Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,5-Diaminothiophene-3,4-dicarbonitrile

Christopher J. Ziegler ${ }^{\text {a }}$ and Victor N. Nemykin ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Akron, Akron, OH 44325-3601, USA, and
${ }^{\text {b }}$ Department of Chemistry \& Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
Correspondence e-mail: ziegler@uakron.edu

Received 12 July 2012; accepted 3 August 2012

Key indicators: single-crystal X-ray study; $T=123 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.053 ; w R$ factor $=0.116$; data-to-parameter ratio $=15.1$.

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{~S}$, the planar molecule lies across a crystallographic mirror plane. In the crystal, the molecules form centrosymmetric dimers through cyclic amino $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding associations with cyano N -atom acceptors [graph set $R_{2}^{2}(12)$] and these dimers are extended through amine-cyano $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ associations into a threedimensional network.

Related literature

For the synthesis of this and related compounds via the reaction of tetracyanoethylene with hydrogen sulfide, see: Cairns et al. (1957); Middleton et al. (1958); Middleton (1959). For the use of this compound as a reagent, see: Nemykin et al. (2012). For graph-set analysis, see: Etter et al. (1990). For details of the weighting scheme, see: Prince (1982); Watkin (1994).

Experimental

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{~S}$
$M_{r}=164.19$
Orthorhombic, Pbcn
$a=3.9231$ (2) A

$$
\begin{aligned}
& b=13.8213(12) \AA \\
& c=12.6465(11) \AA \\
& V=685.72(9) \AA^{3} \\
& Z=4
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=0.40 \mathrm{~mm}^{-1}$
Data collection
Rigaku RAPID II diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.69, T_{\text {max }}=0.94$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.116$
$S=0.99$
769 reflections
$T=123 \mathrm{~K}$
$0.41 \times 0.24 \times 0.16 \mathrm{~mm}$

2260 measured reflections
783 independent reflections 492 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.054$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 2 \cdots \mathrm{~N}^{2}{ }^{\mathrm{i}}$	0.87	2.29	$3.106(5)$	156
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N}^{2 i}$	0.88	2.38	$3.196(5)$	153

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+\frac{3}{2}, y+\frac{1}{2}, z$.

Data collection: CrystalClear (Rigaku, 2009); cell refinement: HKL-2000 (Otwinowski \& Minor, 1997); data reduction: CrystalClear; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

This study was supported by the National Science Foundation (grants CHE-0922366 and CHE-1110455).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2223).

References

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Cairns, T. L., Carboni, R. A., Coffman, D. D., Engelhardt, V. A., Heckert, R. E., Little, E. L., McGeer, E. G., McKusick, B. C. \& Middleton, W. J. (1957). J. Am. Chem. Soc. 79, 2340-2341.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Middleton, W. J. (1959). Org. Synth. 39, p. 8.
Middleton, W. J., Engelhardt, V. A. \& Fisher, B. S. (1958). J. Am. Chem. Soc. 80, 2282-2289.
Nemykin, V. N., Polshyna, A. E., Makarova, E. A., Kobayashi, N. \& Lukyanets, E. A. (2012). Chem. Commun. 48, 3650-3652.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, pp. 96-106. New York: Springer-Verlag.
Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Watkin, D. (1994). Acta Cryst. A50, 411-437.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

supporting information

Acta Cryst. (2012). E68, o2693 [doi:10.1107/S1600536812034678]

2,5-Diaminothiophene-3,4-dicarbonitrile

Christopher J. Ziegler and Victor N. Nemykin

S1. Comment

The synthesis of the title compound 2,5-diamino-3,4-dicyanothiophene, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{~S}$, and similar compounds has previously been reported (Cairns et al., 1957; Middleton, 1959) and chemical transformations of this compound and its usage in macrocyclic chemistry have also been described (Middleton et al., 1958; Nemykin et al., 20120. In the structure of the title compound the planar molecule lies across a crystallograpic mirror plane (Fig. 1). The $\mathrm{C}-\mathrm{S}$ bond length is 1.750 (4) \AA and the $\mathrm{C} — \mathrm{C}$ bond distances are unequal $\left[1.358\right.$ (5) \AA for $\mathrm{C} 1 — \mathrm{C} 2$ and 1.458 (7) \AA for $\mathrm{C} 2 — \mathrm{C} 2^{\mathrm{i}}$ [for symmetry code (i): $-x+2, y,-z+3 / 2]$. The $\mathrm{C}-\mathrm{N}_{\text {amine }}$ bond distance [1.358(5) \AA] shows some double-bond character and the $\mathrm{C} 2-\mathrm{C} 3$ bond length $[1.422(5) \AA$] is shorter than expected for a single bond. The cyanide C3-N2 bond length is 1.149 (5) \AA.
In the crystal, the molecules form centrosymmetric cyclic dimers through amino $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding associations with cyano N -atom acceptors (Table 1) [graph set $R^{2}{ }_{2}(12)$ (Etter et al., 1990)] and these dimers are extended into a three-dimensional structure through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ amine \cdots cyano group associations. The thiophene molecules form antiparallel stacks down a, with a thiophene-thiophene ring centroid separation of 3.923 (2) \AA.

S2. Experimental

The title compound was prepared using an earlier published procedure via the reaction of tetracyanoethylene and hydrogen sulfide (Cairns et al., 1957) and characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. The single crystal used for the X-ray analysis was obtained by slow cooling of a saturated solution in DMSO.

S3. Refinement

The H atoms were all located in a difference map. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry ($\mathrm{N}-\mathrm{H}$ in the range $0.86-0.89 \AA$) and $U_{\text {iso }}(\mathrm{H})$ (in the range $1.2-1.5$ times $U_{\text {eq }}$ of the parent atom), after which the positions were refined with riding constraints. In the absence of significant anomalous scattering, Friedel pairs were merged.

Figure 1

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. For symmetry code (i): $-x+2, y,-z+3 / 2$.

2,5-Diaminothiophene-3,4-dicarbonitrile

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{~S}$
$M_{r}=164.19$
Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
$a=3.9231$ (2) \AA
$b=13.8213$ (12) \AA
$c=12.6465$ (11) \AA
$V=685.72(9) \AA^{3}$
$Z=4$
$F(000)=336$

Data collection

Rigaku RAPID II
diffractometer
Radiation source: Mo Ka
Graphite monochromator
ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.69, T_{\text {max }}=0.94$
$D_{\mathrm{x}}=1.590 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 513 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 783 reflections
$\theta=2-27^{\circ}$
$\mu=0.40 \mathrm{~mm}^{-1}$
$T=123 \mathrm{~K}$
Plate, brown
$0.41 \times 0.24 \times 0.16 \mathrm{~mm}$

2260 measured reflections
783 independent reflections
492 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-5 \rightarrow 5$
$k=-13 \rightarrow 17$
$l=-13 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.116$
$S=0.99$
769 reflections
51 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
Method, part 1, Chebychev polynomial,
(Watkin, 1994; Prince, 1982) [weight] $=$ $\left.1.0 /\left[\mathrm{A}_{0} * \mathrm{~T}_{0}(\mathrm{x})+\mathrm{A}_{1} * \mathrm{~T}_{1}(\mathrm{x}) \cdots+\mathrm{A}_{\mathrm{n}-1}\right] * \mathrm{~T}_{\mathrm{n}-1}(\mathrm{x})\right]$ where A_{i} are the Chebychev coefficients listed below and $\mathrm{x}=F / F \max$ Method $=$ Robust Weighting (Prince, 1982) $\mathrm{W}=$ [weight $]$ *
$\left[1-(\operatorname{delta} F / 6 * \operatorname{sigma} F)^{2}\right]^{2} \mathrm{~A}_{\mathrm{i}}$ are: 57.974 .521 .5
$(\Delta / \sigma)_{\max }=0.0000992$
$\Delta \rho_{\text {max }}=0.65 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.63$ e \AA^{-3}

Special details

Experimental. The crystal was placed in the cold stream of an Rigaku XStream 2000 open-flow nitrogen cryostat with a nominal stability of 0.1 K .

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	1.0000	$0.75078(10)$	0.7500	0.0189
C1	$0.8517(10)$	$0.6628(3)$	$0.6618(3)$	0.0184
N1	$0.7035(9)$	$0.6908(2)$	$0.5697(2)$	0.0205
H2	0.6326	0.6473	0.5246	0.0500^{*}
H1	0.6790	0.7530	0.5557	0.0500^{*}
C2	$0.9146(10)$	$0.5716(3)$	$0.6988(3)$	0.0188
C3	$0.8190(10)$	$0.4873(3)$	$0.6416(3)$	0.0211
N2	$0.7390(11)$	$0.4203(2)$	$0.5938(3)$	0.0286

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0243(7)$	$0.0137(5)$	$0.0188(6)$	0.0000	$-0.0041(6)$	0.0000
C1	$0.0202(19)$	$0.0184(17)$	$0.0166(16)$	$-0.0027(16)$	$0.0025(15)$	$-0.0009(13)$
N1	$0.0285(19)$	$0.0152(14)$	$0.0177(14)$	$0.0003(14)$	$-0.0060(14)$	$0.0012(11)$
C2	$0.023(2)$	$0.0153(16)$	$0.0181(17)$	$-0.0018(15)$	$0.0016(16)$	$-0.0027(14)$
C3	$0.024(2)$	$0.0213(19)$	$0.0176(17)$	$0.0006(17)$	$-0.0003(16)$	$0.0021(15)$
N2	$0.040(2)$	$0.0205(16)$	$0.0249(17)$	$-0.0053(17)$	$-0.0034(18)$	$-0.0021(13)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.750(4)$	$\mathrm{N} 1-\mathrm{H} 1$	0.884
$\mathrm{~S} 1-\mathrm{C} 1$	$1.750(4)$	$\mathrm{C} 2-\mathrm{C} 2^{\mathrm{i}}$	$1.458(7)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.358(5)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.422(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.367(5)$	$\mathrm{C} 3-\mathrm{N} 2$	$1.149(5)$
$\mathrm{N} 1-\mathrm{H} 2$	0.874		
			120.2
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 1$	$91.9(3)$	$\mathrm{H} 2-\mathrm{N} 1-\mathrm{H} 1$	$112.8(2)$

$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$111.3(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$129.3(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2$	120.0
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	119.8

$\mathrm{C} 2-\mathrm{C} 2-\mathrm{C} 3$	$125.0(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$122.3(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$178.6(4)$

Symmetry code: (i) $-x+2, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 2 \cdots \mathrm{~N} 2^{\mathrm{ii}}$	0.87	2.29	$3.106(5)$	156
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 2^{\mathrm{iii}}$	0.88	2.38	$3.196(5)$	153

Symmetry codes: (ii) $-x+1,-y+1,-z+1$; (iii) $-x+3 / 2, y+1 / 2, z$.

