Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[1-(5-Bromo-2-oxidobenzylidene)thio-semicarbazidato- $\left.\kappa^{3} O, N^{1}, S\right]$ (pyridine$\boldsymbol{\kappa} N$)nickel(II)

Fernanda Rosi Soares Pederzolli, ${ }^{\text {a }}$ Leandro Bresolin, ${ }^{\text {a }}$ Johannes Beck, ${ }^{\text {b }}$ Jörg Daniels ${ }^{\text {b }}$ and Adriano Bof de Oliveira ${ }^{\mathrm{C} *}$

${ }^{\text {a Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km }}$ 08, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil, ${ }^{\mathbf{b}}$ Institut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany, and ${ }^{\text {c }}$ Departamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão, SE, Brazil
Correspondence e-mail: adriano@daad-alumni.de
Received 5 June 2012; accepted 26 June 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.031 ; w R$ factor $=0.083$; data-to-parameter ratio $=17.0$.

The reaction of 5-bromosalicylaldehyde thiosemicarbazone with nickel acetate tetrahydrate and pyridine yielded the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrN}_{3} \mathrm{OS}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$. The $\mathrm{Ni}^{\text {II }}$ atom is four-coordinated in a square-planar environment by one deprotonated dianionic thiosemicarbazone ligand, acting in a tridentate chelating mode through N, O and S atoms forming two metalla-rings, and by one pyridine molecule. The complex molecules are linked into dimers by pairs of centrosymmetrical $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions. In addition, molecules are connected through intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ interactions [3.545 (1) A], forming chains along the b-axis direction.

Related literature

For the synthesis of 5-bromosalicylaldehyde thiosemicarbazones and for the antibacterial activity of their complexes, see: Joseph et al. (2010). For the crystal structure of 5-bromosalicylaldehyde thiosemicarbazone, see: Kargar et al. (2010). For the crystal structure of an $\mathrm{Ni}^{\mathrm{II}}$ complex with a similar coordination environment, see: Güveli et al. (2009). For the coordination chemistry of thiosemicarbazone derivatives, see: Lobana et al. (2009).

Experimental

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrN}_{3} \mathrm{OS}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$
$V=1447.46(8) \AA^{3}$
$M_{r}=409.94$
$Z=4$
Monoclinic, $P 2_{1} / c$
Mo $K \alpha$ radiation
$a=12.2447$ (4) \AA
$\mu=4.25 \mathrm{~mm}^{-1}$
$b=4.1135$ (1) \AA
$T=293 \mathrm{~K}$
$0.93 \times 0.10 \times 0.05 \mathrm{~mm}$
$\beta=112.646$ (1) ${ }^{\circ}$

Data collection

Nonius KappaCCD diffractometer
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.443, T_{\text {max }}=0.830$
13946 measured reflections 3224 independent reflections 2697 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.051$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031 \quad 190$ parameters
$w R\left(F^{2}\right)=0.083$
H -atom parameters constrained
$S=1.05$
3224 reflections
$\Delta \rho_{\text {max }}=0.61$ e \AA^{-3}
$\Delta \rho_{\min }=-0.66 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 1 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.78	2.31	$3.095(3)$	178

Symmetry code: (i) $-x+2,-y-1,-z$.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

We gratefully acknowledge financial support through the DECIT/SCTIE-MS-CNPq-FAPERGS-Pronem-\# 11/2029-1 and PRONEX-CNPq-FAPERGS projects.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2486).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Güveli, S., Bal-Demirci, T., Özdemir, N. \& Ülküseven, B. (2009). Transition Met. Chem. 34, 383-388.
Joseph, J., Mary, N. L. \& Sidambaram, R. (2010). Synth. React. Inorg. Met. Org. Chem. 40, 930-933.
Kargar, H., Kia, R., Akkurt, M. \& Büyükgüngör, O. (2010). Acta Cryst. E66, o2999.
Lobana, T. S., Sharma, R., Bawa, G. \& Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

[1-(5-Bromo-2-oxidobenzylidene)thiosemicarbazidato- $\kappa^{3} \mathrm{O}, \mathrm{N}^{1}, \mathrm{~S}$] (pyridine$\kappa \mathrm{N}$) nickel(II)

Fernanda Rosi Soares Pederzolli, Leandro Bresolin, Johannes Beck, Jörg Daniels and Adriano Bof de Oliveira

S1. Comment

Thiosemicarbazone derivatives have a wide range of applications in biological inorganic chemistry and a very interesting coordination chemistry (Lobana et al., 2009). For example, $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Ni}^{I I}$ complexes with 5-bromosalicylaldehyde thiosemicarbazone show antibacterial activity against Staphylococcus aureus and Escherichia coli (Joseph et al., 2010). As part of our study of thiosemicarbazone derivatives, we report herein the synthesis and the crystal structure of a new $\mathrm{Ni}^{\text {II }}$ complex with 5-bromosalicylaldehyde thiosemicarbazone. In the title compound, in which the molecular structure unit matches the asymmetric unit, the $\mathrm{Ni}^{\text {II }}$ ion is coordinated in a square planar environment by one deprotonated dianionic 5bromosalicylaldehyde thiosemicarbazone and one pyridine ligand (Fig. 1). The selected bond angles formed between donor atoms trough the Ni atom are $\mathrm{N} 1 — \mathrm{Ni} 1 — \mathrm{~N} 4=177.00(10)^{\circ}$ and $\mathrm{O} 1 — \mathrm{Ni} 1 — \mathrm{~S} 1=176.46$ (6) ${ }^{\circ}$, and show a slightly distorted coordination environment. The thiosemicarbazone ligand is coordinated to the $\mathrm{Ni}^{I I}$ ion in a tridentate chelating mode, forming five- and six-membered rings, as a "NOS" donor with the O/S atoms trans to each other, while the N1 azomethine atom is trans to the N 4 atom from the pyridine ligand.
The acidic hydrogen of the hydrazine fragment is lost by the reaction with KOH , which is in agreement with thiosemicarbazone derivatives prepared from aldehydes or ketones. The negative charge is delocalized over the $\mathrm{C}-\mathrm{N}-\mathrm{N}-$ $\mathrm{C}-\mathrm{S}$ fragment as indicated by their intermediate bond distances. The imine and thioamide $\mathrm{C}-\mathrm{N}$ distances indicate considerable double bond character, while the $\mathrm{C}-\mathrm{S}$ distance is consistent with increased single bond character. These distances are $\mathrm{C} 7 — \mathrm{~N} 1=1.295(3) \AA, \mathrm{N} 1 — \mathrm{~N} 2=1.403(3) \AA, \mathrm{N} 2 — \mathrm{C} 8=1.289(4) \AA$ and $\mathrm{C} 8 — \mathrm{~S} 1=1.735$ (3) \AA. The hydrogen of the hydroxyl group is also deprotonated with KOH , resulting in the dianionic form of the ligand.
The ligand shows a $Z-\mathrm{E}-\mathrm{E}-\mathrm{Z}$ conformation for the donor atoms about the $\mathrm{C} 1-\mathrm{C} 7 / \mathrm{C} 7-\mathrm{N} 1 / \mathrm{N} 1-\mathrm{N} 2 / \mathrm{N} 2-\mathrm{C} 8$ bonds and the mean deviations from the least squares planes for the chelated fragments Ni1/N1/C7/C1/C2/O1 and Ni1/N1/N2/C8/S1 amount to 0.0286 (15) \AA for N1 and 0.0170 (12) $\AA \AA$ for N1, respectively, and the dihedral angle between the two planes is $2.97(11)^{\circ}$. The $\mathrm{Z}-\mathrm{E}-\mathrm{E}-\mathrm{Z}$ conformation is also observed for the free ligand (Kargar et al., 2010) as well as for a complex with similar coordination environment (Güveli et al., 2009).

Both ligands are almost planar (Fig. 1 and Fig. 2) and the maximum deviation from the least squares plane through all non-hydrogen atoms for the deprotonated thiosemicarbazone fragment $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{Br} 1 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{N} 3 / \mathrm{O} 1 / \mathrm{S} 1$ and for the pyridine molecule $\mathrm{C} 9 / \mathrm{C} 10 / \mathrm{C} 11 / \mathrm{C} 12 / \mathrm{C} 13 / \mathrm{N} 4$ amount to $0.0668(25) \AA$ for C 7 and 0.0059 (21) \AA for C 9 , respectively, and the dihedral angle between the two planes is 61.15 (6) ${ }^{\circ}$.
The molecules are linked by pairs of centrosymmetrical $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions (Fig. 2 and Table 1; N3—H5 $\cdots \mathrm{N} 2^{\mathrm{i}}$) forming a dimeric molecular structure, which stabilizes the crystal packing. Symmetry codes: (i) $-x,-y+1,-z$.

The crystal structure shows that molecules are additionally connected through intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ interactions into chains along the crystallographic b direction (Fig. 3). The $\mathrm{Br} \cdots \mathrm{Br}$ distances amount to 3.545 (1) \AA, which are shorter than the sum of the van der Waals radii for Br atoms ($3.70 \AA$).

S2. Experimental

Starting materials were commercially available and were used without further purification. The synthesis of 5-bromosalicylaldehyde thiosemicarbazone was adapted from a procedure reported previously (Joseph et al., 2010). 5-Bromosalicylaldehyde thiosemicarbazone (0.5 mmol) was dissolved in tetrahydrofurane $(50 \mathrm{ml})$ and treated with one KOH pellet. After 30 min stirring under slight warming to 333 K , the solution was filtered and added to a nickel acetate tetrahydrate $(0.5 \mathrm{mmol})$ solution in pyridine $(10 \mathrm{ml})$. The reaction mixture was refluxed for 4 h under continuous stirring and showed a brown-red colour. Brown-red crystals of the complex, suitable for X-ray analysis, were obtained after six weeks by adding a $3: 1$ mixture of dimethylformamide and toluene $(80 \mathrm{ml})$ to the reaction solution.

S3. Refinement

H atoms attached to C atoms were positioned with idealized geometry and were refined isotropic with $U_{\text {eq }}(\mathrm{H})$ set to 1.2 times of the $U_{\text {eq }}(\mathrm{C})$ using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$. H atoms attached to N atoms atoms were positioned with idealized geometry and were refined isotropically with $U_{\text {eq }}(\mathrm{H})$ set to 1.2 times of $U_{\mathrm{eq}}(\mathrm{N})$ using a riding model with N3$\mathrm{H} 1=0.7822 \AA$ and $\mathrm{N} 3-\mathrm{H} 2=0.8025 \AA$.

Figure 1

The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 40% probability level.

Figure 2
Molecules of the title compound connected through pairs of inversion symmetric $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions. Hydrogen bonding is indicated by dashed lines. Symmetry code: (i) $-x,-y+1,-z$.

Figure 3
Molecules of the title compound connected through intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ interactions into chains along the crystallographic b direction. The $\mathrm{Br} \cdots \mathrm{Br}$ distances amount to 3.545 (1) \AA and the interactions are indicated by dashed lines.

[1-(5-Bromo-2-oxidobenzylidene)thiosemicarbazidato- $\kappa^{3} O, N^{1}, S$] (pyridine- κN)nickel(II)

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrN}_{3} \mathrm{OS}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$
$M_{r}=409.94$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=12.2447$ (4) \AA
$b=4.1135$ (1) \AA
$c=31.1380(11) \AA$
$\beta=112.646(1)^{\circ}$
$V=1447.46(8) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD

diffractometer
Radiation source: fine-focus sealed tube, Bruker Kappa CCD
Graphite monochromator
Detector resolution: 9 pixels mm^{-1}
CCD rotation images, thick slices scans
$F(000)=816$
$D_{\mathrm{x}}=1.881 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 17227 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=4.25 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle, red
$0.93 \times 0.10 \times 0.05 \mathrm{~mm}$

Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.443, T_{\text {max }}=0.830$
13946 measured reflections
3224 independent reflections
2697 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=27.6^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-15 \rightarrow 15$

$$
\begin{aligned}
& k=-5 \rightarrow 5 \\
& l=-40 \rightarrow 40
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.083$
$S=1.05$
3224 reflections
190 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Br1	$1.37247(2)$	$0.72025(7)$	$0.228104(10)$	$0.04622(11)$
Ni1	$0.80812(3)$	$-0.06339(9)$	$0.089703(11)$	$0.03527(11)$
S1	$0.71884(6)$	$-0.35252(19)$	$0.02859(2)$	$0.04380(17)$
O1	$0.87955(16)$	$0.1736(5)$	$0.14418(7)$	$0.0419(4)$
N1	$0.93997(18)$	$-0.0757(5)$	$0.07408(7)$	$0.0339(4)$
N2	$0.9399(2)$	$-0.2507(6)$	$0.03540(8)$	$0.0403(5)$
N3	$0.8245(2)$	$-0.5541(7)$	$-0.02746(9)$	$0.0519(6)$
H1	0.8831	-0.6069	-0.03	0.062^{*}
H2	0.7769	-0.6986	-0.0334	0.062^{*}
N4	$0.67067(19)$	$-0.0743(6)$	$0.10494(8)$	$0.0383(5)$
C1	$1.0684(2)$	$0.2490(6)$	$0.13889(9)$	$0.0350(5)$
C2	$0.9877(2)$	$0.2887(6)$	$0.16117(9)$	$0.0357(5)$
C3	$1.0269(2)$	$0.4575(7)$	$0.20359(10)$	$0.0423(6)$
H3	0.9751	0.4858	0.2187	0.051^{*}
C4	$1.1399(2)$	$0.5829(7)$	$0.22359(10)$	$0.0428(6)$
H4	1.1642	0.6923	0.2519	0.051^{*}
C5	$1.2167(2)$	$0.5430(6)$	$0.20077(9)$	$0.0377(5)$
C6	$1.1830(2)$	$0.3830(7)$	$0.15955(10)$	$0.0377(5)$
H6	1.2358	0.3616	0.1448	0.045^{*}
C7	$1.0394(2)$	$0.0704(7)$	$0.09658(9)$	$0.0380(6)$
H7	1.0971	0.0579	0.0841	0.046^{*}
C8	$0.8393(2)$	$-0.3869(7)$	$0.01258(9)$	$0.0390(6)$
C9	$0.5660(2)$	$0.0532(7)$	$0.07772(10)$	$0.0439(6)$

H9	0.558	0.1437	0.0493	0.053^{*}
C10	$0.4699(3)$	$0.0547(9)$	$0.09040(12)$	$0.0553(8)$
H10	0.3986	0.1475	0.0711	0.066^{*}
C11	$0.4810(3)$	$-0.0826(9)$	$0.13187(12)$	$0.0586(8)$
H11	0.4172	-0.0845	0.1411	0.07^{*}
C12	$0.5869(3)$	$-0.2171(8)$	$0.15973(11)$	$0.0569(8)$
H12	0.5955	-0.3131	0.1879	0.068^{*}
C13	$0.6808(3)$	$-0.2087(8)$	$0.14557(10)$	$0.0476(7)$
H13	0.7528	-0.2985	0.1647	0.057^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.03290(15)$	$0.0510(2)$	$0.05011(18)$	$-0.00359(11)$	$0.01082(12)$	$-0.00312(13)$
Ni1	$0.03052(17)$	$0.0412(2)$	$0.03447(17)$	$0.00019(13)$	$0.01296(13)$	$0.00106(13)$
S1	$0.0378(3)$	$0.0507(4)$	$0.0424(4)$	$-0.0046(3)$	$0.0148(3)$	$-0.0052(3)$
O1	$0.0321(9)$	$0.0540(12)$	$0.0406(10)$	$-0.0025(8)$	$0.0151(8)$	$-0.0049(9)$
N1	$0.0352(10)$	$0.0337(11)$	$0.0336(10)$	$0.0034(8)$	$0.0141(9)$	$0.0010(9)$
N2	$0.0419(12)$	$0.0419(13)$	$0.0399(12)$	$0.0010(10)$	$0.0189(10)$	$-0.0039(10)$
N3	$0.0488(14)$	$0.0583(17)$	$0.0502(14)$	$-0.0046(12)$	$0.0210(12)$	$-0.0152(12)$
N4	$0.0346(11)$	$0.0443(13)$	$0.0356(11)$	$-0.0030(9)$	$0.0130(9)$	$-0.0002(9)$
C1	$0.0327(12)$	$0.0355(13)$	$0.0367(13)$	$0.0030(10)$	$0.0132(10)$	$0.0025(10)$
C2	$0.0297(11)$	$0.0387(14)$	$0.0389(13)$	$0.0030(10)$	$0.0134(10)$	$0.0046(11)$
C3	$0.0359(13)$	$0.0526(17)$	$0.0410(13)$	$0.0018(12)$	$0.0179(11)$	$-0.0023(12)$
C4	$0.0387(13)$	$0.0475(16)$	$0.0393(13)$	$0.0025(12)$	$0.0118(11)$	$-0.0041(12)$
C5	$0.0289(11)$	$0.0358(14)$	$0.0438(14)$	$0.0008(10)$	$0.0089(10)$	$0.0030(11)$
C6	$0.0311(12)$	$0.0391(14)$	$0.0443(14)$	$0.0020(10)$	$0.0159(11)$	$0.0018(11)$
C7	$0.0348(12)$	$0.0405(15)$	$0.0426(14)$	$0.0023(11)$	$0.0191(11)$	$0.0007(11)$
C8	$0.0431(14)$	$0.0363(14)$	$0.0376(13)$	$0.0049(11)$	$0.0157(11)$	$0.0021(11)$
C9	$0.0365(13)$	$0.0535(18)$	$0.0393(14)$	$0.0004(12)$	$0.0120(11)$	$0.0060(12)$
C10	$0.0349(14)$	$0.072(2)$	$0.0588(18)$	$0.0048(14)$	$0.0179(13)$	$0.0068(16)$
C11	$0.0478(17)$	$0.076(2)$	$0.064(2)$	$-0.0003(16)$	$0.0339(16)$	$0.0031(17)$
C12	$0.062(2)$	$0.071(2)$	$0.0460(17)$	$-0.0009(17)$	$0.0303(16)$	$0.0069(16)$
C13	$0.0418(14)$	$0.0607(19)$	$0.0390(14)$	$0.0018(13)$	$0.0141(12)$	$0.0074(13)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{C} 5$	$1.909(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.403(4)$
$\mathrm{N} 11-\mathrm{N} 1$	$1.858(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.380(4)$
$\mathrm{N} 11-\mathrm{O} 1$	$1.8576(19)$	$\mathrm{C} 3-\mathrm{H} 3$	0.93
$\mathrm{~N} 11-\mathrm{N} 4$	$1.917(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.390(4)$
$\mathrm{Ni} 1-\mathrm{S} 1$	$2.1516(8)$	$\mathrm{C} 4-\mathrm{H} 4$	0.93
$\mathrm{~S} 1-\mathrm{C} 8$	$1.735(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.358(4)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.311(3)$	$\mathrm{C} 6-\mathrm{H} 6$	0.93
$\mathrm{~N} 1-\mathrm{C} 7$	$1.295(3)$	$\mathrm{C} 7-\mathrm{H} 7$	0.93
$\mathrm{~N} 1-\mathrm{N} 2$	$1.403(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.378(4)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.289(4)$	$\mathrm{C} 9-\mathrm{H} 9$	0.93
$\mathrm{~N} 3-\mathrm{C} 8$	$1.373(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.367(5)$

N3-H1	0.7822	C10-H10	0.93
N3-H2	0.8025	C11-C12	1.369 (5)
N4-C9	1.341 (4)	C11-H11	0.93
N4-C13	1.342 (4)	C12-C13	1.381 (4)
C1-C6	1.411 (4)	C12-H12	0.93
C1-C2	1.419 (3)	C13-H13	0.93
$\mathrm{C} 1-\mathrm{C} 7$	1.429 (4)		
N1-Ni1-O1	95.87 (9)	C5-C4-H4	120.5
N1—Nil-N4	177.00 (10)	C6-C5-C4	121.4 (2)
O1-Ni1-N4	86.32 (9)	C6-C5-Br1	119.63 (19)
N1-Ni1-S1	87.15 (7)	C4-C5-Br1	118.9 (2)
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{S} 1$	176.46 (6)	C5-C6-C1	120.5 (2)
N4-Ni1-S1	90.60 (7)	C5-C6-H6	119.8
C8-S1-Ni1	95.77 (10)	C1-C6-H6	119.8
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Ni} 1$	127.26 (17)	N1-C7-C1	125.8 (2)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	113.1 (2)	N1-C7-H7	117.1
C7-N1-Ni1	125.23 (18)	C1-C7-H7	117.1
N2-N1-Ni1	121.70 (16)	N2-C8-N3	118.8 (2)
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{N} 1$	112.4 (2)	N2-C8-S1	122.9 (2)
C8-N3-H1	115.1	N3-C8-S1	118.2 (2)
C8-N3-H2	114.2	N4-C9-C10	122.3 (3)
$\mathrm{H} 1-\mathrm{N} 3-\mathrm{H} 2$	112.6	N4-C9-H9	118.8
C9-N4-C13	118.4 (2)	C10-C9-H9	118.8
C9-N4-Ni1	123.42 (18)	C11-C10-C9	118.9 (3)
C13-N4-Ni1	118.17 (19)	C11-C10-H10	120.5
C6- $\mathrm{C} 1-\mathrm{C} 2$	119.3 (2)	C9-C10-H10	120.5
C6-C1-C7	118.2 (2)	C10-C11-C12	119.4 (3)
C2-C1-C7	122.5 (2)	C10-C11-H11	120.3
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	119.0 (2)	C12-C11-H11	120.3
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	123.2 (2)	C11-C12-C13	119.3 (3)
C3-C2-C1	117.8 (2)	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	120.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	122.0 (2)	C13-C12-H12	120.4
C4-C3-H3	119	N4-C13-C12	121.7 (3)
C2-C3-H3	119	N4-C13-H13	119.2
C3-C4-C5	118.9 (3)	C12-C13-H13	119.2
C3-C4-H4	120.5		
N1-Ni1-S1-C8	1.82 (11)	C3-C4-C5-C6	-0.3 (4)
N4-Ni1-S1-C8	-176.20 (12)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 1$	179.4 (2)
N1-Ni1-O1-C2	1.9 (2)	C4-C5-C6-C1	-0.7 (4)
N4-Ni1-O1-C2	179.8 (2)	Br1-C5-C6-C1	179.7 (2)
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 7$	-4.3 (2)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	1.3 (4)
S1-Ni1-N1-C7	177.6 (2)	C7-C1-C6-C5	-177.2 (2)
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{N} 2$	175.74 (19)	N2-N1-C7- C 1	-175.7 (2)
S1-Ni1-N1-N2	-2.40 (18)	Ni1-N1-C7-C1	4.3 (4)
C7-N1-N2-C8	-178.1 (2)	C6- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	177.7 (3)
Ni1-N1-N2-C8	1.9 (3)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	-0.7 (4)

supporting information

$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 4-\mathrm{C} 9$	$119.2(2)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 3$	$177.0(2)$
$\mathrm{S} 1-\mathrm{Ni} 1-\mathrm{N} 4-\mathrm{C} 9$	$-62.5(2)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$	$0.2(3)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 4-\mathrm{C} 13$	$-58.9(2)$	$\mathrm{N} 11-\mathrm{S} 1-\mathrm{C} 8-\mathrm{N} 2$	$-1.6(3)$
$\mathrm{S} 1-\mathrm{Ni} 1-\mathrm{N} 4-\mathrm{C} 13$	$119.3(2)$	$\mathrm{N} 11-\mathrm{S} 1-\mathrm{C} 8-\mathrm{N} 3$	$-178.4(2)$
$\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.72(19)$	$\mathrm{C} 13-\mathrm{N} 4-\mathrm{C} 9-\mathrm{C} 10$	$1.0(4)$
$\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$0.8(4)$	$\mathrm{Ni} 1-\mathrm{N} 4-\mathrm{C} 9-\mathrm{C} 10$	$-177.1(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$179.6(2)$	$\mathrm{N} 4-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-0.9(5)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$0.1(5)$	
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$0.6(5)$	
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$\mathrm{C} 9-\mathrm{N} 4-\mathrm{C} 13-\mathrm{C} 12$	$-0.2(4)$	
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$\mathrm{Ni} 1-\mathrm{N} 4-\mathrm{C} 13-\mathrm{C} 12$	$178.0(2)$	
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{N} 4$	$-0.6(5)$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$			

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 1 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.78	2.31	$3.095(3)$	178

Symmetry code: (i) $-x+2,-y-1,-z$.

