metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[dichloridomercury(II)]- μ -{N-[(E)-pyridin-2-ylmethylidene- κN]pyridin-3-amine- $\kappa^2 N^1$: N^3 }]

Ali Mahmoudi,^a* Saeed Dehghanpour,^b Leila Najafi^a and Mohammad Khalafbeigi^a

^aDepartment of Chemistry, Islamic Azad University University, Karaj, Iran, and ^bDepartment of Chemistry, Alzahra University, Tehran, Iran Correspondence e-mail: Mahmoudi_Ali@yahoo.com

Received 23 July 2012; accepted 14 August 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.011 Å; R factor = 0.042; wR factor = 0.116; data-to-parameter ratio = 18.4.

In the title coordination polymer, $[HgCl_2(C_{11}H_9N_3)]_n$, the Hg^{II} ion is coordinated by three N atoms from two N-[(*E*)-pyridin-2-ylmethylidene]pyridin-3-amine (*L*) ligands and two chloride anions in a distorted trigonal–bipyramidal geometry. The two pyridine rings in *L* form a dihedral angle of 50.0 (2)°. *L* ligands bridge adjacent HgCl₂ units into polymeric chains propagating in [010]. The crystal packing is further stabilized by weak intermolecular C–H···Cl hydrogen bonds and π – π interactions between the pyridine rings, with a centroid–centroid separation of 3.529 (9) Å.

Related literature

For related structures and applications of coordination polymers, see: Moulton & Zaworotko (2001); Fei *et al.* (2000). For the synthesis of the ligand and the index of trigonality, see: Dehghanpour *et al.* (2012).

Experimental

Crystal data [HgCl₂(C₁₁H₉N₃)]

 $M_r = 454.70$

Monoclinic, $P2_1/n$ a = 7.5645 (5) Å b = 13.1057 (9) Å c = 12.7017 (5) Å $\beta = 96.077$ (4)° V = 1252.15 (13) Å³

Data collection

Nonius KappaCCD diffractometer	8560 measured reflections
Absorption correction: multi-scan	2837 independent reflections
(SORTAV; Blessing, 1995)	2164 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.566, \ T_{\max} = 0.889$	$R_{\rm int} = 0.059$
Pofinament	
<i><i>Λεμμμμμμμμμμμμμ</i></i>	

Z = 4

Mo $K\alpha$ radiation

 $0.15 \times 0.08 \times 0.02 \text{ mm}$

 $\mu = 12.70 \text{ mm}^{-1}$

T = 150 K

 $R[F^2 > 2\sigma(F^2)] = 0.042$ 154 parameters $wR(F^2) = 0.116$ H-atom parameters constrainedS = 1.09 $\Delta \rho_{max} = 2.45$ e Å $^{-3}$ 2837 reflections $\Delta \rho_{min} = -3.10$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

C4-H4A···Cl2 ⁱ 0.95 2.82 3.700 (8) 154 C6-H6A···Cl2 ⁱ 0.95 2.79 3.666 (7) 154	$-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4-H4A\cdots Cl2^{i}$	0.95	2.82	3.700 (8)	154
	$6-H6A\cdots Cl2^{i}$	0.95	2.79	3.666 (7)	154
	$10-H10A\cdots Cl2^{ii}$	0.95	2.83	3.545 (8)	132

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *COLLECT* (Nonius, 2002); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the Islamic Azad University University Research Councils for partial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5327).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Dehghanpour, S., Asadizadeh, S. & Assoud, J. (2012). Z. Anorg. Allg. Chem. 638, 861–867.
- Fei, B. L., Sun, W. Y., Yu, K. B. & Tang, W. X. (2000). J. Chem. Soc. Dalton Trans. pp. 805–811.
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.

Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter & R. M. Sweet pp. 307–326. New York: Academic press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, m1244 [https://doi.org/10.1107/S1600536812035775]

catena-Poly[[dichloridomercury(II)]- μ -{*N*-[(*E*)-pyridin-2-ylmethylidene- κN]pyridin-3-amine- $\kappa^2 N^1$: N^3 }]

Ali Mahmoudi, Saeed Dehghanpour, Leila Najafi and Mohammad Khalafbeigi

S1. Comment

Many studies has recently been focused on coordination polymers due to their useful properties applicable to catalysis, chirality, conductivity, luminescence (Moulton & Zaworotko, 2001). Nitrogen heterocyclic ligands have been employed in the design and synthesis of many novel coordination polymers (Fei *et al.*, 2000). Herewith we report the synthesis and crystal structure of a novel Hg(II) complex based on pyridin-3-ylpyridin-2-ylmethyleneamine (PyPy).

The asymmetric unit of the title polymeric complex, consisting of one Hg(II) ion, one PyPy ligand and two chloride anions, is shown in Fig. 1. The coordination geometry around Hg(II) is a distorted trigonal–bipyramidal geometry, with the Hg (II) ion being surrounded by two Cl, two N atoms from one PyPy ligand and one N atom from adjacent PyPy ligand. The structural index τ , (Dehghanpour *et al.*, 2012) which is a measure of trigonal distortion, is 0.59 for the title structure indicating a distorted trigonal–bipyramidal environment of Hg(II).

The interplanar angles between the chelate ring (N1—C5—C6—N2) and pyridine ring (N1—C1—C2—C3—C4—C5) is 0.92 (3)° and interplanar angles between the two pyridine rings in the ligand (N1—C1—C2—C3—C4—C5 ring and N3—C11—C7—C8—C9—C10 ring) is 50.0 (2)°. Each PyPy ligand has been chelate HgCl₂ unit (*via* N, N' atoms) and also bridge to another HgCl₂ unit (with N" atom), resulting into a chain propagated in [010].

These chains interact *via* π - π interactions between adjacent pyridine ringe (N3/C7—C11) related by inversion center, and the distance between their centroids is equal to 3.529 (9) Å. The C—H…Cl interactions (Table 1) are also observed in the crystal structure.

S2. Experimental

The title complex was prepared by the reaction of $HgCl_2$ (27.1 mg, 0.1 mmol) and pyridin-3-ylpyridin-2-ylmethyleneamine (18.3 mg, 0.1 mmol) in 25 ml of acetonitrile at room temperature. The solution was allowed to stand at room temperature and yellow crystals of the title compound suitable for X-ray analysis precipitated within few days.

S3. Refinement

H atoms were placed in calculated positions with C—H = 0.95 Å, and included in the refinement in a riding-motion approximation, with $U_{iso}(H)$ = 1.2 $U_{eq}(C)$.

A view of the structure of the title complex, with displacement ellipsoids drawn at the 50% probability level [symmetry codes: (a) 1/2 - x, -1/2 + y, 1/2 - z; (b) 1/2 - x, -1/2 + y, 1/2 - z].

catena-Poly[[dichloridomercury(II)]- μ -{*N*-[(*E*)-pyridin-2- ylmethylidene- κ *N*]pyridin-3-amine- $\kappa^2 N^1$:*N*³}]

Crystal data

[HgCl₂(C₁₁H₉N₃)] $M_r = 454.70$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.5645 (5) Å b = 13.1057 (9) Å c = 12.7017 (5) Å $\beta = 96.077$ (4)° V = 1252.15 (13) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 9 pixels mm⁻¹ φ scans and ω scans with κ offsets Absorption correction: multi-scan (*SORTAV*; Blessing, 1995) $T_{\min} = 0.566$, $T_{\max} = 0.889$ F(000) = 840 $D_x = 2.412 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8560 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 12.70 \text{ mm}^{-1}$ T = 150 KPlate, yellow $0.15 \times 0.08 \times 0.02 \text{ mm}$

8560 measured reflections 2837 independent reflections 2164 reflections with $I > 2\sigma(I)$ $R_{int} = 0.059$ $\theta_{max} = 27.5^\circ, \theta_{min} = 3.0^\circ$ $h = -9 \rightarrow 9$ $k = -15 \rightarrow 16$ $l = -16 \rightarrow 16$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.116$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 1.09	H-atom parameters constrained
2837 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0613P)^2]$
154 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\text{max}} = 2.45 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -3.10 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Hg1	0.26173 (3)	0.14916 (2)	0.252995 (19)	0.02692 (14)
Cl1	-0.0045 (3)	0.16859 (19)	0.13060 (18)	0.0509 (6)
Cl2	0.5101 (2)	0.27229 (14)	0.25673 (14)	0.0296 (4)
N1	0.2620 (7)	0.0445 (4)	0.4086 (4)	0.0249 (13)
N2	0.1391 (8)	0.2435 (5)	0.4036 (4)	0.0295 (14)
N3	0.0833 (8)	0.5128 (4)	0.3314 (4)	0.0261 (13)
C1	0.3228 (9)	-0.0520 (6)	0.4171 (5)	0.0275 (16)
H1A	0.3673	-0.0821	0.3572	0.033*
C2	0.3237 (10)	-0.1096 (6)	0.5084 (6)	0.0316 (18)
H2A	0.3702	-0.1770	0.5113	0.038*
C3	0.2552 (9)	-0.0670 (6)	0.5963 (5)	0.0293 (16)
H3A	0.2501	-0.1055	0.6592	0.035*
C4	0.1954 (9)	0.0319 (6)	0.5895 (6)	0.0272 (16)
H4A	0.1513	0.0636	0.6487	0.033*
C5	0.1999 (9)	0.0854 (6)	0.4950 (5)	0.0257 (16)
C6	0.1330 (9)	0.1915 (6)	0.4877 (5)	0.0284 (16)
H6A	0.0849	0.2213	0.5467	0.034*
C7	0.0619 (11)	0.3439 (5)	0.3945 (6)	0.0299 (17)
C8	-0.1065 (10)	0.3615 (6)	0.4214 (6)	0.0308 (17)
H8A	-0.1701	0.3091	0.4527	0.037*
C9	-0.1826 (10)	0.4570 (6)	0.4022 (6)	0.0319 (18)
H9A	-0.2995	0.4714	0.4191	0.038*
C10	-0.0815 (9)	0.5309 (6)	0.3574 (5)	0.0254 (16)
H10A	-0.1311	0.5969	0.3447	0.030*
C11	0.1534 (10)	0.4210 (6)	0.3503 (5)	0.0284 (16)

supporting information

H11A	0.2703	0.4	080	0.3328	0.034*	
Atomic d	displacement para	ameters (Ų)				
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.02627 (19)	0.0269 (2)	0.0285 (2)	-0.00027 (12)	0.00688 (13)	-0.00040 (11)
Cl1	0.0333 (12)	0.0627 (16)	0.0536 (14)	-0.0076 (10)	-0.0097 (9)	0.0062 (11)
C12	0.0272 (9)	0.0266 (10)	0.0357 (9)	-0.0027 (7)	0.0071 (7)	-0.0009 (8)
N1	0.020 (3)	0.028 (4)	0.027 (3)	-0.006(3)	0.006 (2)	-0.001 (3)
N2	0.027 (3)	0.035 (4)	0.026 (3)	-0.008(3)	0.001 (2)	0.001 (3)
N3	0.030 (3)	0.022 (3)	0.027 (3)	0.003 (3)	0.007 (2)	-0.003 (3)
C1	0.022 (4)	0.030 (4)	0.031 (4)	0.000 (3)	0.006 (3)	-0.008 (3)
C2	0.020 (4)	0.032 (5)	0.041 (4)	-0.001 (3)	-0.005 (3)	0.004 (3)
C3	0.027 (4)	0.033 (4)	0.028 (4)	0.000 (3)	0.001 (3)	-0.001 (3)
C4	0.023 (4)	0.033 (5)	0.026 (4)	-0.003 (3)	0.002 (3)	0.002 (3)
C5	0.019 (4)	0.029 (4)	0.029 (4)	0.001 (3)	0.002 (3)	-0.001 (3)
C6	0.019 (4)	0.038 (5)	0.029 (4)	-0.001 (3)	0.003 (3)	-0.002 (4)
C7	0.038 (4)	0.027 (4)	0.025 (4)	0.004 (3)	0.007 (3)	0.003 (3)
C8	0.031 (4)	0.033 (5)	0.028 (4)	-0.006 (3)	0.005 (3)	-0.002 (3)
С9	0.023 (4)	0.042 (5)	0.031 (4)	-0.001 (3)	0.006 (3)	-0.001 (4)
C10	0.028 (4)	0.029 (4)	0.018 (3)	0.004 (3)	-0.004 (3)	0.002 (3)
C11	0.031 (4)	0.025 (4)	0.030 (4)	0.004 (3)	0.011 (3)	0.000 (3)

Geometric parameters (Å, °)

Hg1—N1	2.406 (5)	C2—H2A	0.9500
Hg1—Cl1	2.424 (2)	C3—C4	1.373 (11)
Hg1—N3 ⁱ	2.445 (6)	С3—НЗА	0.9500
Hg1—Cl2	2.4732 (17)	C4—C5	1.393 (10)
Hg1—N2	2.535 (6)	C4—H4A	0.9500
N1—C1	1.347 (9)	C5—C6	1.480 (11)
N1C5	1.349 (8)	C6—H6A	0.9500
N2—C6	1.272 (9)	C7—C8	1.373 (11)
N2—C7	1.438 (9)	C7—C11	1.378 (10)
N3—C11	1.327 (9)	C8—C9	1.388 (11)
N3—C10	1.345 (8)	C8—H8A	0.9500
N3—Hg1 ⁱⁱ	2.445 (6)	C9—C10	1.393 (10)
C1—C2	1.384 (10)	С9—Н9А	0.9500
C1—H1A	0.9500	C10—H10A	0.9500
C2—C3	1.395 (10)	C11—H11A	0.9500
N1—Hg1—Cl1	121.03 (14)	С4—С3—НЗА	120.8
N1—Hg1—N3 ⁱ	89.13 (19)	С2—С3—Н3А	120.8
Cl1—Hg1—N3 ⁱ	101.53 (15)	C3—C4—C5	119.4 (7)
N1—Hg1—Cl2	114.93 (14)	C3—C4—H4A	120.3
Cl1—Hg1—Cl2	121.44 (7)	C5—C4—H4A	120.3
N3 ⁱ —Hg1—Cl2	94.98 (14)	N1—C5—C4	122.9 (7)
N1—Hg1—N2	68.1 (2)	N1—C5—C6	118.0 (6)

Cl1—Hg1—N2	95.00 (15)	C4—C5—C6	119.1 (6)
N3 ⁱ —Hg1—N2	156.61 (19)	N2—C6—C5	120.9 (6)
Cl2—Hg1—N2	90.30 (14)	N2—C6—H6A	119.6
C1—N1—C5	117.0 (6)	С5—С6—Н6А	119.6
C1—N1—Hg1	124.9 (4)	C8—C7—C11	119.8 (7)
C5—N1—Hg1	118.2 (5)	C8—C7—N2	120.9 (7)
C6—N2—C7	120.5 (6)	C11—C7—N2	119.1 (6)
C6—N2—Hg1	114.9 (5)	C7—C8—C9	119.2 (7)
C7—N2—Hg1	124.3 (4)	С7—С8—Н8А	120.4
C11—N3—C10	118.6 (6)	С9—С8—Н8А	120.4
C11—N3—Hg1 ⁱⁱ	122.8 (5)	C8—C9—C10	117.6 (7)
C10—N3—Hg1 ⁱⁱ	118.6 (5)	С8—С9—Н9А	121.2
N1—C1—C2	123.4 (6)	С10—С9—Н9А	121.2
N1—C1—H1A	118.3	N3—C10—C9	122.8 (7)
C2—C1—H1A	118.3	N3—C10—H10A	118.6
C1—C2—C3	118.9 (7)	C9—C10—H10A	118.6
C1—C2—H2A	120.6	N3—C11—C7	122.1 (7)
C3—C2—H2A	120.6	N3—C11—H11A	119.0
C4—C3—C2	118.4 (7)	C7—C11—H11A	119.0

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) -x+1/2, y+1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H··· A	
C4—H4A····Cl2 ⁱⁱⁱ	0.95	2.82	3.700 (8)	154	
C6—H6A···Cl2 ⁱⁱⁱ	0.95	2.79	3.666 (7)	154	
C10—H10A····Cl2 ⁱⁱ	0.95	2.83	3.545 (8)	132	

Symmetry codes: (ii) -x+1/2, y+1/2, -z+1/2; (iii) x-1/2, -y+1/2, z+1/2.