

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Guanidinium dioxidobis(picolinato- $\kappa^2 N, O$)(picolinato- κO)uranate(VI)

Vitalii I. Mishkevich,^a* Mikhail S. Grigoriev,^a Alexandre M. Fedosseev^a and Philippe Moisy^b

^aA.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospekt, 119071 Moscow, Russian Federation, and ^bComissariat a l'Energy Atomique (CEA), Marcoule, DEN/DRCP, BP 17171 30207 Bagnols-sur-Ceze, France

Correspondence e-mail: mishkevitch@gmail.com

Received 2 May 2012; accepted 10 August 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.035; wR factor = 0.075; data-to-parameter ratio = 21.5.

In the title compound, $(CH_6N_3)[U(C_6H_4NO_2)_3O_2]$, the uranyl group is coordinated by two O and two N atoms from two chelating picolinate ligands, and one O atom from a third picolinate ligand. The coordination environment of the U^{VI} atom (N₂O₅) is distorted pentagonal–bipyramidal. In the crystal, all amino groups are involved in the formation of N– $H \cdots O$ and N– $H \cdots N$ hydrogen bonds, which link cations and anions into layers parallel to the *ac* plane.

Related literature

For the disordered crystal structure of a related complex without guanidinium in which the uranyl ion is chelated by two picolinato ligands and coordinated *via* the O atom of a picolinic acid molecule, see: Grechishnikova *et al.* (2007).

 $V = 4589.80 (18) \text{ Å}^3$

 $0.18 \times 0.06 \times 0.04~\mathrm{mm}$

77357 measured reflections

6604 independent reflections

3818 reflections with $I > 2\sigma(I)$

Mo *K* α radiation $\mu = 7.13 \text{ mm}^{-1}$

Z = 8

T = 293 K

 $R_{\rm int}=0.093$

Experimental

Crystal data

$(CH_6N_3)[U(C_6H_4NO_2)_3O_2]$	
$M_r = 696.42$	
Orthorhombic, Pbca	
a = 16.3842 (4) Å	
b = 13.1678 (3) Å	
c = 21.2743 (4) Å	

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2007) $T_{min} = 0.360, T_{max} = 0.764$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	307 parameters
$wR(F^2) = 0.075$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 1.07 \text{ e } \text{\AA}^{-3}$
6604 reflections	$\Delta \rho_{\min} = -0.71 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N11-H11A\cdots O4^{i}$	0.86	2.02	2.859 (6)	166
$N11 - H11B \cdots O6^{ii}$	0.86	2.12	2.918 (6)	154
$N12 - H12A \cdots O3^{i}$	0.86	2.18	3.033 (6)	169
$N12 - H12B \cdot \cdot \cdot N3$	0.86	2.24	3.042 (7)	156
N13−H13B····O8	0.86	2.10	2.847 (6)	146
N13 $-$ H13 C ···O6 ⁱⁱ	0.86	2.35	3.083 (6)	144

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) $x + \frac{1}{2}, y, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT-Plus* (Bruker, 1998); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the CEA (RSTB/RBPCH, France) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5297).

References

Bruker (1998). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Grechishnikova, E. V., Peresypkina, E. V., Virovets, A. V., Mikhailov, Yu. N. & Serezhkina, L. B. (2007). *Russ. J. Coord. Chem.* **33**, 458–465.

Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m1243 [https://doi.org/10.1107/S1600536812035465] Guanidinium dioxidobis(picolinato-κ²N,O)(picolinato-κO)uranate(VI) Vitalii I. Mishkevich, Mikhail S. Grigoriev, Alexandre M. Fedosseev and Philippe Moisy

S1. Comment

The title structure contains complex anions, in which dioxidocations UO_2^{2+} are surrounded by two bidentate-chelating picolinate anions, coordinated by N and O atoms with the formation of 5-membered cycles, and one monodentate picolinate anion, coordinated by an O atom of the carboxylic group (Fig. 1). The guanidinium cation is located in the outer sphere. The UO₂ groups are almost linear and symmetric. Coordination polyhedra of U atoms are distorted pentagonal bipyramids. The main distortions of coordination polyhedra are the differences between O—U—O and O—U —N angles in the equatorial plane. The U—O distances for O atoms of monodentate picolinate ligands are shorter, compared to U—O distances for bidentate ligands. The U—N distances are longer than U—O ones. Guanidinium cations act as proton donors for 6 H-bonds (2 bonds from each amino group) (Table 1) with O atoms of carboxylic groups and N atoms of organic anions. Each cation is connected to three complex anions forming layers parallel to the (010) plane (Fig. 2). This compound is the first anionic picolinate complex of uranyl and the first example of monodentate coordination of picolinate anion to an actinide cation.

S2. Experimental

The solid UO_3 .H₂O was dissolved in 0.5 *M* aqueous solution of picolinic acid at 1:2 molar ratio. Then an equimolar quantity of guanidinium picolinate solution was added. This solution had been prepared by the neutralization of 1 *M* aqueous solution of guanidinium carbonate by an equimolar quantity of solid picolinic acid.

Light-yellow crystals were obtained by heating the reaction mixture up to 120 °C in a sealed glass tube.

S3. Refinement

The H atoms were placed in calculated positions with displacement parameters constrained to 1.2 times the U_{iso} of their parent atoms.

The largest electron density peak on the final difference Fourier-synthesis is 1.066 e Å⁻³ (0.93 Å from U1), the deepest hole is -0.707 e Å⁻³ (1.16 Å from O7).

Figure 1

A view of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. Dashed lines indicate the hydrogen bonds.

Figure 2

A portion of the crystal packing. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by circles of arbitrary size. H atoms of anions omitted for clarity. Dashed lines indicate the hydrogen bonds.

Guanidinium dioxidobis(picolinato- $\kappa^2 N$, O)(picolinato- κ O)uranate(VI)

Crystal data	
$(CH_6N_3)[U(C_6H_4NO_2)_3O_2]$	F(000) = 2640
$M_r = 696.42$	$D_{\rm x} = 2.016 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 9491 reflections
a = 16.3842 (4) Å	$\theta = 6.2 - 24.9^{\circ}$
b = 13.1678 (3) Å	$\mu = 7.13 \text{ mm}^{-1}$
c = 21.2743 (4) Å	T = 293 K
$V = 4589.80 (18) \text{ Å}^3$	Fragment, light-yellow
Z = 8	$0.18 \times 0.06 \times 0.04 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD	77357 measured reflections
diffractometer	6604 independent reflections
Radiation source: fine-focus sealed tube	3818 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.093$
ω and φ scans	$\theta_{max} = 30.0^{\circ}, \theta_{min} = 4.1^{\circ}$
Absorption correction: multi-scan	$h = -23 \rightarrow 23$
(<i>SADABS</i> ; Sheldrick, 2007)	$k = -18 \rightarrow 18$
$T_{\min} = 0.360, T_{\max} = 0.764$	$l = -27 \rightarrow 29$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.075$	neighbouring sites
S = 1.01	H-atom parameters constrained
6604 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0317P)^2]$
307 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.07$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.71$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
U1	0.418415 (10)	0.592900 (13)	0.227356 (7)	0.03351 (6)	
01	0.4611 (2)	0.7128 (3)	0.24392 (16)	0.0495 (9)	
O2	0.3762 (2)	0.4717 (3)	0.21274 (15)	0.0496 (9)	
03	0.3164 (2)	0.6513 (3)	0.15747 (14)	0.0466 (9)	
04	0.1888 (2)	0.6949 (3)	0.13249 (18)	0.0660 (12)	
05	0.4135 (2)	0.5504 (3)	0.33518 (15)	0.0560 (10)	
06	0.4548 (3)	0.4710 (4)	0.42111 (17)	0.0715 (13)	
07	0.4928 (2)	0.5876 (3)	0.13743 (17)	0.0580 (10)	
08	0.6048 (2)	0.5233 (4)	0.09453 (17)	0.0659 (12)	
N1	0.2885 (2)	0.6762 (3)	0.27861 (17)	0.0365 (9)	
N2	0.5468 (2)	0.5021 (3)	0.27319 (18)	0.0381 (9)	
N3	0.5676 (3)	0.6053 (3)	-0.0183 (2)	0.0532 (12)	
C11	0.2433 (3)	0.6807 (3)	0.1704 (2)	0.0399 (12)	
C12	0.2272 (3)	0.7013 (3)	0.2395 (2)	0.0366 (11)	
C13	0.1551 (3)	0.7450 (4)	0.2593 (3)	0.0471 (13)	
H13A	0.1138	0.7596	0.2307	0.057*	

C14	0.1456 (4)	0.7664 (4)	0.3215 (3)	0.0584 (15)
H14A	0.0976	0.7958	0.3360	0.070*
C15	0.2082 (4)	0.7438 (5)	0.3626 (3)	0.0621 (16)
H15A	0.2032	0.7585	0.4052	0.075*
C16	0.2786 (3)	0.6989 (4)	0.3393 (2)	0.0479 (13)
H16A	0.3207	0.6839	0.3672	0.057*
C21	0.4669 (3)	0.4998 (4)	0.3676 (2)	0.0474 (13)
C22	0.5445 (3)	0.4778 (4)	0.3340 (2)	0.0391 (11)
C23	0.6114 (4)	0.4354 (4)	0.3651 (3)	0.0503 (14)
H23A	0.6084	0.4192	0.4076	0.060*
C24	0.6818 (3)	0.4182 (4)	0.3318 (3)	0.0548 (15)
H24A	0.7279	0.3929	0.3519	0.066*
C25	0.6833 (3)	0.4389 (4)	0.2682 (3)	0.0493 (13)
H25A	0.7295	0.4251	0.2443	0.059*
C26	0.6142 (3)	0.4808 (4)	0.2410 (3)	0.0459 (13)
H26A	0.6151	0.4946	0.1981	0.055*
C31	0.5434 (3)	0.5758 (4)	0.0917 (2)	0.0445 (13)
C32	0.5242 (3)	0.6342 (4)	0.0327 (2)	0.0389 (11)
C33	0.4686 (4)	0.7118 (5)	0.0309 (3)	0.0601 (16)
H33A	0.4392	0.7287	0.0668	0.072*
C34	0.4562 (4)	0.7646 (5)	-0.0237 (3)	0.0735 (19)
H34A	0.4200	0.8188	-0.0250	0.088*
C35	0.4985 (4)	0.7357 (5)	-0.0765 (3)	0.0681 (18)
H35A	0.4908	0.7688	-0.1146	0.082*
C36	0.5523 (4)	0.6569 (5)	-0.0712 (2)	0.0592 (16)
H36A	0.5805	0.6376	-0.1072	0.071*
N11	0.8357 (3)	0.4011 (4)	-0.0134 (2)	0.0632 (14)
H11A	0.8357	0.3657	-0.0474	0.076*
H11B	0.8791	0.4044	0.0093	0.076*
N12	0.7021 (3)	0.4469 (4)	-0.0293 (2)	0.0658 (14)
H12A	0.7003	0.4122	-0.0635	0.079*
H12B	0.6596	0.4796	-0.0169	0.079*
N13	0.7708 (3)	0.5039 (4)	0.0568 (2)	0.0719 (16)
H13B	0.7278	0.5362	0.0688	0.086*
H13C	0.8146	0.5066	0.0790	0.086*
C1	0.7694 (3)	0.4500 (4)	0.0039 (3)	0.0514 (14)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
U1	0.02556 (9)	0.04300 (10)	0.03197 (8)	0.00403 (9)	0.00182 (8)	0.00058 (8)
O1	0.039 (2)	0.054 (2)	0.056 (2)	0.0013 (19)	0.0014 (16)	-0.0038 (18)
O2	0.042 (2)	0.047 (2)	0.059 (2)	0.0028 (18)	-0.0024 (17)	0.0004 (17)
O3	0.038 (2)	0.065 (2)	0.0370 (18)	0.0144 (19)	-0.0010 (15)	-0.0033 (16)
O4	0.055 (3)	0.082 (3)	0.060(2)	0.029 (2)	-0.028 (2)	-0.015 (2)
05	0.045 (2)	0.082 (3)	0.0405 (19)	0.016 (2)	0.0066 (17)	0.0084 (18)
06	0.067 (3)	0.104 (4)	0.043 (2)	0.015 (3)	0.008 (2)	0.026 (2)
O7	0.053 (2)	0.077 (3)	0.0440 (19)	0.014 (2)	0.0162 (18)	0.0023 (19)

supporting information

08	0.050 (3)	0.096 (3)	0.051 (2)	0.029 (2)	0.0112 (19)	0.008 (2)
N1	0.028 (2)	0.041 (2)	0.040 (2)	0.0035 (17)	0.0023 (18)	0.0013 (18)
N2	0.029 (2)	0.044 (2)	0.042 (2)	0.0005 (18)	0.000 (2)	0.0056 (19)
N3	0.054 (3)	0.060 (3)	0.045 (2)	-0.007(2)	0.012 (2)	-0.003 (2)
C11	0.038 (3)	0.036 (3)	0.046 (3)	0.001 (2)	-0.008 (2)	-0.005 (2)
C12	0.030 (3)	0.028 (2)	0.051 (3)	0.000 (2)	0.002 (2)	0.002 (2)
C13	0.032 (3)	0.037 (3)	0.072 (4)	0.003 (2)	-0.003 (3)	0.001 (2)
C14	0.049 (4)	0.048 (3)	0.079 (4)	0.012 (3)	0.024 (3)	0.000 (3)
C15	0.069 (4)	0.064 (4)	0.054 (3)	0.016 (3)	0.018 (3)	0.001 (3)
C16	0.048 (3)	0.058 (4)	0.038 (3)	0.008 (3)	0.004 (2)	-0.004 (2)
C21	0.048 (3)	0.056 (4)	0.038 (3)	0.003 (3)	0.001 (2)	0.002 (2)
C22	0.036 (3)	0.038 (3)	0.043 (3)	-0.001 (2)	-0.005 (2)	0.001 (2)
C23	0.055 (4)	0.045 (3)	0.051 (3)	0.006 (3)	-0.008 (3)	0.006 (2)
C24	0.038 (3)	0.047 (3)	0.079 (4)	0.009 (3)	-0.013 (3)	0.000 (3)
C25	0.033 (3)	0.045 (3)	0.070 (4)	0.006 (2)	0.005 (3)	0.001 (3)
C26	0.034 (3)	0.048 (3)	0.055 (3)	0.006 (3)	0.003 (2)	0.002 (2)
C31	0.042 (3)	0.052 (4)	0.040 (3)	-0.004 (3)	0.009 (2)	-0.002 (2)
C32	0.035 (3)	0.045 (3)	0.036 (3)	-0.005 (2)	0.005 (2)	-0.004 (2)
C33	0.062 (4)	0.069 (4)	0.049 (3)	0.015 (3)	0.011 (3)	0.001 (3)
C34	0.075 (5)	0.071 (5)	0.074 (4)	0.025 (4)	0.006 (4)	0.006 (4)
C35	0.081 (5)	0.073 (5)	0.050 (4)	0.000 (4)	-0.002 (3)	0.012 (3)
C36	0.067 (4)	0.070 (4)	0.041 (3)	-0.014 (4)	0.015 (3)	0.003 (3)
N11	0.048 (3)	0.089 (4)	0.053 (3)	0.017 (3)	0.000 (2)	-0.012 (3)
N12	0.045 (3)	0.093 (4)	0.059 (3)	0.012 (3)	-0.007 (2)	-0.030 (3)
N13	0.039 (3)	0.111 (4)	0.065 (3)	0.018 (3)	-0.004 (2)	-0.033 (3)
C1	0.045 (4)	0.062 (4)	0.048 (3)	-0.001 (3)	0.003 (3)	-0.005 (3)

Geometric parameters (Å, °)

U1-01	1.762 (4)	C21—C22	1.486 (7)
U1—O2	1.766 (4)	C22—C23	1.397 (7)
U1—O3	2.366 (3)	C23—C24	1.371 (8)
U105	2.362 (3)	C23—H23A	0.9300
U1—07	2.269 (3)	C24—C25	1.381 (8)
U1—N1	2.631 (4)	C24—H24A	0.9300
U1—N2	2.609 (4)	C25—C26	1.386 (7)
O3—C11	1.288 (5)	C25—H25A	0.9300
O4—C11	1.218 (5)	C26—H26A	0.9300
O5—C21	1.298 (6)	C31—C32	1.506 (7)
O6—C21	1.217 (6)	C32—C33	1.371 (7)
O7—C31	1.287 (6)	C33—C34	1.369 (8)
O8—C31	1.221 (6)	C33—H33A	0.9300
N1-C16	1.335 (6)	C34—C35	1.372 (9)
N1-C12	1.345 (6)	C34—H34A	0.9300
N2-C26	1.330 (6)	C35—C36	1.365 (9)
N2-C22	1.334 (6)	C35—H35A	0.9300
N3—C36	1.340 (7)	C36—H36A	0.9300
N3—C32	1.351 (6)	N11—C1	1.316 (7)

supporting information

C11—C12	1.518 (7)	N11—H11A	0.8600
C12—C13	1.379 (7)	N11—H11B	0.8600
C13—C14	1.360 (8)	N12—C1	1.310(7)
С13—Н13А	0.9300	N12—H12A	0.8600
C_{14} C_{15}	1 381 (8)	N12 H12R	0.8600
C14 = C13	0.0200	N12 C1	1.221(7)
C14—H14A	0.9300		1.551 (7)
	1.389(7)	NI3—HI3B	0.8600
CI5—HI5A	0.9300	N13—H13C	0.8600
C16—H16A	0.9300		
01—U1—O2	178.53 (16)	O6—C21—O5	123.2 (5)
01—U1—07	89.03 (15)	O6—C21—C22	121.9 (5)
O2—U1—O7	91.94 (15)	O5—C21—C22	114.9 (4)
01—U1—O5	91.81 (15)	N2—C22—C23	122.1 (5)
O2—U1—O5	86.77 (15)	N2—C22—C21	116.4 (4)
O7—U1—O5	146.05 (13)	C23—C22—C21	121.5 (5)
O1—U1—O3	96.59 (15)	C24—C23—C22	118.8 (5)
O2—U1—O3	84.64 (14)	C24—C23—H23A	120.6
07	81.95 (12)	C22—C23—H23A	120.6
05 - U1 - 03	13153(12)	C^{23} C^{24} C^{25}	1193(5)
01— $U1$ — $N2$	90.92 (14)	C23—C24—H24A	120.4
Ω^2 _U1_N2	88 11 (14)	$C_{25} = C_{24} = H_{24A}$	120.1
07 U1 N2	82 /1 (13)	$C_{23} = C_{24} = H_{24} + K$	120.4 118.2 (5)
07 - 01 - N2	62.41(13)	$C_{24} = C_{25} = C_{26}$	110.2(3)
03-01-N2	1(2,51,(12))	C_{24} C_{25} H_{25A}	120.9
03-01-N2	162.51(12)	C26-C25-H25A	120.9
	82.23 (14)	N2-C26-C25	123.1 (5)
02—01—N1	97.65 (14)	N2—C26—H26A	118.4
07—U1—N1	142.81 (12)	C25—C26—H26A	118.4
O5—U1—N1	70.66 (12)	O8—C31—O7	124.1 (5)
O3—U1—N1	63.45 (12)	O8—C31—C32	120.1 (5)
N2—U1—N1	133.52 (12)	O7—C31—C32	115.7 (5)
C11—O3—U1	128.3 (3)	N3—C32—C33	122.6 (5)
C21—O5—U1	127.9 (3)	N3—C32—C31	114.6 (5)
C31—O7—U1	170.5 (4)	C33—C32—C31	122.9 (5)
C16—N1—C12	116.9 (4)	C34—C33—C32	120.0 (5)
C16—N1—U1	126.3 (3)	С34—С33—Н33А	120.0
C12—N1—U1	116.8 (3)	С32—С33—Н33А	120.0
C26—N2—C22	118.2 (4)	C33—C34—C35	118.6 (6)
C26—N2—U1	125.0 (3)	C33—C34—H34A	120.7
C22—N2—U1	116.7 (3)	C35—C34—H34A	120.7
$C_{36} = N_{3} = C_{32}^{32}$	115.6 (5)	$C_{36} - C_{35} - C_{34}$	117.9 (6)
04-C11-03	125.8 (5)	$C_{36} = C_{35} = H_{35A}$	121.0
04-C11-C12	119 1 (5)	C_{34} C_{35} H_{35A}	121.0
03 - 011 - 012	115.0 (4)	N3_C36_C35	121.0 125.2(5)
N1 C12 C13	123.6 (5)	N2 C26 H26A	125.2 (5)
N1 - C12 - C13	125.0(5) 115.1(4)	$C_{25} = C_{26} = H_{26}$	117. 4
$1 \times 1 - (12 - (11))$	113.1 (4)	Сл. №11 Ц11А	11/.4
	121.3 (3)	CI-NII-HIIA	120.0
C14—C13—C12	118.8 (5)	CI-NII-HIIB	120.0

C14—C13—H13A	120.6	H11A—N11—H11B	120.0
C12—C13—H13A	120.6	C1—N12—H12A	120.0
C13—C14—C15	119.1 (5)	C1—N12—H12B	120.0
C13—C14—H14A	120.4	H12A—N12—H12B	120.0
C15—C14—H14A	120.4	C1—N13—H13B	120.0
C14—C15—C16	118.8 (5)	C1—N13—H13C	120.0
C14—C15—H15A	120.6	H13B—N13—H13C	120.0
C16—C15—H15A	120.6	N12—C1—N11	121.9 (5)
N1-C16-C15	122.8 (5)	N12—C1—N13	119.1 (5)
N1—C16—H16A	118.6	N11—C1—N13	118.9 (5)
C15—C16—H16A	118.6		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N11—H11A····O4 ⁱ	0.86	2.02	2.859 (6)	166
N11—H11 <i>B</i> ····O6 ⁱⁱ	0.86	2.12	2.918 (6)	154
N12—H12A····O3 ⁱ	0.86	2.18	3.033 (6)	169
N12—H12 <i>B</i> ····N3	0.86	2.24	3.042 (7)	156
N13—H13 <i>B</i> ···O8	0.86	2.10	2.847 (6)	146
N13—H13C···O6 ⁱⁱ	0.86	2.35	3.083 (6)	144

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*+1/2, *y*, -*z*+1/2.