Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,5-Dichloro-3,6-diisopropylcyclohexa-2,5-diene-1,4-dione

Ping Li, Hai Wang, Jian Dong and Hong-Yu Chen*
Faculty of Chemistry and Chemical Engineering, TaiShan Medical University, Tai'an 271016, People's Republic of China
Correspondence e-mail: Binboll@126.com

Received 17 June 2012; accepted 19 July 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.059 ; w R$ factor $=0.198 ;$ data-to-parameter ratio $=14.9$.

The molecule of the title compound, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$, lies about an inversion center. The six-membered ring is almost planar, with the largest deviation from the least-squares plane being 0.014 (4) \AA. The molecular conformation is stabilized by a weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. In the crystal, molecules are packed into stacks along the c-axis direction, with an intercentroid separation of 4.811 (2) \AA. Neighboring molecules within the stack are related by the c-glide plane.

Related literature

Metal complexes of catechols, semiquinones and quinones are of general interest in the investigation of ligand centered redox reactions and as models for biochemical processes involving metal ions, see: Mostafa (1999). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{4}$

$$
M_{r}=293.13
$$

Monoclinic, C2/c
$a=10.286$ (2) A
$b=15.034$ (3) \AA
$c=9.621(2) \AA$
$\beta=109.022(4)^{\circ}$
$V=1406.5(6) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.46 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.15 \times 0.13 \times 0.12 \mathrm{~mm}$

Data collection

Brucker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.925, T_{\text {max }}=0.946$
3544 measured reflections
1248 independent reflections 676 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.079$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059 \quad 12$ restraints
$w R\left(F^{2}\right)=0.198$
H -atom parameters constrained
$S=1.08$
$\Delta \rho_{\text {max }}=0.41 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

84 parameters

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.34	$2.926(7)$	117

Symmetry code: (i) $-x+1,-y+1,-z+1$.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the Shandong College research program (J11LB15) and the Young and Middle-aged Scientist Research Awards Foundation of Shandong Province (BS2010CL045)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2064).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Mostafa, S. I. (1999). Transition Met. Chem. 24, 306-310.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o2672 [doi:10.1107/S1600536812032886]

2,5-Dichloro-3,6-diisopropylcyclohexa-2,5-diene-1,4-dione

Ping Li, Hai Wang, Jian Dong and Hong-Yu Chen

S1. Comment

Metal complexes of catechols, semiquinones and quinones are of general interest in the investigation of ligand centered redox reactions and as models for biochemical processes involving metal ions (Mostafa, 1999). The title compound is the synthetic precusor for chloranilic acid, which is a simple, readily available ligand combining chelating and bridging capabilities.

In the title molecule, the six-membered ring and attached oxygen and clorine atoms bound to every vertex of this carbon hexagon, share a same plane with the largest deviation being 0.053 (4) \AA for C3. The two isopropyl groups extend from the plane, one above and one below the plane, as shown in Fig. 1. The $\mathrm{C} 1=\mathrm{O} 1$ bond has a lengths of 1.221 (4) \AA, typical of $\mathrm{Csp} p^{2}=\mathrm{O}$ double bonds (Allen et al., 1987). The $\mathrm{C} 3-\mathrm{O} 2$ bond, however, is a Csp $p^{2}-\mathrm{O}$ single bond with the lengths of 1.346 (5) \AA, which is slightly shorter than the value expected for enol ester systems [1.354 (16) A (Allen et al.,1987). The carbon-carbon bonds in the six-membered ring can also be divided into two groups: the $\mathrm{C} 2=\mathrm{C} 3$ bond is a typical double bond with the length of 1.343 (5) \AA, whereas the $\mathrm{C} 1 — \mathrm{C} 2$ and $\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$ bonds with the lengths of 1.463 (5) \AA and 1.480 (6) \AA, reaspectively, are obviously the $\mathrm{C} s p^{2}$ - Csp^{2} single bonds.

There are weak intramolecular interactions $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 2(1-x, 1-y, 1-z)[\mathrm{H} \cdots \mathrm{O}=2.34 \AA, \mathrm{C} \cdots \mathrm{O}=2.926$ (7) \AA, and C $\left.-\mathrm{H} \cdots \mathrm{O}=117^{\circ}\right]$, which stabilize the molecule conformation.
In the crystal, the molecules of the title compound are packed into stacks along the c direction with intercentroid separation of 4.811 (2) \AA. Neighboring molecules within the stack are related by the c glide plane.

S2. Experimental

Potassium hydroxide (5.0 g) was added to a solution containing chloranil (5.0 g) in 2-propanol (100 ml). The resulting mixture was stirred under reflux for 1 h , and then the red reaction solution was cooled to 283 K . The precipitated yellow solid was collected and recrystallized in ethanol.

S3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ for tertiary hydrogen and with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl group.

Figure 1
Molecular structure with atom labelling scheme and thermal ellipsoids drawn at the 30% probability level (symmetry code (i): $1-x, 1-y, 1-z$).

2,5-Dichloro-3,6-diisopropylcyclohexa-2,5-diene-1,4-dione

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{4}$
$M_{r}=293.13$
Monoclinic, $C 2 / c$
Hall symbol: - C 2yc
$a=10.286$ (2) \AA
$b=15.034$ (3) \AA
$c=9.621$ (2) \AA
$\beta=109.022(4)^{\circ}$
$V=1406.5$ (6) \AA^{3}
$Z=4$

Data collection

Brucker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.925, T_{\text {max }}=0.946$
$F(000)=608$
$D_{\mathrm{x}}=1.384 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$
Cell parameters from 837 reflections
$\theta=2.5-21.5^{\circ}$
$\mu=0.46 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, yellow
$0.15 \times 0.13 \times 0.12 \mathrm{~mm}$

3544 measured reflections
1248 independent reflections
676 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.079$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-12 \rightarrow 9$
$k=-17 \rightarrow 17$
$l=-10 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.198$
$S=1.08$
1248 reflections
84 parameters
12 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier \quad map
> Hydrogen site location: inferred from \quad neighbouring sites
> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.1 P)^{2}+0 . P\right]$ \quad where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.41$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
C1	$0.4914(5)$	$0.5935(3)$	$0.5241(4)$	$0.0672(11)$
C2	$0.5842(4)$	$0.5580(3)$	$0.4504(4)$	$0.0686(12)$
C3	$0.5968(4)$	$0.4704(3)$	$0.4308(4)$	$0.0632(11)$
C4	$0.7787(5)$	$0.3702(3)$	$0.4212(5)$	$0.0903(13)$
H4	0.7285	0.3149	0.4223	0.108^{*}
C5	$0.8654(6)$	$0.3916(4)$	$0.5744(6)$	$0.1146(16)$
H5A	0.9196	0.4436	0.5740	0.172^{*}
H5B	0.9252	0.3424	0.6150	0.172^{*}
H5C	0.8075	0.4027	0.6331	0.172^{*}
C6	$0.8576(7)$	$0.3595(4)$	$0.3175(6)$	$0.1114(16)$
H6A	0.7949	0.3508	0.2198	0.167^{*}
H6B	0.9173	0.3089	0.3459	0.167^{*}
H6C	0.9115	0.4120	0.3198	0.167^{*}
C11	$0.68016(14)$	$0.63397(8)$	$0.39265(14)$	$0.0914(7)$
O1	$0.4891(4)$	$0.6728(2)$	$0.5509(4)$	$0.0948(11)$
O2	$0.6789(3)$	$0.4409(2)$	$0.3567(3)$	$0.0789(10)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.085(3)$	$0.052(3)$	$0.065(3)$	$0.012(2)$	$0.025(2)$	$0.007(2)$
C2	$0.086(3)$	$0.061(3)$	$0.058(2)$	$-0.001(2)$	$0.022(2)$	$0.007(2)$
C3	$0.075(3)$	$0.059(3)$	$0.057(2)$	$0.010(2)$	$0.023(2)$	$0.0061(19)$
C4	$0.095(3)$	$0.100(3)$	$0.079(3)$	$0.027(2)$	$0.033(2)$	$0.006(2)$
C5	$0.114(3)$	$0.124(3)$	$0.094(3)$	$0.026(3)$	$0.018(3)$	$-0.006(3)$

C6	$0.124(3)$	$0.121(3)$	$0.092(3)$	$0.044(3)$	$0.040(3)$	$0.004(3)$
C11	$0.1161(12)$	$0.0720(9)$	$0.0961(10)$	$-0.0080(6)$	$0.0484(8)$	$0.0120(6)$
O1	$0.125(3)$	$0.055(2)$	$0.119(3)$	$0.0052(18)$	$0.059(2)$	$-0.0032(18)$
O2	$0.102(2)$	$0.0689(19)$	$0.075(2)$	$0.0238(16)$	$0.0414(18)$	$0.0111(14)$

Geometric parameters (\AA, ${ }^{\circ}$)

C1-O1	1.221 (4)	C4-C5	1.489 (7)
C1-C2	1.463 (5)	C4-H4	0.9800
$\mathrm{C} 1-\mathrm{C} 3{ }^{\text {i }}$	1.480 (6)	C5-H5A	0.9600
C2-C3	1.343 (5)	C5-H5B	0.9600
$\mathrm{C} 2-\mathrm{Cl} 1$	1.715 (4)	C5-H5C	0.9600
$\mathrm{C} 3-\mathrm{O} 2$	1.346 (5)	C6-H6A	0.9600
$\mathrm{C} 4-\mathrm{O} 2$	1.468 (5)	C6-H6B	0.9600
C4-C6	1.486 (7)	C6-H6C	0.9600
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	121.2 (4)	C5-C4-H4	108.7
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3{ }^{\text {i }}$	121.0 (4)	C4-C5-H5A	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3{ }^{\text {i }}$	117.7 (4)	C4-C5-H5B	109.5
C3-C2-C1	122.2 (4)	H5A-C5-H5B	109.5
C3-C2-Cl1	121.1 (3)	C4-C5-H5C	109.5
C1-C2-Cl1	116.7 (3)	H5A-C5-H5C	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	120.2 (4)	H5B-C5-H5C	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	120.0 (4)	C4-C6-H6A	109.5
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 1^{\text {i }}$	119.5 (4)	C4-C6-H6B	109.5
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 6$	104.7 (4)	H6A-C6-H6B	109.5
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	111.9 (4)	C4-C6- H 6 C	109.5
C6-C4-C5	114.0 (5)	H6A-C6-H6C	109.5
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{H} 4$	108.7	H6B-C6-H6C	109.5
C6-C4-H4	108.7	C3-O2-C4	119.2 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	174.3 (4)	C1-C2-C3-C1 ${ }^{\text {i }}$	4.0 (6)
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-3.9 (6)	$\mathrm{C} 11-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1^{\text {i }}$	-177.4 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 1$	-4.3 (5)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2-\mathrm{C} 4$	130.7 (4)
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 1$	177.4 (3)	$\mathrm{C} 1-\mathrm{C} 3-\mathrm{O} 2-\mathrm{C} 4$	-56.2 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	177.1 (3)	C6-C4-O2-C3	-175.7 (4)
$\mathrm{C} 11-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	-4.4 (5)	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 3$	-51.8 (6)

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{O1}^{\mathrm{i}}$	0.98	2.34	$2.926(7)$	117

Symmetry code: (i) $-x+1,-y+1,-z+1$.

