

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[(1,1'-biphenyl-2,2'-diyl)di-tert-butylphosphonium] di-*µ*-chlorido-bis[dichloridopalladate(II)]

Charmaine Arderne* and Cedric W. Holzapfel

Department of Chemistry, University of Johannesburg, P O Box 524, Auckland Park, Johannesburg, 2006, South Africa Correspondence e-mail: carderne@uj.ac.za

Received 3 August 2012; accepted 3 September 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.015; wR factor = 0.037; data-to-parameter ratio = 22.3.

In the title compound, $(C_{20}H_{26}P)_2[Pd_2Cl_6]$, the Pd^{II} atom within the hexachloridodipalladate(II) dianion has a squareplanar geometry. It resides on a centre of inversion with the asymmetric unit containing half of the dianion and one phosphonium cation. Only weak $C-H \cdots \pi$ interactions are present in the crystal structure.

Related literature

For the structures of related Pd_{II} complexes and background to organopalladium-catalysed reactions, see: Ormondi et al. (2011); Williams et al. (2008); Migowski & DuPont (2007); d'OrLyé & Jutland (2005); Beletskaya & Cheprakov (2004). For a description of the Cambridge Structural Database, see: Allen (2002).

c = 11.7004 (3) Å

 $\alpha = 73.0982 \ (6)^{\circ}$

 $\beta = 85.0900 \ (6)^{\circ}$

 $\gamma = 82.2708 (5)^{\circ}$

V = 1039.49 (4) Å³

Experimental

Crystal data

 $(C_{20}H_{26}P)_2[Pd_2Cl_6]$ $M_r = 1020.26$ Triclinic $P\overline{1}$ a = 8.3247 (2) Å b = 11.2697(2) Å

Mo $K\alpha$ radiation $\mu = 1.36 \text{ mm}^{-1}$

Z = 1

Data collection

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (AXScale; Bruker, 2010)
  T_{\rm min} = 0.695, \ T_{\rm max} = 0.774
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.015$ $wR(F^2) = 0.037$ S = 1.055184 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg7 is the centroid of the Pd1,Cl3,Pd1',Cl3' ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$	
$C11-H11\cdots Cg7^{i}$	0.95	2.68	3.5952 (13)	138	

Symmetry code: (i) x + 1, y, z - 1.

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009): software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

The authors wish to acknowledge the University of Johannesburg for the use of their facilities and for funding for this project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2094).

References

- Allen, F. H. (2002). Acta Crvst. B58, 380-388.
- Beletskaya, I. P. & Cheprakov, A. V. (2004). J. Organomet. Chem. 689, 4055-4082
- Bruker (2010). APEX2, AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Migowski, P. & DuPont, J. (2007). Chem. Eur. J. 13, 32-39.
- OrLvé, F. d' & Jutland, A. (2005). Tetrahedron, 61, 9670-9678.
- Ormondi, B., Shaw, M. L. & Holzapfel, C. W. (2011). J. Organomet. Chem. 696, 3091-3096.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Williams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560-563.

metal-organic compounds

 $0.29 \times 0.22 \times 0.20 \text{ mm}$

39747 measured reflections

5184 independent reflections

5088 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 100 K

 $R_{\rm int} = 0.017$

232 parameters

 $\Delta \rho_{\text{max}} = 0.41 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

supporting information

Acta Cryst. (2012). E68, m1247 [https://doi.org/10.1107/S1600536812037786] Bis[(1,1'-biphenyl-2,2'-diyl)di-tert-butylphosphonium] di-μ-chlorido-bis-[dichloridopalladate(II)]

Charmaine Arderne and Cedric W. Holzapfel

S1. Comment

As part of our continued studies (Williams *et al.*, 2008 and Ormondi *et al.*, 2011) of organopalladium catalysed reactions, we have found that certain palladocycles (Beletskaya & Cheprakov, 2004 and d'OrLyé & Jutland, 2005) are readily converted into highly catalytically active low-ligated Pd⁰ complexes. We now report that treatment of one such palladocycle, namely acetato-(2'-di-*t*-butylphosphino-1,1'-diphenyl-2yl) palladium(II), with HCl at room temperature results in the formation of the title compound (I) in good yield. Formation of the complex appears to result from the acid-induced reductive elimination of Pd⁰ from the palladocycle followed by oxidation of the palladium in the presence of air and chloride ions (Migowski & DuPont, 2007).

The structure of the title compound (I), $[C_{20}H_{26}P. 0.5(Cl_6Pd_2)]_2$ shows a square planar geometry for the Pd^{II} atom within the hexachlorodipalladium(II) anion. The palladium atom sits on a centre of inversion and therefore the asymmetric unit contains half of the trichloropalladium(II) anion and one phosphonium cation. Figure 1 shows a diagram of the molecular structure of the asymmetric unit of (I). Weak interactions were observed in this structure where C—H…Cl and C—H… π are evident only.

S2. Experimental

A solution of hydrogen chloride (142 mg; 4 mmol) in 18 ml of methanol was slowly added to a stirred solution of the palladocycle precursor, namely acetato-(2'-di-*t*-butylphosphino-1,1'-diphenyl-2yl) palladium(II) (493 mg; 1 mmol) in 17 ml of dichloromethane over a period of 10 minutes. The reaction mixture changed from colourless to dark purple and then to dark brown. After completion of the addition, stirring was discontinued and the reaction mixture left exposed to the air at room temperature. A red crystalline precipitate started to form after 45 minutes. After 24 h, the supernatant solution was removed, the solid material was with ether and dried *in vacuo*. The solid material (376 mg; 74%) was taken up in 15 ml of 2:1 dichloromethane:methanol and the resulting solution was exposed to the vapours of diethyl ether in a closed system for 24 h. Well formed, dark red prisms of the title compound (I) crystallized from the solution and a suitable single-crystal was selected for the single-crystal X-ray diffraction analysis.

S3. Refinement

The H-atoms were geometrically positioned and refined in the riding-model approximation, with C—H = 0.97 Å, N—H = 0.89 Å, and $U_{iso}(H) = 1.2 \text{Ueq}(C)$ or 1.5Ueq(N). For (I), the highest peak in the final difference map is 0.60 Å from Cl4B and the deepest hole is 0.27 Å from Cl4B.

Figure 1

Molecular structure of the asymmetric unit of the title compound (I) with thermal displacement ellipsoids drawn at the 50% probability level.

Bis[(1,1'-biphenyl-2,2'-diyl)di-tert-butylphosphonium] di-µ-chlorido-bis[dichloridopalladate(II)]

$(C_{20}H_{26}P)_2[Pd_2Cl_6]$	$\gamma = 82.2708 (5)^{\circ}$
$M_r = 1020.26$	$V = 1039.49 (4) Å^3$
Triclinic, P1	Z = 1
Hall symbol: -P 1	F(000) = 516
a = 8.3247 (2) Å	$D_{\rm x} = 1.630 {\rm ~Mg~m^{-3}}$
b = 11.2697 (2) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 11.7004 (3) Å	Cell parameters from 9253 reflections
$\alpha = 73.0982 \ (6)^{\circ}$	$\theta = 3.6 - 28.4^{\circ}$
$\beta = 85.0900 \ (6)^{\circ}$	$\mu = 1.36 \text{ mm}^{-1}$

T = 100 KPrism, dark orange

Data collection

Bruker APEXII CCD	39747 measured reflections
diffractometer	5184 independent reflections
Radiation source: fine-focus sealed tube	5088 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.017$
φ and ω scans	$\theta_{\rm max} = 28.5^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(AXScale; Bruker, 2010)	$k = -15 \rightarrow 15$
$T_{\min} = 0.695, \ T_{\max} = 0.774$	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map

 $0.29 \times 0.22 \times 0.20 \text{ mm}$

Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.015$	Hydrogen site location: inferred from
$wR(F^2) = 0.037$	neighbouring sites
S = 1.05	H-atom parameters constrained
5184 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0139P)^2 + 0.6282P]$
232 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.41 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.48 \ m e \ m \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C16	0.06541 (14)	0.17413 (10)	0.35252 (11)	0.0171 (2)	
H16A	0.1167	0.1453	0.4297	0.026*	
H16B	0.1288	0.1356	0.2953	0.026*	
H16C	-0.0451	0.1504	0.3628	0.026*	
C2	0.51131 (13)	0.18374 (10)	0.38452 (10)	0.0150 (2)	
C6	0.36510 (14)	0.28059 (11)	0.52998 (11)	0.0182 (2)	
H6	0.2787	0.3363	0.5501	0.022*	
C1	0.38564 (13)	0.26782 (10)	0.41465 (10)	0.0147 (2)	
C3	0.61953 (14)	0.11512 (11)	0.47087 (11)	0.0186 (2)	
Н3	0.7057	0.0588	0.4515	0.022*	
C5	0.47340 (15)	0.21017 (12)	0.61544 (11)	0.0213 (2)	
Н5	0.4601	0.2173	0.6947	0.026*	
C4	0.60052 (15)	0.12966 (12)	0.58561 (11)	0.0215 (2)	
H4	0.6753	0.0840	0.6441	0.026*	

C17	0.32342 (14)	0.50983 (10)	0.22795 (11)	0.0161 (2)
C13	0.05899 (13)	0.31677 (10)	0.30507 (10)	0.0137 (2)
C7	0.51087 (13)	0.17674 (10)	0.26061 (10)	0.0149 (2)
C19	0.25132 (15)	0.58473 (11)	0.31437 (12)	0.0215 (2)
H19A	0.2870	0.5412	0.3951	0.032*
H19B	0.1326	0.5930	0.3149	0.032*
H19C	0.2883	0.6678	0.2884	0.032*
C18	0.26103 (15)	0.57096 (11)	0.10206 (11)	0.0211 (2)
H18A	0.1421	0.5790	0.1061	0.032*
H18B	0.3034	0.5190	0.0496	0.032*
H18C	0.2977	0.6539	0.0701	0.032*
C15	-0.03314 (14)	0.37709 (11)	0.39742 (11)	0.0181 (2)
H15A	-0.0455	0.4681	0.3642	0.027*
H15B	0.0279	0.3537	0.4702	0.027*
H15C	-0.1406	0.3479	0.4167	0.027*
C12	0.61554 (14)	0.09816 (11)	0.20828 (11)	0.0190 (2)
H12	0.7014	0.0445	0.2517	0.023*
C14	-0.02701 (14)	0.36283 (11)	0.18602 (11)	0.0180 (2)
H14A	0.0365	0.3286	0.1260	0.027*
H14B	-0.0369	0.4542	0.1584	0.027*
H14C	-0.1353	0.3350	0.1979	0.027*
C20	0.50976 (14)	0.50237 (12)	0.22269 (13)	0.0228 (2)
H20A	0.5562	0.4503	0.1713	0.034*
H20B	0.5491	0.4656	0.3034	0.034*
H20C	0.5426	0.5865	0.1900	0.034*
C9	0.36534 (14)	0.25847 (10)	0.07624 (10)	0.0157 (2)
Н9	0.2817	0.3136	0.0314	0.019*
C8	0.38668 (13)	0.25742 (10)	0.19316 (10)	0.0137 (2)
C10	0.46880 (14)	0.17729 (11)	0.02614 (11)	0.0183 (2)
H10	0.4545	0.1754	-0.0530	0.022*
C11	0.59299 (15)	0.09897 (11)	0.09144 (12)	0.0205 (2)
H11	0.6639	0.0449	0.0557	0.025*
C13	0.06462 (4)	0.07944 (3)	1.07304 (2)	0.01962 (6)
Cl2	0.15259 (3)	0.29365 (2)	0.81900 (2)	0.01663 (5)
C11	0.01589 (3)	0.12552 (3)	0.67310 (2)	0.01763 (6)
P1	0.27397 (3)	0.34725 (3)	0.28353 (2)	0.01179 (5)
Pd1	0.041384 (9)	0.110164 (7)	0.868729 (7)	0.01193 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C16	0.0169 (5)	0.0132 (5)	0.0208 (5)	-0.0040 (4)	0.0012 (4)	-0.0037 (4)
C2	0.0129 (5)	0.0132 (5)	0.0177 (5)	-0.0035 (4)	-0.0001 (4)	-0.0018 (4)
C6	0.0177 (5)	0.0209 (6)	0.0170 (5)	-0.0038 (4)	-0.0011 (4)	-0.0060(4)
C1	0.0135 (5)	0.0149 (5)	0.0151 (5)	-0.0025 (4)	-0.0017 (4)	-0.0025 (4)
C3	0.0134 (5)	0.0170 (5)	0.0230 (6)	-0.0027 (4)	-0.0025 (4)	-0.0010 (4)
C5	0.0214 (6)	0.0260 (6)	0.0173 (5)	-0.0072 (5)	-0.0036 (4)	-0.0046 (5)
C4	0.0180 (5)	0.0228 (6)	0.0213 (6)	-0.0059 (4)	-0.0071 (4)	0.0009 (5)

C17	0.0149 (5)	0.0123 (5)	0.0208 (5)	-0.0032 (4)	0.0008 (4)	-0.0042 (4)
C13	0.0118 (5)	0.0128 (5)	0.0162 (5)	-0.0021 (4)	0.0006 (4)	-0.0037 (4)
C7	0.0127 (5)	0.0126 (5)	0.0181 (5)	-0.0020 (4)	0.0003 (4)	-0.0026 (4)
C19	0.0229 (6)	0.0161 (5)	0.0280 (6)	-0.0024 (4)	-0.0005 (5)	-0.0103 (5)
C18	0.0236 (6)	0.0157 (5)	0.0210 (6)	-0.0038 (4)	0.0000 (5)	-0.0001 (4)
C15	0.0161 (5)	0.0174 (5)	0.0204 (6)	-0.0012 (4)	0.0035 (4)	-0.0064 (4)
C12	0.0152 (5)	0.0159 (5)	0.0242 (6)	0.0015 (4)	0.0009 (4)	-0.0049 (5)
C14	0.0151 (5)	0.0192 (5)	0.0193 (5)	-0.0013 (4)	-0.0033 (4)	-0.0043 (4)
C20	0.0151 (5)	0.0189 (6)	0.0337 (7)	-0.0055 (4)	0.0013 (5)	-0.0052 (5)
C9	0.0152 (5)	0.0149 (5)	0.0169 (5)	-0.0023 (4)	0.0007 (4)	-0.0043 (4)
C8	0.0127 (5)	0.0117 (5)	0.0163 (5)	-0.0015 (4)	0.0014 (4)	-0.0039 (4)
C10	0.0193 (5)	0.0188 (5)	0.0184 (5)	-0.0039 (4)	0.0034 (4)	-0.0082 (4)
C11	0.0187 (5)	0.0173 (5)	0.0255 (6)	-0.0001 (4)	0.0045 (4)	-0.0088 (5)
C13	0.03037 (15)	0.01788 (13)	0.01368 (12)	-0.01237 (11)	0.00371 (10)	-0.00635 (10)
Cl2	0.01830 (12)	0.01205 (11)	0.01884 (13)	-0.00401 (9)	-0.00206 (10)	-0.00193 (10)
Cl1	0.02204 (13)	0.01686 (12)	0.01351 (12)	-0.00352 (10)	-0.00294 (9)	-0.00237 (10)
P1	0.01112 (12)	0.01095 (12)	0.01294 (12)	-0.00073 (9)	-0.00015 (9)	-0.00320 (10)
Pd1	0.01306 (4)	0.01056 (4)	0.01228 (4)	-0.00235 (3)	0.00107 (3)	-0.00344 (3)

Geometric parameters (Å, °)

C16—C13	1.5356 (15)	С19—Н19С	0.9800
C16—H16A	0.9800	C18—H18A	0.9800
C16—H16B	0.9800	C18—H18B	0.9800
C16—H16C	0.9800	C18—H18C	0.9800
C2—C3	1.3945 (15)	C15—H15A	0.9800
C2—C1	1.4075 (15)	C15—H15B	0.9800
C2—C7	1.4751 (16)	C15—H15C	0.9800
C6—C1	1.3920 (16)	C12—C11	1.3930 (18)
C6—C5	1.3939 (16)	C12—H12	0.9500
С6—Н6	0.9500	C14—H14A	0.9800
C1—P1	1.8003 (11)	C14—H14B	0.9800
C3—C4	1.3924 (18)	C14—H14C	0.9800
С3—Н3	0.9500	C20—H20A	0.9800
C5—C4	1.3884 (18)	C20—H20B	0.9800
С5—Н5	0.9500	C20—H20C	0.9800
C4—H4	0.9500	C9—C8	1.3911 (16)
C17—C19	1.5335 (16)	C9—C10	1.3913 (16)
C17—C18	1.5357 (17)	С9—Н9	0.9500
C17—C20	1.5391 (16)	C8—P1	1.7945 (11)
C17—P1	1.8476 (11)	C10—C11	1.3890 (17)
C13—C15	1.5371 (15)	C10—H10	0.9500
C13—C14	1.5404 (15)	C11—H11	0.9500
C13—P1	1.8500 (11)	Cl3—Pd1 ⁱ	2.3166 (3)
C7—C12	1.3908 (16)	C13—Pd1	2.3349 (3)
С7—С8	1.4100 (15)	Cl2—Pd1	2.2791 (3)
С19—Н19А	0.9800	Cl1—Pd1	2.2709 (3)
C19—H19B	0.9800	Pd1—Cl3 ⁱ	2.3166 (3)

C13—C16—H16A	109.5	H18A—C18—H18C	109.5
C13—C16—H16B	109.5	H18B—C18—H18C	109.5
H16A—C16—H16B	109.5	C13—C15—H15A	109.5
C13—C16—H16C	109.5	C13—C15—H15B	109.5
H16A—C16—H16C	109.5	H15A—C15—H15B	109.5
H16B—C16—H16C	109.5	C13—C15—H15C	109.5
C3—C2—C1	119.27 (11)	H15A—C15—H15C	109.5
C3—C2—C7	126.57 (11)	H15B—C15—H15C	109.5
C1—C2—C7	114.15 (10)	C7—C12—C11	119.26 (11)
C1—C6—C5	118.86 (11)	C7—C12—H12	120.4
С1—С6—Н6	120.6	C11—C12—H12	120.4
С5—С6—Н6	120.6	C13—C14—H14A	109.5
C6—C1—C2	121.02 (10)	C13—C14—H14B	109.5
C6—C1—P1	130.24 (9)	H14A—C14—H14B	109.5
C2-C1-P1	108.73 (8)	C13—C14—H14C	109.5
C4—C3—C2	119.62 (11)	H14A—C14—H14C	109.5
С4—С3—Н3	120.2	H14B—C14—H14C	109.5
С2—С3—Н3	120.2	C17—C20—H20A	109.5
C4-C5-C6	120.2 120.51(12)	C17—C20—H20B	109.5
C4—C5—H5	119.7	H20A—C20—H20B	109.5
С6—С5—Н5	119.7	C17—C20—H20C	109.5
$C_{5} - C_{4} - C_{3}$	120.69 (11)	$H_{20}A - C_{20} - H_{20}C$	109.5
C5-C4-H4	119.7	H20B-C20-H20C	109.5
C3-C4-H4	119.7	C8-C9-C10	118 76 (11)
C19-C17-C18	110.87 (10)	C8-C9-H9	120.6
C19 - C17 - C20	109.39 (10)	C10-C9-H9	120.6
C_{18} C_{17} C_{20}	109.59 (10)	C9-C8-C7	120.0 121.31(10)
C19 - C17 - P1	110 43 (8)	C9—C8—P1	129.83 (9)
C18 - C17 - P1	110.45 (8)	C7—C8—P1	108 86 (8)
C_{20} C_{17} P_{1}	106 27 (8)	$C_{11} - C_{10} - C_{9}$	120.00(0)
C_{16} C_{13} C_{15}	100.27 (0)	$C_{11} - C_{10} - H_{10}$	119.9
C_{16} $-C_{13}$ $-C_{14}$	109.59 (9)	C9-C10-H10	119.9
C_{15} C_{13} C_{14}	109.99 (9)	C_{10} $-C_{11}$ $-C_{12}$	121 24 (11)
C_{16} C_{13} P_{1}	109.96(7) 104 76(7)	C10-C11-H11	119.4
C15-C13-P1	111 52 (8)	C12-C11-H11	119.1
C14-C13-P1	111.32 (8)	$Pd1^{i}$ $C13$ $Pd1$	94 884 (10)
C12-C7-C8	119 19 (11)	C8 - P1 - C1	93 92 (5)
C12 - C7 - C2	126 66 (10)	C8-P1-C17	108.77(5)
C8 - C7 - C2	1120.00(10) 114 12(10)	C1 - P1 - C17	100.77(5)
C17 - C19 - H19A	109 5	C8 - P1 - C13	109.07(5) 110.90(5)
C17— $C19$ — $H19B$	109.5	C1 - P1 - C13	111 69 (5)
H19A - C19 - H19B	109.5	C17 - P1 - C13	119.48 (5)
C17-C19-H19C	109.5	C11—Pd1—C12	91 333 (10)
H19A - C19 - H19C	109.5	$C11$ —Pd1— $C13^{i}$	90 974 (10)
H19B-C19-H19C	109.5	$C12$ —Pd1— $C13^{i}$	177 377 (10)
C17-C18-H18A	109.5	C11—Pd1—C13	175 919 (10)
C17— $C18$ — $H18B$	109.5	C12 - Pd1 - C13	92 603 (10)
	107.5	012 - 101 - 013	J2.005 (10)

supporting information

H18A—C18—H18B	109.5	Cl3 ⁱ —Pd1—Cl3	85.117 (10)
C17—C18—H18C	109.5		
C5_C6_C1_C2	1 22 (17)	C7_C8_P1_C17	107 86 (8)
$C_{5} - C_{6} - C_{1} - P_{1}$	-17759(9)	C9 - C8 - P1 - C13	60.63 (12)
C_{3} C_{2} C_{1} C_{6}	-1.94(17)	C7 - C8 - P1 - C13	-118 81 (8)
$C_{2}^{-} = C_{1}^{-} = C_{0}^{-}$	176.93 (10)	$C_{1} = C_{1} = P_{1} = C_{1}$	-17659(11)
$C_{1}^{2} = C_{2}^{2} = C_{1}^{2} = C_{0}^{2}$	177 11 (9)	C_{2} C_{1} P_{1} C_{8}	<i>A A</i> 9 (9)
$C_{2}^{-} C_{2}^{-} C_{1}^{-} P_{1}^{1}$	-4.03(12)	$C_{2} = C_{1} = P_{1} = C_{1}^{2}$	72 01 (12)
$C_1 = C_2 = C_1 = \Gamma_1$	(12)	C_{2} C_{1} P_{1} C_{17}	-106.92(8)
$C_1 C_2 C_3 C_4$	-177.94(11)	$C_{2} = C_{1} = P_{1} = C_{13}$	-62.25(12)
$C_{1} = C_{2} = C_{3} = C_{4}$	1/7.34(11)	$C_2 = C_1 = P_1 = C_{13}$	118 82 (8)
$C_{1} = C_{0} = C_{1} = C_{1}$	-1.81(10)	$C_2 - C_1 $	-170.04(8)
$C_{0} = C_{1} = C_{4} = C_{5}$	1.01(19)	C19 - C17 - P1 - C8	170.94(0)
$C_2 = C_3 = C_4 = C_3$	1.00(10)	$C_{10} = C_{17} = 1 = C_{00}$	-52.40(0)
C_{3} C_{2} C_{7} C_{12}	-176.05(11)	$C_{20} = C_{17} = F_{10} = C_{00}$	-52.40(9)
$C_1 = C_2 = C_1 = C_{12}$	-170.93(11)	C19 - C17 - F1 - C1	-09.77(9)
$C_3 = C_2 = C_7 = C_8$	-1/9.9/(11)	C18 - C17 - P1 - C1	107.42 (8)
C1 = C2 = C7 = C8	1.26 (14)	C_{20} C_{17} P_{1} C_{10}	48.77 (9)
C8—C7—C12—C11	-1.44(17)	C19—C17—P1—C13	60.37 (10)
C2-C7-C12-C11	176.69 (11)	C18—C17—P1—C13	-62.44 (10)
C10—C9—C8—C7	0.39 (16)	C20—C17—P1—C13	178.91 (8)
C10—C9—C8—P1	-178.98 (9)	C16—C13—P1—C8	52.91 (9)
C12—C7—C8—C9	1.04 (16)	C15—C13—P1—C8	171.33 (8)
C2—C7—C8—C9	-177.32 (10)	C14—C13—P1—C8	-65.44 (9)
C12—C7—C8—P1	-179.47 (9)	C16—C13—P1—C1	-50.42 (9)
C2—C7—C8—P1	2.18 (12)	C15—C13—P1—C1	68.00 (9)
C8—C9—C10—C11	-1.41 (17)	C14—C13—P1—C1	-168.77 (8)
C9—C10—C11—C12	1.01 (18)	C16—C13—P1—C17	-179.38 (7)
C7—C12—C11—C10	0.44 (18)	C15—C13—P1—C17	-60.96 (10)
C9—C8—P1—C1	175.63 (11)	C14—C13—P1—C17	62.27 (9)
C7—C8—P1—C1	-3.81 (8)	Pd1 ⁱ —Cl3—Pd1—Cl2	-178.700 (11)
C9—C8—P1—C17	-72.71 (12)	$Pd1^{i}$ — $Cl3$ — $Pd1$ — $Cl3^{i}$	0.0

Symmetry code: (i) -x, -y, -z+2.

Hydrogen-bond geometry (Å, °)

Cg7 is the centroid of the Pd1,Cl3,Pd1',Cl3' ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11··· <i>Cg</i> 7 ⁱⁱ	0.95	2.68	3.5952 (13)	138

Symmetry code: (ii) x+1, y, z-1.