

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,5-Diaminothiophene-3,4-dicarbonitrile

Christopher J. Ziegler^a* and Victor N. Nemykin^b

^aDepartment of Chemistry, University of Akron, Akron, OH 44325-3601, USA, and ^bDepartment of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA

Correspondence e-mail: ziegler@uakron.edu

Received 12 July 2012; accepted 3 August 2012

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.006 Å; R factor = 0.053; wR factor = 0.116; data-to-parameter ratio = 15.1.

In the title compound, $C_6H_4N_4S$, the planar molecule lies across a crystallographic mirror plane. In the crystal, the molecules form centrosymmetric dimers through cyclic amino $N-H\cdots N$ hydrogen-bonding associations with cyano N-atom acceptors [graph set $R_2^2(12)$] and these dimers are extended through amine-cyano $N-H\cdots N$ associations into a threedimensional network.

Related literature

For the synthesis of this and related compounds *via* the reaction of tetracyanoethylene with hydrogen sulfide, see: Cairns *et al.* (1957); Middleton *et al.* (1958); Middleton (1959). For the use of this compound as a reagent, see: Nemykin *et al.* (2012). For graph-set analysis, see: Etter *et al.* (1990). For details of the weighting scheme, see: Prince (1982); Watkin (1994).

Experimental

Crystal data $C_6H_4N_4S$ $M_r = 164.19$ Orthorhombic, *Pbcn* a = 3.9231 (2) Å

b = 13.8213 (12) Å
c = 12.6465 (11) Å
V = 685.72 (9) Å ³
Z = 4

Mo $K\alpha$ radiation $\mu = 0.40 \text{ mm}^{-1}$

Data collection

Rigaku RAPID II diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.69, T_{\max} = 0.94$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.053 & 51 \text{ parameters} \\ wR(F^2) = 0.116 & H\text{-atom parameters constrained} \\ S = 0.99 & \Delta\rho_{\max} = 0.65 \text{ e } \text{\AA}^{-3} \\ 769 \text{ reflections} & \Delta\rho_{\min} = -0.63 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H2 \cdots N2^{i} \\ N1 - H1 \cdots N2^{ii} \end{array}$	0.87 0.88	2.29 2.38	3.106 (5) 3.196 (5)	156 153

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z.

Data collection: *CrystalClear* (Rigaku, 2009); cell refinement: *HKL-2000* (Otwinowski & Minor, 1997); data reduction: *Crystal-Clear*; program(s) used to solve structure: *SHELXS86* (Sheldrick, 2008); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

This study was supported by the National Science Foundation (grants CHE-0922366 and CHE-1110455).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2223).

References

- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Cairns, T. L., Carboni, R. A., Coffman, D. D., Engelhardt, V. A., Heckert, R. E., Little, E. L., McGeer, E. G., McKusick, B. C. & Middleton, W. J. (1957). J. Am. Chem. Soc. 79, 2340–2341.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Middleton, W. J. (1959). Org. Synth. 39, p. 8.

- Middleton, W. J., Engelhardt, V. A. & Fisher, B. S. (1958). J. Am. Chem. Soc. 80, 2282-2289.
- Nemykin, V. N., Polshyna, A. E., Makarova, E. A., Kobayashi, N. & Lukyanets, E. A. (2012). *Chem. Commun.* **48**, 3650–3652.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, pp. 96–106. New York: Springer-Verlag.
- Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Watkin, D. (1994). Acta Cryst. A50, 411-437.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

 $0.41 \times 0.24 \times 0.16 \text{ mm}$

2260 measured reflections

783 independent reflections

492 reflections with $I > 2\sigma(I)$

T = 123 K

 $R_{\rm int} = 0.054$

supporting information

Acta Cryst. (2012). E68, o2693 [doi:10.1107/S1600536812034678]

2,5-Diaminothiophene-3,4-dicarbonitrile

Christopher J. Ziegler and Victor N. Nemykin

S1. Comment

The synthesis of the title compound 2,5-diamino-3,4-dicyanothiophene, $C_6H_4N_4S$, and similar compounds has previously been reported (Cairns *et al.*, 1957; Middleton, 1959) and chemical transformations of this compound and its usage in macrocyclic chemistry have also been described (Middleton *et al.*, 1958; Nemykin *et al.*, 20120. In the structure of the title compound the planar molecule lies across a crystallograpic mirror plane (Fig. 1). The C—S bond length is 1.750 (4) Å and the C—C bond distances are unequal [1.358 (5) Å for C1—C2 and 1.458 (7) Å for C2—C2ⁱ [for symmetry code (i): -*x*+2, *y*, -*z*+3/2]. The C—N_{amine} bond distance [1.358 (5) Å] shows some double-bond character and the C2—C3 bond length [1.422 (5) Å] is shorter than expected for a single bond. The cyanide C3—N2 bond length is 1.149 (5) Å.

In the crystal, the molecules form centrosymmetric cyclic dimers through amino N—H···N hydrogen-bonding associations with cyano N-atom acceptors (Table 1) [graph set $R^2_2(12)$ (Etter *et al.*, 1990)] and these dimers are extended into a three-dimensional structure through N—H···N amine···cyano group associations. The thiophene molecules form antiparallel stacks down *a*, with a thiophene-thiophene ring centroid separation of 3.923 (2) Å.

S2. Experimental

The title compound was prepared using an earlier published procedure via the reaction of tetracyanoethylene and hydrogen sulfide (Cairns *et al.*, 1957) and characterized by ¹H and ¹³C NMR spectroscopy. The single crystal used for the X-ray analysis was obtained by slow cooling of a saturated solution in DMSO.

S3. Refinement

The H atoms were all located in a difference map. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (N—H in the range 0.86–0.89 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints. In the absence of significant anomalous scattering, Friedel pairs were merged.

Figure 1

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. For symmetry code (i): -x+2, y, -z+3/2.

2,5-Diaminothiophene-3,4-dicarbonitrile

Crystal data	
C ₆ H ₄ N ₄ S $M_r = 164.19$ Orthorhombic, <i>Pbcn</i> Hall symbol: -P 2n 2ab a = 3.9231 (2) Å b = 13.8213 (12) Å c = 12.6465 (11) Å V = 685.72 (9) Å ³ Z = 4 F(000) = 336	$D_x = 1.590 \text{ Mg m}^{-3}$ Melting point: 513 K Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 783 reflections $\theta = 2-27^{\circ}$ $\mu = 0.40 \text{ mm}^{-1}$ T = 123 K Plate, brown $0.41 \times 0.24 \times 0.16 \text{ mm}$
Data collection Rigaku RAPID II diffractometer Radiation source: Mo Ka Graphite monochromator ω scans Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{\min} = 0.69, T_{\max} = 0.94$	2260 measured reflections 783 independent reflections 492 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.4^{\circ}$ $h = -5 \rightarrow 5$ $k = -13 \rightarrow 17$ $l = -13 \rightarrow 16$

Refinement

Special details

Experimental. The crystal was placed in the cold stream of an Rigaku XStream 2000 open-flow nitrogen cryostat with a nominal stability of 0.1 K.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	1.0000	0.75078 (10)	0.7500	0.0189
C1	0.8517 (10)	0.6628 (3)	0.6618 (3)	0.0184
N1	0.7035 (9)	0.6908 (2)	0.5697 (2)	0.0205
H2	0.6326	0.6473	0.5246	0.0500*
H1	0.6790	0.7530	0.5557	0.0500*
C2	0.9146 (10)	0.5716 (3)	0.6988 (3)	0.0188
C3	0.8190 (10)	0.4873 (3)	0.6416 (3)	0.0211
N2	0.7390 (11)	0.4203 (2)	0.5938 (3)	0.0286

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

momie displacement parameters (11)	Atomic	displacement	parameters	$(Å^2)$
------------------------------------	--------	--------------	------------	---------

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0243 (7)	0.0137 (5)	0.0188 (6)	0.0000	-0.0041 (6)	0.0000
0.0202 (19)	0.0184 (17)	0.0166 (16)	-0.0027 (16)	0.0025 (15)	-0.0009 (13)
0.0285 (19)	0.0152 (14)	0.0177 (14)	0.0003 (14)	-0.0060 (14)	0.0012 (11)
0.023 (2)	0.0153 (16)	0.0181 (17)	-0.0018 (15)	0.0016 (16)	-0.0027 (14)
0.024 (2)	0.0213 (19)	0.0176 (17)	0.0006 (17)	-0.0003 (16)	0.0021 (15)
0.040 (2)	0.0205 (16)	0.0249 (17)	-0.0053 (17)	-0.0034 (18)	-0.0021 (13)
	U^{11} 0.0243 (7) 0.0202 (19) 0.0285 (19) 0.023 (2) 0.024 (2) 0.040 (2)	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.0243 \ (7) & 0.0137 \ (5) \\ 0.0202 \ (19) & 0.0184 \ (17) \\ 0.0285 \ (19) & 0.0152 \ (14) \\ 0.023 \ (2) & 0.0153 \ (16) \\ 0.024 \ (2) & 0.0213 \ (19) \\ 0.040 \ (2) & 0.0205 \ (16) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

S1-C1 ⁱ	1.750 (4)	N1—H1	0.884	
S1—C1	1.750 (4)	C2C2 ⁱ	1.458 (7)	
C1—N1	1.358 (5)	C2—C3	1.422 (5)	
C1—C2	1.367 (5)	C3—N2	1.149 (5)	
N1—H2	0.874			
C1 ⁱ —S1—C1	91.9 (3)	H2—N1—H1	120.2	
S1—C1—N1	119.4 (3)	C2 ⁱ —C2—C1	112.8 (2)	

S1—C1—C2	111.3 (3)	$C2^{i}$ — $C2$ — $C3$	125.0 (2)
N1—C1—C2	129.3 (3)	C1—C2—C3	122.3 (3)
C1—N1—H2	120.0	C2—C3—N2	178.6 (4)
C1—N1—H1	119.8		

Symmetry code: (i) -x+2, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H2···N2 ⁱⁱ	0.87	2.29	3.106 (5)	156
N1—H1····N2 ⁱⁱⁱ	0.88	2.38	3.196 (5)	153

Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x+3/2, y+1/2, z.