independent reflections
Radiation source: fine-focus sealed tube	3006 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.043$
ωscans	$\theta_{\rm max} = 28.4^\circ, \ \theta_{\rm min} = 3.7^\circ$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(DENZO/SCALEPACK; Otwinowski & Minor,	$k = -15 \rightarrow 15$
1997)	$l = -14 \rightarrow 17$
$T_{\min} = 0.657, \ T_{\max} = 0.859$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.062$	neighbouring sites
S = 1.09	H-atom parameters constrained
3189 reflections	$w = 1/[\sigma^2(F_o^2) + (0.028P)^2 + 0.9392P]$
205 parameters	where $P = (F_o^2 + 2F_c^2)/3$
4 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	0.53009 (2)	0.529307 (15)	0.136932 (15)	0.00981 (7)
K1	0.10262 (4)	0.38634 (3)	-0.06404(3)	0.01425 (9)
K2	0.86027 (5)	0.61378 (3)	0.38164 (3)	0.01645 (9)
01	0.86577 (14)	0.45133 (10)	0.22512 (10)	0.0138 (2)
O1A	0.20044 (14)	0.60207 (10)	0.03346 (10)	0.0151 (2)
O2	0.41091 (14)	0.39928 (10)	0.08061 (10)	0.0139 (2)
O2A	0.65548 (14)	0.66325 (10)	0.16771 (9)	0.0117 (2)
O3	0.43256 (15)	0.22059 (10)	0.09720 (10)	0.0160 (3)
O3A	0.61938 (14)	0.84124 (10)	0.16679 (10)	0.0140 (2)
O1W	0.52488 (16)	0.52800 (10)	0.30436 (10)	0.0160 (3)
H11W	0.4781 (7)	0.4699 (8)	0.3201 (2)	0.024*
H21W	0.5029 (3)	0.5835 (8)	0.3278 (3)	0.024*
O2W	0.10231 (16)	0.33982 (12)	0.13939 (11)	0.0205 (3)
H12W	0.0333 (11)	0.3648 (4)	0.1612 (4)	0.031*
H22W	0.1900 (14)	0.3541 (3)	0.1987 (10)	0.031*
O3W	0.89136 (15)	0.65821 (11)	0.59001 (11)	0.0194 (3)
H13W	0.8132 (13)	0.6471 (2)	0.6103 (4)	0.029*
H23W	0.9754 (14)	0.6349 (4)	0.6428 (9)	0.029*
N1	0.71631 (17)	0.42739 (12)	0.18069 (11)	0.0111 (3)
N1A	0.34617 (17)	0.62774 (12)	0.07855 (11)	0.0113 (3)
N2	0.86325 (19)	0.16875 (13)	0.23004 (13)	0.0203 (3)
N2A	0.19141 (19)	0.88673 (13)	0.03683 (13)	0.0186 (3)
C1	0.7741 (2)	0.23825 (14)	0.20181 (13)	0.0125 (3)
C1A	0.2811 (2)	0.81670 (14)	0.06281 (13)	0.0128 (3)
C2	0.66627 (19)	0.32726 (14)	0.16742 (13)	0.0111 (3)

supporting information

C2A	0.3926 (2)	0.72992 (14)	0.09515 (13)	0.0114 (3)
C3	0.4904 (2)	0.31178 (13)	0.11168 (13)	0.0114 (3)
C3A	0.5671 (2)	0.74813 (14)	0.14657 (13)	0.0109 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.00914 (11)	0.00802 (11)	0.01111 (11)	0.00006 (7)	0.00152 (8)	-0.00062 (7)
K1	0.01241 (17)	0.01672 (18)	0.01307 (17)	-0.00156 (13)	0.00320 (13)	-0.00110 (13)
K2	0.01638 (18)	0.01814 (19)	0.01222 (17)	0.00000 (14)	0.00070 (14)	-0.00195 (13)
01	0.0092 (5)	0.0152 (6)	0.0157 (6)	-0.0015 (4)	0.0020 (5)	-0.0016 (5)
O1A	0.0103 (6)	0.0166 (6)	0.0168 (6)	-0.0026 (5)	0.0019 (5)	-0.0013 (5)
O2	0.0106 (5)	0.0111 (6)	0.0173 (6)	0.0003 (4)	0.0006 (5)	-0.0008 (4)
O2A	0.0103 (5)	0.0101 (5)	0.0142 (6)	0.0007 (4)	0.0029 (4)	0.0002 (4)
03	0.0155 (6)	0.0104 (6)	0.0197 (6)	-0.0020 (5)	0.0021 (5)	-0.0001 (5)
O3A	0.0138 (6)	0.0112 (6)	0.0165 (6)	-0.0003 (5)	0.0037 (5)	-0.0016 (5)
O1W	0.0230 (7)	0.0095 (6)	0.0175 (6)	-0.0016 (5)	0.0093 (5)	-0.0011 (4)
O2W	0.0131 (6)	0.0311 (7)	0.0163 (6)	0.0019 (5)	0.0033 (5)	-0.0007 (5)
O3W	0.0145 (6)	0.0269 (7)	0.0169 (6)	0.0023 (5)	0.0049 (5)	0.0017 (5)
N1	0.0110 (6)	0.0134 (7)	0.0088 (6)	0.0010 (5)	0.0030 (5)	-0.0006 (5)
N1A	0.0103 (6)	0.0138 (7)	0.0098 (6)	-0.0007 (5)	0.0034 (5)	-0.0002 (5)
N2	0.0195 (8)	0.0178 (8)	0.0200 (8)	0.0028 (6)	0.0010 (6)	0.0000 (6)
N2A	0.0147 (7)	0.0180 (8)	0.0212 (8)	0.0026 (6)	0.0029 (6)	0.0006 (6)
C1	0.0118 (7)	0.0140 (8)	0.0103 (7)	-0.0018 (6)	0.0015 (6)	-0.0009 (6)
C1A	0.0120 (7)	0.0149 (8)	0.0110 (7)	-0.0017 (6)	0.0028 (6)	-0.0017 (6)
C2	0.0115 (7)	0.0123 (7)	0.0093 (7)	0.0009 (6)	0.0030 (6)	0.0000 (6)
C2A	0.0117 (8)	0.0131 (8)	0.0094 (7)	0.0021 (6)	0.0036 (6)	0.0000 (6)
C3	0.0111 (7)	0.0140 (8)	0.0085 (7)	-0.0004 (6)	0.0023 (6)	0.0006 (6)
C3A	0.0112 (7)	0.0139 (8)	0.0080 (7)	0.0014 (6)	0.0038 (6)	0.0008 (6)

Geometric parameters (Å, °)

Cu1—O2	1.9407 (14)	O2—C3	1.287 (2)
Cu1—O2A	1.9656 (14)	O2A—C3A	1.287 (2)
Cu1—N1A	1.9774 (16)	O2A—K1 ⁱⁱⁱ	2.9244 (15)
Cu1—N1	2.0029 (16)	O3—C3	1.231 (2)
Cu1—O1W	2.2181 (15)	O3—K2 ⁱⁱ	2.9795 (16)
K1—O2W	2.7395 (17)	O3A—C3A	1.242 (2)
K1—O2	2.7803 (16)	O1W—H11W	0.8863
K1—O1A ⁱ	2.8128 (14)	O1W—H21W	0.8027
K1—O3W ⁱⁱ	2.8578 (16)	O2W—K2 ⁱⁱ	2.8513 (17)
K1—O2A ⁱⁱⁱ	2.9244 (15)	O2W—H12W	0.8088
K1—N2 ^{iv}	2.941 (2)	O2W—H22W	0.9250
K1—01A	2.9795 (16)	O3W—K1 ^v	2.8578 (16)
K1—O1 ⁱⁱⁱ	3.0011 (16)	O3W—H13W	0.8215
K2—O3W	2.7255 (17)	O3W—H23W	0.8882
K2—O2W ^v	2.8513 (17)	N1—C2	1.313 (2)
K2—O2A	2.8911 (18)	N1—K1 ⁱⁱⁱ	3.4294 (18)

supporting information

K2—O1	2.8951 (16)	N1A—C2A	1.330 (2)
K2—O3 ^v	2.9795 (16)	N2—C1	1.146 (2)
K2—N2A ^{vi}	2.981 (2)	N2—K1 ^{viii}	2.941 (2)
K2—O1W	2.9904 (17)	N2—K2 ^{ix}	3.2763 (19)
K2—N2A ⁱⁱ	3.1018 (19)	N2A—C1A	1.151 (2)
K2—N2 ^{vii}	3.2763 (19)	N2A—K2 ^x	2.981 (2)
K2—N1	3.444 (2)	N2A—K2 ^v	3.1018 (18)
O1—N1	1.2911 (19)	C1—C2	1.433 (2)
O1—K1 ⁱⁱⁱ	3.0011 (16)	C1A—C2A	1.428 (2)
O1A—N1A	1.2692 (19)	C2—C3	1.498 (2)
O1A—K1 ⁱ	2.8128 (14)	C2A—C3A	1.483 (2)
O2—Cu1—O2A	169.44 (5)	O2W ^v —K2—N2 ^{vii}	68.12 (5)
O2—Cu1—N1A	95.20 (6)	O2A—K2—N2 ^{vii}	80.79 (5)
O2A—Cu1—N1A	83.78 (6)	O1—K2—N2 ^{vii}	69.31 (5)
O2—Cu1—N1	82.89 (6)	O3 ^v —K2—N2 ^{vii}	136.83 (4)
O2A—Cu1—N1	97.08 (6)	$N2A^{vi}$ $K2 N2^{vii}$	66.99 (5)
N1A—Cu1—N1	174.16 (6)	$01W - K2 - N2^{vii}$	135.12 (4)
Ω_{2} Ω_{1} Ω_{1} Ω_{1} Ω_{1} Ω_{2} Ω_{1} Ω_{1} Ω_{2} Ω_{2} Ω_{1} Ω_{2} Ω_{2	101.37 (6)	$N2A^{ii}$ $K2$ $N2^{vii}$	123.61(5)
02A—Cu1—O1W	89 19 (6)	O3W - K2 - Cu1	13680(4)
N1A—Cu1—O1W	97.03 (6)	$O^2W^v - K^2 - Cu^1$	105.00(1) 105.92(4)
N1—Cu1—O1W	88 76 (6)	O2A-K2-Cu1	31.24(3)
Ω^2 — $Cu1$ — K^2	137 80 (4)	O1-K2-Cu1	51.18 (3)
$O_2 A - C_{11} - K_2$	49 71 (4)	$O_{3^{v}}$ K2 Cul	75 44 (4)
N1A $Cu1$ $K2$	118 52 (5)	$N_2 \Delta^{vi} K_2 C_{u1}$	156.01(4)
N1 - Cu1 - K2	65 73 (5)	$01W - K^2 - Cu^1$	3634(3)
$\Omega_1 W = C_{11} = K^2$	53 03 (4)	$N2\Delta^{ii}$ $K2$ $Cu1$	83 40 (5)
$\Omega^2 - Cu1 - K2$	122 19 (4)	$N2^{vii}$ $K2^{-Cu1}$	98 86 (4)
O2 - Cu1 - K1	49 64 (4)	$N_2 = K_2 = Cul$	32.02(3)
N1A $Cu1$ $K1$	112 66 (5)	O3W - K2 - Cul	32.02(3)
$N1 - Cu1 - K1^{iii}$	64 30 (5)	$O2W^{v}$ $K2$ $K1^{v}$	41 71 (3)
M = Cu1 = K1 $\Omega = W = Cu1 = K1^{iii}$	12253(4)	O2A - K2 - K1	107 77 (4)
$K_2 = C_{11} = K_1^{111}$	69 53 (3)	$01-K^2-K^1$	167.26(3)
$\Omega^2 W K_1 \Omega^2$	69.00 (5)	$O_{3^{\text{V}}}$ K_{2} $K_{1^{\text{V}}}$	50.37(4)
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	65 22 (5)	$N_2 \Delta^{vi} K_2 K_1^v$	73 70 (5)
$O_2 K_1 O_1 \Lambda^i$	131 17 (A)	$O1W K2 K1^{v}$	112.48(4)
02 - K1 - 01A $02W - K1 - 03W^{ii}$	85.02 (5)	$N2A^{ii}$ $K2$ $K1^{v}$	112.40(4)
$O_2 K_1 O_3 W^{ii}$	95.02 (5)	$N2^{vii}$ K2 K1v	122.80(4)
$O_2 - K_1 - O_3 W^{ii}$	95.09 (5)	$\frac{1}{1} \frac{1}{1} \frac{1}$	161.23(3)
$O_2W = K_1 = O_2 \Lambda^{iii}$	120.37(5)	$C_{\rm H}1 = K^2 = K^1$	101.25(3) 120.25(3)
$O_2 W - K_1 - O_2 A_{iii}$	129.37(3)	Cu1 - K2 - K1 O2W - K2 - H21W	129.23(3)
02 - KI - 02A	158 03 (A)	$O_2W_V K_2 H_2 W$	104 1
$O_{1}A - K_{1} - O_{2}A$	138.93(4)	$O_2 = K_2 = H_2 I_W$	61.0
$O_{2W} = K_{1} = O_{2X}$	120.21 (5)	$O_2 A = K_2 = H_2 I W$	80.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	129.21(3) 154.70(5)	$O_1 - K_2 - H_2 I_W$	38.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73 17 (5)	$\frac{1}{121}$	J0.∠ 151 5
$OIA - KI - INZ^{*}$	73.17(3)	$M_{A} = K_{A} = M_{A} = M_{A}$	151.5
$\begin{array}{c} \mathbf{O} \mathbf{A} \mathbf{W}^{\prime \prime} \longrightarrow \mathbf{N} \mathbf{I} \longrightarrow \mathbf{N} \mathbf{A}^{\prime \prime \prime} \\ \mathbf{O} \mathbf{A} \mathbf{A} \mathbf{W}^{\prime \prime} \longrightarrow \mathbf{K} \mathbf{I} \longrightarrow \mathbf{N} \mathbf{A}^{\prime \prime \prime} \\ \mathbf{O} \mathbf{A} \mathbf{A} \mathbf{W}^{\prime \prime} \longrightarrow \mathbf{K} \mathbf{I} \longrightarrow \mathbf{N} \mathbf{A}^{\prime \prime \prime} \\ \mathbf{O} \mathbf{A} \mathbf{A} \mathbf{W}^{\prime \prime} \longrightarrow \mathbf{K} \mathbf{I} \longrightarrow \mathbf{N} \mathbf{A}^{\prime \prime \prime} \\ \mathbf{O} \mathbf{A} \mathbf{A} \mathbf{W}^{\prime \prime} \longrightarrow \mathbf{K} \mathbf{I} \longrightarrow \mathbf{N} \mathbf{A}^{\prime \prime \prime} \\ \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A}$	12.10(3)	$V_1 W - K_2 - H_2 I W$	13.4
UZA^{m} KI $NZ^{\prime\prime}$	00.19 (3)	$NZA^{-}-KZ-HZIW$	13.4

O2W—K1—O1A	81.80 (5)	N2 ^{vii} —K2—H21W	141.4
O2—K1—O1A	64.30 (5)	N1—K2—H21W	68.4
O1A ⁱ —K1—O1A	92.85 (4)	Cu1—K2—H21W	45.2
O3W ⁱⁱ —K1—O1A	158.48 (4)	K1 ^v —K2—H21W	97.3
O2A ⁱⁱⁱ —K1—O1A	103.74 (4)	N1—O1—K2	104.00 (9)
N2 ^{iv} —K1—O1A	129.20 (5)	N1—O1—K1 ⁱⁱⁱ	98.06 (9)
O2W—K1—O1 ⁱⁱⁱ	149.39 (4)	K2—O1—K1 ⁱⁱⁱ	93.42 (5)
O2—K1—O1 ⁱⁱⁱ	99.18 (5)	N1A—O1A—K1 ⁱ	141.06 (10)
O1A ⁱ —K1—O1 ⁱⁱⁱ	111.53 (5)	N1A—O1A—K1	122.63 (10)
O3W ⁱⁱ —K1—O1 ⁱⁱⁱ	124.96 (4)	K1 ⁱ —O1A—K1	87.15 (4)
O2A ⁱⁱⁱ —K1—O1 ⁱⁱⁱ	64.61 (4)	C3—O2—Cu1	114.14 (11)
N2 ^{iv} —K1—O1 ⁱⁱⁱ	72.71 (5)	C3—O2—K1	118.81 (10)
O1A—K1—O1 ⁱⁱⁱ	67.77 (4)	Cu1—O2—K1	126.95 (6)
O2W—K1—Cu1 ⁱⁱⁱ	124.58 (4)	C3A—O2A—Cu1	112.93 (11)
O2—K1—Cu1 ⁱⁱⁱ	55.64 (4)	C3A—O2A—K2	122.22 (10)
O1A ⁱ —K1—Cu1 ⁱⁱⁱ	159.87 (3)	Cu1—O2A—K2	99.04 (6)
O3W ⁱⁱ —K1—Cu1 ⁱⁱⁱ	101.26 (4)	C3A—O2A—K1 ⁱⁱⁱ	123.20 (10)
O2A ⁱⁱⁱ —K1—Cu1 ⁱⁱⁱ	30.81 (3)	Cu1—O2A—K1 ⁱⁱⁱ	99.55 (5)
N2 ^{iv} —K1—Cu1 ⁱⁱⁱ	104.42 (4)	K2—O2A—K1 ⁱⁱⁱ	95.14 (5)
O1A—K1—Cu1 ⁱⁱⁱ	72.96 (4)	C3—O3—K2 ⁱⁱ	136.08 (11)
O1 ⁱⁱⁱ —K1—Cu1 ⁱⁱⁱ	50.26 (3)	Cu1—O1W—K2	90.63 (5)
N1 ⁱⁱⁱ —K1—Cu1 ⁱⁱⁱ	31.75 (3)	Cu1—O1W—H11W	113.2
O2W—K1—K1 ⁱ	66.33 (4)	K2—O1W—H11W	133.5
O2—K1—K1 ⁱ	98.05 (4)	Cu1—O1W—H21W	117.2
$O1A^{i}$ — $K1$ — $K1^{i}$	48.16 (3)	K2—O1W—H21W	83.8
O3W ⁱⁱ —K1—K1 ⁱ	141.22 (3)	H11W—O1W—H21W	115.1
$O2A^{iii}$ —K1—K1 ⁱ	146.54 (3)	K1—O2W—K2 ⁱⁱ	94.45 (5)
$N2^{iv}$ — $K1$ — $K1^{i}$	105.52 (5)	K1—O2W—H12W	119.7
O1A—K1—K1 ⁱ	44.69 (3)	K2 ⁱⁱ —O2W—H12W	122.3
$O1^{iii}$ —K1—K1 ⁱ	88.64 (4)	K1—O2W—H22W	122.0
$N1^{iii}$ — $K1$ — $K1^{i}$	92.55 (3)	K2 ⁱⁱ —O2W—H22W	100.4
Cu1 ⁱⁱⁱ —K1—K1 ⁱ	116.27 (3)	H12W—O2W—H22W	98.2
O2W—K1—K2 ⁱⁱ	43.83 (4)	K2—O3W—K1 ^v	94.61 (5)
O2—K1—K2 ⁱⁱ	76.44 (4)	K2—O3W—H13W	117.5
O1A ⁱ —K1—K2 ⁱⁱ	82.18 (4)	K1 ^v —O3W—H13W	104.7
O3W ⁱⁱ —K1—K2 ⁱⁱ	41.44 (3)	K2—O3W—H23W	121.2
O2A ⁱⁱⁱ —K1—K2 ⁱⁱ	99.36 (4)	K1 ^v —O3W—H23W	112.0
N2 ^{iv} —K1—K2 ⁱⁱ	104.45 (5)	H13W—O3W—H23W	105.3
O1A—K1—K2 ⁱⁱ	122.09 (4)	O1—N1—C2	121.88 (14)
O1 ⁱⁱⁱ —K1—K2 ⁱⁱ	163.67 (3)	O1—N1—Cu1	127.20 (11)
N1 ⁱⁱⁱ —K1—K2 ⁱⁱ	148.83 (3)	C2—N1—Cu1	110.65 (11)
Cu1 ⁱⁱⁱ —K1—K2 ⁱⁱ	117.31 (3)	O1—N1—K1 ⁱⁱⁱ	60.05 (8)
K1 ⁱ —K1—K2 ⁱⁱ	107.48 (3)	C2—N1—K1 ⁱⁱⁱ	139.68 (11)
O3W—K2—O2W ^v	85.40 (5)	Cu1—N1—K1 ⁱⁱⁱ	83.94 (5)
O3W—K2—O2A	140.56 (4)	O1—N1—K2	54.66 (8)
O2W ^v —K2—O2A	75.60 (5)	C2—N1—K2	140.04 (11)
O3W—K2—O1	146.95 (4)	Cu1—N1—K2	82.25 (5)
O2W ^v —K2—O1	126.14 (4)	K1 ⁱⁱⁱ —N1—K2	77.30 (4)

O2A—K2—O1	66.37 (5)	O1A—N1A—C2A	121.87 (15)
O3W—K2—O3 ^v	68.49 (5)	O1A—N1A—Cu1	127.23 (12)
O2W ^v —K2—O3 ^v	72.48 (4)	C2A—N1A—Cu1	110.87 (11)
O2A—K2—O3 ^v	72.90 (5)	C1—N2—K1 ^{viii}	133.74 (14)
O1—K2—O3 ^v	125.73 (4)	C1—N2—K2 ^{ix}	122.50 (13)
O3W—K2—N2A ^{vi}	62.76 (5)	$K1^{viii}$ — $N2$ — $K2^{ix}$	87.14 (5)
O2W ^v —K2—N2A ^{vi}	87.22 (5)	C1A—N2A—K2 ^x	129.07 (13)
O2A—K2—N2A ^{vi}	147.35 (5)	C1A—N2A—K2 ^v	138.19 (13)
O1—K2—N2A ^{vi}	104.84 (5)	$K2^{x}$ —N2A— $K2^{v}$	91.29 (6)
O3 ^v —K2—N2A ^{vi}	128.30 (5)	N2—C1—C2	178.38 (19)
O3W—K2—O1W	101.07 (5)	N2A—C1A—C2A	179.9 (3)
O2W ^v —K2—O1W	116.68 (5)	N1—C2—C1	121.99 (15)
O2A—K2—O1W	60.02 (4)	N1—C2—C3	115.90 (15)
O1—K2—O1W	75.13 (5)	C1—C2—C3	122.10 (15)
O3 ^v —K2—O1W	53.59 (4)	N1A—C2A—C1A	121.76 (15)
N2A ^{vi} —K2—O1W	151.06 (4)	N1A—C2A—C3A	116.05 (15)
O3W—K2—N2A ⁱⁱ	79.38 (5)	C1A—C2A—C3A	122.17 (15)
O2W ^v —K2—N2A ⁱⁱ	164.43 (4)	O3—C3—O2	124.94 (15)
O2A—K2—N2A ⁱⁱ	114.63 (5)	O3—C3—C2	120.30 (15)
O1—K2—N2A ⁱⁱ	69.43 (5)	O2—C3—C2	114.75 (15)
O3 ^v —K2—N2A ⁱⁱ	98.59 (5)	O3A—C3A—O2A	124.08 (15)
N2A ^{vi} —K2—N2A ⁱⁱ	88.71 (6)	O3A—C3A—C2A	119.89 (15)
O1W—K2—N2A ⁱⁱ	63.82 (5)	O2A—C3A—C2A	116.03 (15)
O3W—K2—N2 ^{vii}	123.65 (5)		
02-Cu1-02A-C3A	90.4 (3)	01 - N1 - C2 - C3	-178 21 (13)
N1A - Cu1 - O2A - C3A	5 42 (11)	$C_{11} = N_{11} = C_{22} = C_{3}$	7 32 (17)
N1 - Cu1 - O2A - C3A	179 61 (11)	014 114 22 23 14	-0.2(2)
01W - Cu1 - 02A - C3A	-91.74(11)	C_{11} N_{14} C_{24} C_{14}	-17839(12)
02-Cu1-N1-01	175 68 (13)	014 114 221 011	-178.72(12)
02A = Cu1 = N1 = 01	6 32 (14)	$C_{11} = 0^2 = 0^3 = 0^3$	170.18(14)
01W $Cu1$ $N1$ 01	-82.70(13)	Cu1 = 02 = 03 = 03	-10.95(18)
Ω^2 — $Cu1$ — $N1$ — C^2	-10.22(11)	N1 - C2 - C3 - O3	-17894(15)
O2A-Cu1-N1-C2	-17958(11)	C1 - C2 - C3 - O3	2 5 (2)
O1W— $Cu1$ — $N1$ — $C2$	91 39 (12)	N1 - C2 - C3 - O2	2.3(2) 2.1(2)
O^2 —Cu1—N1A—O1A	7 99 (14)	C1 - C2 - C3 - O2	-176.39(15)
O2A—Cu1—N1A—O1A	177.43 (14)	Cu1 - O2A - C3A - O3A	174.67 (13)
O1W— $Cu1$ — $N1A$ — $O1A$	-94.17 (14)	Cu1 - O2A - C3A - C2A	-5.14(17)
O2—Cu1—N1A—C2A	-173.99(11)	N1A—C2A—C3A—O3A	-178.48(14)
O2A—Cu1—N1A—C2A	-4.55 (11)	C1A—C2A—C3A—O3A	3.0 (2)
O1W—Cu1—N1A—C2A	83.86 (12)	N1A—C2A—C3A—O2A	1.3 (2)
01—N1—C2—C1	0.3 (2)	C1A—C2A—C3A—O2A	-177.14 (14)
Cu1—N1—C2—C1	-174.16 (12)		× /

Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, y-1/2, -z+1/2; (iii) -x+1, -y+1, -z; (iv) x-1, -y+1/2, z-1/2; (v) -x+1, y+1/2, -z+1/2; (vi) x+1, -y+3/2, z+1/2; (vii) -x+2, y+1/2, -z+1/2; (viii) x+1, -y+1/2, z+1/2; (ix) -x+2, y-1/2, -z+1/2; (v) x-1, -y+3/2, z-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O1 <i>W</i> —H11 <i>W</i> ···O3 <i>A</i> ⁱⁱ	0.89	1.85	2.7257 (19)	171
O1W—H21 W ···O3 ^v	0.80	1.96	2.6910 (19)	151
O2W—H12W···O1 ^{xi}	0.81	2.19	2.993 (2)	173
$O2W$ —H22 W ···O3 A^{ii}	0.92	2.02	2.926 (2)	164

Symmetry codes: (ii) -x+1, y-1/2, -z+1/2; (v) -x+1, y+1/2, -z+1/2; (xi) x-1, y, z.