Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Caesium diuranium hexatelluride

Adel Mesbah and James A. Ibers*
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
Correspondence e-mail: ibers@chem.northwestern.edu
Received 28 August 2012; accepted 7 September 2012
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{Te}-\mathrm{Te})=0.001 \AA$; disorder in main residue; R factor $=0.022 ; w R$ factor $=0.053$; data-to-parameter ratio $=32.2$.

Single crystals of $\mathrm{CsU}_{2} \mathrm{Te}_{6}$ were synthesized from the reaction of U, Te, and $\mathrm{Cs}_{2} \mathrm{Te}_{3}$ at $1273 \mathrm{~K} . \mathrm{CsU}_{2} \mathrm{Te}_{6}$ crystallizes in the space group Cmcm in the $\mathrm{CsTh}_{2} \mathrm{Te}_{6}$ structure type. The asymmetric unit comprises one U (site symmetry $m 2 m$), one Cs ($m 2 m$; half-occupancy) and two Te atoms (m.. and $m 2 m$). The structure of $\mathrm{CsU}_{2} \mathrm{Te}_{6}$ consists of infinite $\left[\mathrm{U}_{2} \mathrm{Te}_{6}\right]$ layers perpendicular to [010] separated by Cs atoms. There are infinite $\mathrm{Te}-\mathrm{Te}-\mathrm{Te}$ linear chains along [001].

Related literature

For related structures, see: Narducci \& Ibers (1998); Chan et al. (2004); Bugaris et al. (2010); Choi et al. (1998); Cody \& Ibers (1996); Mizoguchi et al. (2006); Tougait et al. (1997); Krönert \& Plieth (1965); Wu et al. (1997). For synthetic details, see: Bugaris \& Ibers (2008); Haneveld \& Jellinek (1969). For standardization of structural data, see: Gelato \& Parthé (1987).

Experimental

Crystal data	
$\mathrm{CsU}_{2} \mathrm{Te}_{6}$	$V=652.06(5) \AA^{3}$
$M_{r}=1374.57$	$Z=2$
Orthorhombic, Cmcm	$\mathrm{Mo} \mathrm{K} \alpha$ radiation
$a=4.2129(2) \AA$	$\mu=40.65 \mathrm{~mm}^{-1}$
$b=25.6317(11) \AA$	$T=100 \mathrm{~K}$
$c=6.0385(2) \AA$	$0.21 \times 0.03 \times 0.02 \mathrm{~mm}$

Data collection

Bruker APEXII CCD diffractometer
Absorption correction: numerical face-indexed (SADABS;
Sheldrick, 2008a)
$T_{\text {min }}=0.043, T_{\text {max }}=0.482$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022 \quad 19$ parameters
$w R\left(F^{2}\right)=0.053$
$S=1.22$
611 reflections

5645 measured reflections 611 independent reflections 574 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.032$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97.

The research was kindly supported at Northwestern University by the US Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Science and Engineering Grant ER-15522. Use was made of the IMSERC X-ray Facility at Northwestern University, supported by the International Institute of Nanotechnology (IIN).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2209).

References

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bugaris, D. E. \& Ibers, J. A. (2008). J. Solid State Chem. 181, 3189-3193.
Bugaris, D. E., Wells, D. M., Yao, J., Skanthakumar, S., Haire, R. G., Soderholm, L. \& Ibers, J. A. (2010). Inorg. Chem. 49, 8381-8388.
Chan, B. C., Hulvey, Z., Abney, K. D. \& Dorhout, P. K. (2004). Inorg. Chem. 43, 2453-2455.
Choi, K.-S., Patschke, R., Billinge, S. J. L., Waner, M. J., Dantus, M. \& Kanatzidis, M. G. (1998). J. Am. Chem. Soc. 120, 10706-10714.
Cody, J. A. \& Ibers, J. A. (1996). Inorg. Chem. 35, 3836-3838.
Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
Haneveld, A. J. K. \& Jellinek, F. (1969). J. Less Common Met. 18, 123-129.
Krönert, W. \& Plieth, K. (1965). Z. Anorg. Allg. Chem. 336, 207-218.
Mizoguchi, H., Gray, D., Huang, F. Q. \& Ibers, J. A. (2006). Inorg. Chem. 45, 3307-3311.
Narducci, A. A. \& Ibers, J. A. (1998). Inorg. Chem. 37, 3798-3801.
Palmer, D. (2009). CrystalMaker Software. CrystalMaker Software Ltd, Oxford, England.
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
Tougait, O., Daoudi, A., Potel, M. \& Noël, H. (1997). Mater. Res. Bull. 32, 1239-1245.
Wu, E. J., Pell, M. A. \& Ibers, J. A. (1997). J. Alloys Compd, 255, 106-109.

supporting information

Acta Cryst. (2012). E68, i76 [https://doi.org/10.1107/S1600536812038512]

Caesium diuranium hexatelluride

Adel Mesbah and James A. Ibers

S1. Comment

$\mathrm{CsU}_{2} \mathrm{Te}_{6}$ (Figure 1) belongs to the $\mathrm{AAn}_{2} \mathrm{Q}_{6}(\mathrm{~A}=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$, or Tl ; $\mathrm{An}=\mathrm{U}, \mathrm{Th}$, or $\mathrm{Np} ; \mathrm{Q}=\mathrm{S}, \mathrm{Se}$, or Te) family. Compounds in this family crystallize in two different structures types: $\mathrm{CsTh}_{2} \mathrm{Te}_{6}$ (Cody \& Ibers, 1996) (space group Cmcm) and $\mathrm{KTh}_{2} \mathrm{Se}_{6}$ (Choi et al., 1998; Wu et al., 1997) (space group Immm). Both structure types have AnQ_{3} layers intercalated with A atoms. The difference between the two structure types is that each successive AnQ_{3} layer in the Cmcm structure type is shifted by $\mathrm{a} / 2$, whereas each successive AnQ_{3} layer in the Immm structure type is shifted by $(\mathrm{a}+\mathrm{b}) / 2$ (Mizoguchi et al., 2006). The AnQ_{3} layers are analogous to those in the structure of ZrSe_{3} (Krönert \& Plieth, 1965). The $\mathrm{CsTh}_{2} \mathrm{Te}_{6}$ structure type is adopted by $\mathrm{KTh}_{2} \mathrm{Te}_{6}\left(\mathrm{Wu}\right.$ et al., 1997) and $\mathrm{Tl}_{1.12} \mathrm{UTe}_{6}$ (Tougait et al., 1997). The $\mathrm{KTh}_{2} \mathrm{Se}_{6}$ structure type is adopted by $\mathrm{RbTh}_{2} \mathrm{Se}_{6}$ (Choi et al., 1998), $\mathrm{K}_{0.91} \mathrm{U}_{1.79} \mathrm{~S}_{6}$ (Mizoguchi et al., 2006), $\mathrm{KU}_{2} \mathrm{Se}_{6}$ (Chan et al., 2004; Mizoguchi et al., 2006), $\mathrm{CsU}_{2} \mathrm{Se}_{6}$ (Choi et al., 1998), $\mathrm{CsTh}_{2} \mathrm{Se}_{6}, \mathrm{Rb}_{0.85} \mathrm{U}_{1.74} \mathrm{~S}_{6}, \mathrm{RbU}_{2} \mathrm{Se}_{6}, \mathrm{Cs}_{0.88}\left(\mathrm{La}_{0.68} \mathrm{U}_{1.32}\right) \mathrm{Se}_{6}, \mathrm{KNp}_{2} \mathrm{Se}_{6}, \mathrm{CsNp}_{2} \mathrm{Se}_{6}$, and $\mathrm{TlU}_{2} \mathrm{Se}_{6}$ (Bugaris et al., 2010). The structures of the two last compounds are modulated and were refined in 5a $x 5 \mathrm{~b} x 5 \mathrm{c}$ and $4 \mathrm{a} x 4 \mathrm{~b}$ superlattices, respectively.

S2. Experimental

Black needles of $\mathrm{CsU}_{2} \mathrm{Te}_{6}$ were obtained by direct combination of ${ }^{238} \mathrm{U}(30 \mathrm{mg}, 12.9 \mathrm{mmol})$, $\mathrm{Te}(20.9 \mathrm{mg}, 16.4 \mathrm{mmol}$, Aldrich, 99.8%) and $\mathrm{Cs}_{2} \mathrm{Te}_{3}(24.6 \mathrm{mg}, 37.9 \mathrm{mmol}) . \mathrm{Cs}_{2} \mathrm{Te}_{3}$ was prepared by the stoichiometric reaction of Cs (Alfa Aesar, 99.8%) and Te in liquid NH_{3} at 194 K . U powder obtained by hydridization and decomposition of turnings (depleted, ORNL) by heating under vacuum, in a modification (Bugaris \& Ibers, 2008) of a previous literature method (Haneveld \& Jellinek, 1969). The starting reagents were loaded in a carbon-coated fused-silica tube under an Ar atmosphere in a glove box, then evacuated to 10^{-4} Torr, and flame sealed. The tube was placed in computer-controlled furnace, heated to 1273 K in 48 h , held there for 4 h , cooled to 1223 K in 12 h and kept there for 8 d , then cooled to 293 K at $3 \mathrm{~K} / \mathrm{h}$. Black needles were selected and analyzed by EDX and showed the formation of Cs:U:Te in a 1:2:6 ratio. The yield, based on U, was about 15% of the product.

S3. Refinement

The highest peak ($3.9 \mathrm{e}^{-} \AA^{-3}$) is $0.76 \AA$ from atom Te1 and the deepest hole $\left(1.9 \mathrm{e}^{-} \AA^{-3}\right)$ is $0.78 \AA$ from atom U1. These should be compared with the height of $225 \mathrm{e}^{-} \AA^{-3}$ of atom $\mathrm{Te}(1)$ in an electron density map.

Figure 1
Structure of $\mathrm{CsU}_{2} \mathrm{Te}_{6}$ viewed approximately down [100]. Displacement ellipsoids are drawn at the 95% probability level.

Caesium diuranium hexatelluride

Crystal data

$\mathrm{CsU}_{2} \mathrm{Te}_{6}$
$M_{r}=1374.57$
Orthorhombic, Cmcm
Hall symbol: -C 2c 2
$a=4.2129$ (2) \AA
$b=25.6317(11) \AA$
$c=6.0385(2) \AA$
$V=652.06(5) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: numerical
face-indexed (SADABS; Sheldrick, 2008a)
$T_{\min }=0.043, T_{\text {max }}=0.482$
$F(000)=1102$
$D_{\mathrm{x}}=7.001 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2738 reflections
$\theta=6.4-60.9^{\circ}$
$\mu=40.65 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, black
$0.21 \times 0.03 \times 0.02 \mathrm{~mm}$

5645 measured reflections
611 independent reflections
574 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=30.7^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-5 \rightarrow 3$
$k=-36 \rightarrow 36$
$l=-8 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.053$
$S=1.22$
611 reflections
19 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$[1.00000] /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+\left(0.0298 F_{0}{ }^{2}\right)^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=3.89$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.87 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$	Occ. (<1)
U 1	0.0000	$0.685078(14)$	0.2500	$0.00916(11)$	
Cs 1	0.0000	$0.49825(7)$	0.2500	$0.0556(7)$	0.50
Te 1	0.0000	$0.116539(18)$	$0.00249(7)$	$0.01098(13)$	
Te 2	0.0000	$0.27322(2)$	0.2500	$0.00877(14)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
U 1	$0.0072(2)$	$0.01045(17)$	$0.00982(17)$	0.000	0.000	0.000
Cs 1	$0.100(2)$	$0.0194(9)$	$0.0475(12)$	0.000	0.000	0.000
Te 1	$0.0087(3)$	$0.0118(2)$	$0.0125(2)$	0.000	0.000	$-0.00052(15)$
Te 2	$0.0079(3)$	$0.0090(3)$	$0.0095(3)$	0.000	0.000	0.000

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{U} 1 — \mathrm{Te} 2^{\mathrm{i}}$	$3.0890(5)$	$\mathrm{Cs} 1 — \mathrm{Te} 1^{\mathrm{iii}}$	$3.9830(15)$
$\mathrm{U} 1 — \mathrm{Te} 2^{\mathrm{ii}}$	$3.0890(5)$	$\mathrm{Cs} 1 — \mathrm{Te} 1^{\mathrm{ii}}$	$3.9830(15)$
$\mathrm{U} 1 — \mathrm{Te} 1^{\mathrm{ii}}$	$3.1237(4)$	$\mathrm{Cs} 1 — \mathrm{Cs} 1^{\mathrm{xi}}$	$4.2129(2)$
$\mathrm{U} 1 — \mathrm{Te} 1^{\mathrm{iii}}$	$3.1237(4)$	$\mathrm{Cs} 1 — \mathrm{Cs} 1^{\mathrm{xii}}$	$4.2129(2)$
$\mathrm{U} 1 — \mathrm{Te} 1^{\mathrm{iv}}$	$3.1237(4)$	$\mathrm{Te} 1 — \mathrm{Te} 1^{\mathrm{xiii}}$	$2.9892(8)$
$\mathrm{U} 1 — \mathrm{Te} 1^{\mathrm{i}}$	$3.1237(4)$	$\mathrm{Te} 1 — \mathrm{Te} 1^{\mathrm{xiv}}$	$3.0493(8)$
$\mathrm{U} 1 — \mathrm{Te} 2^{\mathrm{v}}$	$3.2028(3)$	$\mathrm{Te} 1 — \mathrm{U} 1^{\mathrm{xv}}$	$3.1237(4)$
$\mathrm{U} 1 — \mathrm{Te} 2^{\mathrm{vi}}$	$3.2028(3)$	$\mathrm{Te} 1 — \mathrm{U} 1^{\mathrm{xvi}}$	$3.1237(4)$
$\mathrm{U} 1 — \mathrm{Cs} 1^{\mathrm{xi}}$	$4.7888(19)$	$\mathrm{Te} 1 — \mathrm{Cs} 1^{\mathrm{vii}}$	$3.9265(14)$
$\mathrm{Cs} 1 — \mathrm{Cs} 1^{\mathrm{v}}$	$3.0206(2)$	$\mathrm{Te} 1 — \mathrm{Cs} 1^{\mathrm{ix}}$	$3.9265(14)$
$\mathrm{Cs} 1 — \mathrm{Cs} 1^{\mathrm{vi}}$	$3.0206(2)$	$\mathrm{Te} 1 — \mathrm{Cs} 1^{\mathrm{xvi}}$	$3.9830(15)$
$\mathrm{Cs} 1 — \mathrm{Te} 1^{\mathrm{vii}}$	$3.9266(14)$	$\mathrm{Te} 1 — \mathrm{Cs} 1^{\mathrm{xv}}$	$3.9830(15)$

Cs1-Te1 ${ }^{\text {viii }}$	3.9266 (14)
Cs1-Tel ${ }^{\text {ix }}$	3.9266 (14)
Cs $1-\mathrm{Te} 1^{\mathrm{x}}$	3.9266 (14)
Cs1-Te1 ${ }^{\text {iv }}$	3.9830 (15)
Cs1-Te1 ${ }^{\text {i }}$	3.9830 (15)
Te2 ${ }^{\text {i }}$ - $\mathrm{U} 1-\mathrm{Te} 2^{\text {ii }}$	85.989 (18)
Te2 ${ }^{\text {i }}$ - $\mathrm{U} 1-\mathrm{Te} 1^{\text {ii }}$	150.600 (9)
Te2ii-U1-Te1 ${ }^{\text {ii }}$	87.220 (10)
Te2 ${ }^{\text {i }}$ - U1-Te1 ${ }^{\text {iii }}$	150.600 (9)
Te2 ${ }^{\text {ii }}$ - $\mathrm{U} 1-\mathrm{Te} 1^{\text {iii }}$	87.220 (10)
Te1iin ${ }^{\text {ii }} 1-\mathrm{Te} 1^{\text {iii }}$	57.172 (15)
Te2 ${ }^{\text {i }}$ - U1-Te1 ${ }^{\text {iv }}$	87.220 (10)
$\mathrm{Te} 2^{\text {ii- }}$ - $11-\mathrm{Te} 1^{\text {iv }}$	150.600 (9)
$\mathrm{Te} 1^{\mathrm{ii}}-\mathrm{U} 1-\mathrm{Te} 1^{\text {iv }}$	111.555 (18)
Te1 ${ }^{\text {iii- }}$-U1-Te1 $1^{\text {iv }}$	84.808 (13)
Te2 ${ }^{\text {i }}-\mathrm{U} 1-\mathrm{Te} 1^{\mathrm{i}}$	87.220 (10)
Te2 ${ }^{\text {ii }}$-U1-Te1 ${ }^{\text {i }}$	150.600 (9)
Te1 ${ }^{\text {iii }}$ - $11-\mathrm{Te} 1^{\text {i }}$	84.808 (13)
Te1 $1^{\text {iii-_U1- }}$ - $1^{1}{ }^{\text {i }}$	111.555 (18)
$\mathrm{Te} 1^{\mathrm{iv}}-\mathrm{U} 1-\mathrm{Te} 1^{\text {i }}$	57.172 (15)
Te $2^{\text {i }}-\mathrm{U} 1-\mathrm{Te} 2^{\text {v }}$	75.873 (8)
Te2ii-U1-Te2 ${ }^{\text {v }}$	75.873 (8)
Te1 ${ }^{\text {iii }}$ - $11-\mathrm{Te} 2^{\text {v }}$	129.697 (9)
Te $1^{\text {iii }}$-U1-Te2 ${ }^{\text {v }}$	74.730 (11)
$\mathrm{Te} 1^{\mathrm{iv}}-\mathrm{U} 1-\mathrm{Te} 2^{\text {v }}$	74.730 (11)
Te1 ${ }^{\text {i }}$ - $\mathrm{U} 1-\mathrm{Te} 2^{\text {v }}$	129.697 (9)
$\mathrm{Te} 2{ }^{\mathrm{i}}-\mathrm{U} 1-\mathrm{Te} 2^{\mathrm{vi}}$	75.873 (8)
$\mathrm{Te} 2^{\mathrm{ii}}-\mathrm{U} 1-\mathrm{Te} 2^{\text {vi }}$	75.873 (8)
$\mathrm{Te} 1^{\mathrm{ii}}-\mathrm{U} 1-\mathrm{Te} 2^{\text {vi }}$	74.730 (11)
Te1 ${ }^{\text {iii }}$ - $\mathrm{U} 1-\mathrm{Te} 2^{\text {vi }}$	129.697 (9)
$\mathrm{Te} 1^{\mathrm{iv}}-\mathrm{U} 1-\mathrm{Te} 2^{\text {vi }}$	129.697 (9)
Te1 ${ }^{\text {i }}$ - U1-Te2 ${ }^{\text {vi }}$	74.730 (11)
Te $2^{\text {v }}-\mathrm{U} 1-\mathrm{Te} 2^{\text {vi }}$	141.01 (2)
Te2 ${ }^{\text {i }}$ - U 1 - Cs 1	137.005 (9)
Te2 ${ }^{\text {iii-U1-Cs1 }}$	137.005 (9)
Te1 ${ }^{\text {ii }}$ - $\mathrm{U} 1-\mathrm{Cs} 1$	55.777 (9)
Te1 $1^{\text {iii- }}$ U1-Cs1	55.777 (9)
Te1 $1^{\text {iv }}$-U1-Cs1	55.777 (9)
Te1 ${ }^{\text {i }}$ - U1-Cs1	55.777 (9)
Te2 ${ }^{\text {v}-U 1-C s 1 ~}$	109.494 (12)
Te2 ${ }^{\text {vi- }} \mathrm{U} 1$ - Cs 1	109.494 (12)
Cs1 ${ }^{\text {v }}$ - $\mathrm{Cs} 1-\mathrm{Cs} 1^{\text {vi }}$	176.59 (14)
Cs1 ${ }^{\text {v }}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\text {vii }}$	114.23 (7)
Cs1 ${ }^{\text {vi}}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\text {vii }}$	68.54 (5)
Cs1 ${ }^{\text {v }}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\text {viii }}$	68.54 (5)
Cs1 ${ }^{\text {vi }}$-Cs1-Te1 $1^{\text {viii }}$	114.23 (7)
Te1 ${ }^{\text {vii - }}$ Cs $1-\mathrm{Te} 1^{\text {viii }}$	45.70 (2)

3.9266 (14)
3.9266 (14)
3.9266 (14)
3.9830 (15)
3.9830 (15)
85.989 (18)
150.600 (9)
87.220 (10)
150.600 (9)
87.220 (10)
57.172 (15)
87.220 (10)
111.555
84.808 (13)
87.220 (10)
150.600 (9)
84.808 (13)
111.555 (18)
57.172 (15)
75.873 (8)
75.873 (8)
129.697 (9)
74.730
129.697 (9)
75.873 (8)
75.873 (8)
74.730 (11)
129.697 (9)
129.697 (9)
74.730 (11)
141.01 (2)
137.005 (9)
137.005 (9)
55.777 (9)
55.777 (9)
55.777 (9)
55.777 (9)
109.494 (12)
109.494 (12)
176.59 (14)
114.23 (7)
68.54 (5)
68.54 (5)
45.70 (2)

$\mathrm{Te} 2-\mathrm{U} 1^{\mathrm{xvi}}$	$3.0889(5)$
$\mathrm{Te} 2-\mathrm{U} 1^{\mathrm{xv}}$	$3.0889(5)$
$\mathrm{Te} 2-\mathrm{U} 1^{\mathrm{v}}$	$3.2028(3)$
$\mathrm{Te} 2-\mathrm{U} 1^{\mathrm{vi}}$	$3.2028(3)$

178.90 (3)
135.105 (5)
63.86 (3)
80.85 (4)
110.64 (7)
66.56 (5)
98.104 (9)
115.619 (7)
135.105 (5)
178.90 (3)
80.85 (4)
63.86 (3)
44.08 (2)
90.0
90.0
57.556 (13)
57.556 (13)
122.442 (13)
122.442 (13)
121.930 (13)
121.930 (13)
58.072 (13)
58.072 (13)
90.0
90.0
122.442 (13)
122.442 (13)
57.556 (13)
57.556 (13)
58.072 (13)
58.072 (13)
121.930 (13)
121.930 (13)
180.0
180.00 (3)
61.414 (8)
118.586 (8)
61.414 (8)
118.586 (8)
84.806 (13)
112.848 (11)
67.152 (11)

Cs1 ${ }^{\text {v }}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\text {ix }}$	114.23 (7)	$\mathrm{U} 1{ }^{\mathrm{xv}}-\mathrm{Te} 1-\mathrm{Cs} 1^{\text {vii }}$	165.69 (2)
Cs1 ${ }^{\text {vi }}-\mathrm{Cs} 1-\mathrm{Te} 1^{\text {ix }}$	68.54 (5)	U1 ${ }^{\text {xvi }}$ - $\mathrm{Te} 1-\mathrm{Cs} 1^{\text {vii }}$	104.208 (12)
Te1 $1^{\text {vii }}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\text {ix }}$	64.89 (3)	Te1 $1^{\text {xiii }}-\mathrm{Te} 1-\mathrm{Cs} 1^{\text {ix }}$	112.848 (11)
Te1 ${ }^{\text {viii - }}$ Cs1-Te1 ${ }^{\text {ix }}$	82.94 (4)	Te1 ${ }^{\text {xiv }}$ - $\mathrm{Te} 1-\mathrm{Cs} 1^{\text {ix }}$	67.152 (11)
Cs1 ${ }^{\text {v }}-\mathrm{Cs} 1-\mathrm{Te} 1^{\text {x }}$	68.54 (5)	$\mathrm{U} 1{ }^{\text {xv }}-\mathrm{Te} 1-\mathrm{Cs} 1^{\text {ix }}$	104.208 (12)
Cs1 ${ }^{\text {vi}}-\mathrm{Cs} 1-\mathrm{Te} 1^{\mathrm{x}}$	114.23 (7)	U1 ${ }^{\text {xvi }}$-Te1-Cs1 ${ }^{\text {ix }}$	165.69 (2)
Te1 ${ }^{\text {vii }}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\mathrm{x}}$	82.94 (4)	Cs1 ${ }^{\text {vii }}-\mathrm{Te} 1-\mathrm{Cs}^{1}{ }^{\text {ix }}$	64.89 (3)
Te1 ${ }^{\text {viii }}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\mathrm{x}}$	64.89 (3)	Te1 ${ }^{\text {xiii }}$-Te1-Cs1 ${ }^{\text {xvi }}$	67.961 (10)
$\mathrm{Te} 1^{\mathrm{ix}}-\mathrm{Cs} 1-\mathrm{Te} 1^{\mathrm{x}}$	45.70 (2)	Te1 ${ }^{\text {xiv }}$ - $\mathrm{Te} 1-\mathrm{Cs} 1^{\text {xvi }}$	112.039 (10)
Cs1 ${ }^{\mathrm{v}}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\text {iv }}$	66.56 (5)	U1 ${ }^{\text {xv }}-\mathrm{Te} 1-\mathrm{Cs} 1^{\mathrm{xvi}}$	127.246 (13)
Cs1 ${ }^{\text {vi}}-\mathrm{Cs} 1-\mathrm{Te} 1^{\text {iv }}$	110.64 (7)	U1 ${ }^{\text {xvi }}$-Te1-Cs1 ${ }^{\text {xvi }}$	83.80 (2)
Te1 $1^{\text {vii }}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\text {iv }}$	178.90 (3)	Cs1 ${ }^{\text {vii }}$-Te1-Cs1 ${ }^{\text {xvi }}$	44.895 (5)
Te1 $1^{\text {viii }}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\text {iv }}$	135.105 (5)	Cs1 ${ }^{\text {ix }}$ - $\mathrm{Te} 1-\mathrm{Cs} 1^{\mathrm{xvi}}$	81.896 (9)
$\mathrm{Te} 1^{\mathrm{ix}}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\mathrm{iv}}$	115.619 (7)	Te1 ${ }^{\text {xiii }}$-Te1-Cs1 ${ }^{\text {xv }}$	67.961 (10)
Te1 ${ }^{\mathrm{x}}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\text {iv }}$	98.104 (9)	Te1 ${ }^{\text {xiv }}$ - $\mathrm{Te} 1-\mathrm{Cs} 1^{\text {xv }}$	112.039 (10)
Cs1 ${ }^{\text {r }}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\text {i }}$	110.64 (7)	$\mathrm{U} 1{ }^{\mathrm{xv}}-\mathrm{Te} 1-\mathrm{Cs} 1^{\mathrm{xv}}$	83.80 (2)
Cs11 ${ }^{\text {vi}}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\text {i }}$	66.56 (5)	$\mathrm{U} 1{ }^{\text {xvi }}-\mathrm{Te} 1-\mathrm{Cs} 1^{\mathrm{xv}}$	127.246 (13)
Te ${ }^{\text {vii }}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\text {i }}$	135.105 (5)	Cs1 ${ }^{\text {vii }}$-Te1-Cs1 ${ }^{\text {xv }}$	81.896 (9)
Te1 ${ }^{\text {viii- }} \mathrm{Cs} 1-\mathrm{Te} 1^{\mathrm{i}}$	178.90 (3)	$\mathrm{Cs} 1^{\mathrm{ix}}$-Tel- $\mathrm{Cs}^{\text {xv }}$	44.895 (5)
$\mathrm{Te} 1^{\mathrm{ix}}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\mathrm{i}}$	98.104 (9)	Cs1 ${ }^{\text {xvi }}-\mathrm{Te} 1-\mathrm{Cs} 1^{\text {xv }}$	63.86 (3)
$\mathrm{Te} 1^{\mathrm{x}}-\mathrm{Cs} 1-\mathrm{Te} 1^{\text {i }}$	115.619 (7)	$\mathrm{U} 1^{\mathrm{xvi}}-\mathrm{Te} 2-\mathrm{U} 1^{\mathrm{xv}}$	85.992 (18)
Te1 ${ }^{\text {iv }}-\mathrm{Cs} 1-\mathrm{Te} 1^{\text {i }}$	44.08 (2)	U1 ${ }^{\text {xvi }}-\mathrm{Te} 2-\mathrm{U} 1^{\text {v }}$	104.126 (8)
Cs1 ${ }^{\mathrm{v}}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\text {iii }}$	66.56 (5)	$\mathrm{U} 1^{\mathrm{xv}}-\mathrm{Te} 2-\mathrm{U} 1^{\mathrm{v}}$	104.126 (8)
Cs1 ${ }^{\text {vi }}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\text {iii }}$	110.64 (7)	U1 ${ }^{\text {xvi }}-\mathrm{Te} 2-\mathrm{U} 1^{\text {vi }}$	104.126 (8)
	115.619 (7)	$\mathrm{U} 1{ }^{\mathrm{xv}}-\mathrm{Te} 2-\mathrm{U} 1^{\mathrm{vi}}$	104.126 (8)
Te1 ${ }^{\text {viii }}$ - $\mathrm{Cs} 1-\mathrm{Te} 1^{\text {iii }}$	98.104 (9)	$\mathrm{U} 1{ }^{\mathrm{v}}-\mathrm{Te} 2-\mathrm{U} 1^{\text {vi }}$	141.01 (2)

[^0]
[^0]: Symmetry codes: (i) $x+1 / 2, y+1 / 2, z$; (ii) $x-1 / 2, y+1 / 2, z$; (iii) $x-1 / 2, y+1 / 2,-z+1 / 2$; (iv) $x+1 / 2, y+1 / 2,-z+1 / 2$; (v) $-x,-y+1,-z+1$; (vi) $-x,-y+1,-z$; (vii) $-x-1 / 2,-y+1 / 2,-z$; (viii) $-x-1 / 2,-y+1 / 2, z+1 / 2$; (ix) $-x+1 / 2,-y+1 / 2,-z ;$ (x) $-x+1 / 2,-y+1 / 2, z+1 / 2$; (xi) $x-1, y, z$; (xii) $x+1, y, z$; (xiii) $x, y,-z+1 / 2$; (xiv) $x, y,-z-1 / 2$; (xv) $x+1 / 2, y-1 / 2, z$; (xvi) $x-1 / 2, y-1 / 2, z$.

