

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[silver(I)-µ-2-[(pyrazin-2-yl- $\kappa^2 N^1: N^4$) aminomethyl] phenol] nitrate]

Zhao-Peng Deng,^a Shan Gao^a and Seik Weng Ng^{b,c}*

^aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 31 July 2012; accepted 6 August 2012

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.007 Å; R factor = 0.075; wR factor = 0.224; data-to-parameter ratio = 16.1.

The Ag^I atom in the polycationic salt, $\{[Ag(C_{11}H_{11}N_3O)] NO_3$, shows a linear coordination $[N-Ag-N = 175.0 (2)^\circ]$; the polymeric nature arises from bridging by the pyrazine portion of the ligand, resulting in chains extending parallel to [100]. The NO_3^- counter-ions surround the polymeric chain and interact only weakly with it $[Ag \cdot \cdot O = 2.701 (4)]$ and 2.810 (5) Å]. Adjacent chains are linked into a threedimensional network by O-H···O and N-H···O hydrogen bonds.

Related literature

For the structure of 2-{[(pyrazin-2-yl)amino]methyl}phenol, see: Gao & Ng (2012).

Experimental

Crystal data [Ag(C11H11N3O)]NO3 $M_r = 371.11$ Monoclinic, $P2_1/c$ a = 7.1265 (9) Å b = 9.5249 (14) Å c = 18.654 (2) Å $\beta = 97.240 \ (4)^{\circ}$

V = 1256.1 (3) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 1.63 \text{ mm}^{-1}$
T = 293 K
$0.27 \times 0.18 \times 0.13 \text{ mm}$

 $R_{\rm int} = 0.042$

11969 measured reflections

2864 independent reflections

2038 reflections with $I > 2\sigma(I)$

Data collection

```
Rigaku R-AXIS RAPID IP
  diffractometer
Absorption correction: multi-scan
  (ABSCOR; Higashi, 1995)
  T_{\min} = 0.668, \ \tilde{T}_{\max} = 0.817
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	182 parameters
$wR(F^2) = 0.125$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$
2864 reflections	$\Delta \rho_{\rm min} = -0.77 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected bond lengths (Å).

Ag1-N1	2.172 (4)	Ag1-N2 ⁱ	2.195 (4)
Symmetry code: (i) x	-1, v, z.		

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H1···O3 ⁱⁱ	0.84	1.96	2.795 (6)	171
N3–H3···O4 ⁱⁱⁱ	0.88	2.22	2.982 (6)	145
6	13 11.7		1.1	

Symmetry codes: (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iii) -x, -y + 1, -z + 1.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023, No. 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/ MOHE/SC/12) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5602).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191. Gao, S. & Ng, S. W. (2012). Acta Cryst. E68, o2472. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, m1171 [doi:10.1107/S1600536812034769]

catena-Poly[[silver(I)- μ -2-[(pyrazin-2-yl- $\kappa^2 N^1$: N^4)aminomethyl]phenol] nitrate]

Zhao-Peng Deng, Shan Gao and Seik Weng Ng

S1. Comment

A recent study reports 2-[(pyrazin-2-ylamino)methyl]phenol, a reduced Schiff-base that possesses an acidic phenolic group (Gao & Ng, 2012). The reaction with silver nitrate yields polycationic $[Ag(C_{11}H_{11}N_3O)]_n nNO_3$ (Scheme I). The polymeric nature arises from bridging by the pyrazine portion of the ligand. The counterions surround the chain and interact only weakly with it [Ag···O 2.701 (4), 2.810 (5) Å] (Fig. 1). Adjacent chains are linked into a three-dimensional network by O–H···O and N–H···O hydrogen bonds (Table 1).

S2. Experimental

An acetonitrile solution (10 ml) of silver nitrate (1 mmol) was added to a methanol solution (5 ml) of 2-[(pyrazin-2-yl-amino)methyl]phenol (1 mmol). The solution was filtered and then side aside, away from light, for the growth of crystals. Colorless crystals were obtained after several days.

S3. Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.93–0.97, N–H 0.88, O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,N,O).

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of the polymeric chain structure of $[Ag(C_{11}H_{11}N_3O)]_nNO_3$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

catena-Poly[[silver(I)- μ -2-[(pyrazin-2-yl- $\kappa^2 N^1$: N^4)aminomethyl]phenol] nitrate]

Crystal data	
$[Ag(C_{11}H_{11}N_{3}O)]NO_{3}$	F(000) = 736
$M_r = 371.11$	$D_{\rm x} = 1.962 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5867 reflections
a = 7.1265 (9) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 9.5249 (14) Å	$\mu = 1.63 \text{ mm}^{-1}$
c = 18.654 (2) Å	T = 293 K
$\beta = 97.240 \ (4)^{\circ}$	Prism, colorless
V = 1256.1 (3) Å ³	$0.27 \times 0.18 \times 0.13 \text{ mm}$
Z = 4	
Data collection	
Rigaku R-AXIS RAPID IP	11969 measured reflections
diffractometer	2864 independent reflections
Radiation source: fine-focus sealed tube	2038 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.042$
ωscan	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 8$
(ABSCOR; Higashi, 1995)	$k = -12 \rightarrow 12$
$T_{\min} = 0.668, T_{\max} = 0.817$	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.125$	neighbouring sites
S = 1.02	H-atom parameters constrained
2864 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0508P)^2 + 4.1394P]$
182 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.64 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.77 \ { m e} \ { m \AA}^{-3}$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ag1	0.06666 (5)	0.59659 (5)	0.58246 (2)	0.05110 (18)	
01	0.3023 (5)	0.4649 (5)	0.8136 (2)	0.0571 (10)	
H1	0.2582	0.5291	0.8375	0.086*	
O2	-0.0170 (6)	0.6917 (5)	0.4458 (2)	0.0575 (11)	
03	0.1837 (5)	0.8322 (5)	0.4064 (2)	0.0574 (11)	
04	-0.0257 (6)	0.7272 (6)	0.3321 (2)	0.0658 (12)	
N1	0.3716 (5)	0.5848 (4)	0.5842 (2)	0.0316 (8)	
N2	0.7616 (5)	0.5983 (4)	0.5896 (2)	0.0361 (9)	
N3	0.4029 (6)	0.4097 (5)	0.6707 (2)	0.0434 (10)	
Н3	0.2785	0.4081	0.6661	0.052*	
N4	0.0450 (6)	0.7509 (5)	0.3943 (2)	0.0414 (10)	
C1	0.4556 (6)	0.6685 (5)	0.5406 (3)	0.0352 (10)	
H1A	0.3804	0.7245	0.5078	0.042*	
C2	0.6473 (7)	0.6755 (5)	0.5421 (3)	0.0397 (11)	
H2	0.6993	0.7341	0.5100	0.048*	
C3	0.6828 (6)	0.5159 (6)	0.6338 (3)	0.0368 (11)	
H3A	0.7599	0.4648	0.6683	0.044*	
C4	0.4845 (6)	0.5027 (5)	0.6304 (2)	0.0328 (10)	
C5	0.5036 (8)	0.3108 (6)	0.7217 (3)	0.0442 (12)	
H5A	0.6001	0.2642	0.6980	0.053*	
H5B	0.4151	0.2395	0.7333	0.053*	
C6	0.5967 (7)	0.3745 (5)	0.7914 (3)	0.0371 (11)	
C7	0.7896 (7)	0.3554 (6)	0.8134 (3)	0.0451 (12)	
H7	0.8625	0.3062	0.7839	0.054*	
C8	0.8733 (8)	0.4086 (6)	0.8783 (3)	0.0510 (14)	
H8	1.0016	0.3941	0.8926	0.061*	
C9	0.7677 (8)	0.4832 (7)	0.9221 (3)	0.0529 (14)	
H9	0.8247	0.5192	0.9658	0.063*	
C10	0.5791 (8)	0.5042 (6)	0.9013 (3)	0.0472 (13)	
H10	0.5082	0.5552	0.9308	0.057*	
C11	0.4926 (7)	0.4498 (6)	0.8363 (3)	0.0404 (11)	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Agl	0.0201 (2)	0.0684 (3)	0.0657 (3)	0.00250 (18)	0.00874 (18)	0.0059 (2)
01	0.039 (2)	0.071 (3)	0.062 (3)	0.008 (2)	0.0080 (19)	-0.008(2)
O2	0.050(2)	0.066 (3)	0.059 (2)	0.000 (2)	0.018 (2)	0.015 (2)
O3	0.039 (2)	0.064 (3)	0.067 (3)	-0.0142 (19)	-0.0030 (19)	0.011 (2)
O4	0.048 (2)	0.102 (4)	0.047 (2)	-0.010 (2)	0.0027 (19)	-0.012 (2)
N1	0.0186 (16)	0.038 (2)	0.038 (2)	0.0005 (15)	0.0023 (15)	0.0005 (17)
N2	0.0183 (16)	0.044 (2)	0.046 (2)	-0.0003 (16)	0.0028 (16)	0.0007 (19)
N3	0.028 (2)	0.059 (3)	0.043 (2)	-0.006 (2)	0.0052 (18)	0.010 (2)
N4	0.028 (2)	0.046 (3)	0.050 (3)	-0.0013 (18)	0.0086 (19)	-0.002 (2)
C1	0.024 (2)	0.035 (3)	0.047 (3)	0.0019 (19)	0.005 (2)	0.004 (2)
C2	0.029 (2)	0.041 (3)	0.050 (3)	-0.002 (2)	0.012 (2)	0.008 (2)
C3	0.022 (2)	0.048 (3)	0.041 (3)	0.005 (2)	0.0058 (19)	0.002 (2)
C4	0.025 (2)	0.041 (3)	0.034 (2)	-0.0041 (19)	0.0101 (18)	-0.007 (2)
C5	0.042 (3)	0.046 (3)	0.045 (3)	0.002 (2)	0.010 (2)	0.003 (2)
C6	0.038 (2)	0.036 (3)	0.039 (3)	-0.001 (2)	0.009 (2)	0.007 (2)
C7	0.038 (3)	0.047 (3)	0.051 (3)	0.005 (2)	0.013 (2)	0.014 (3)
C8	0.035 (3)	0.049 (3)	0.067 (4)	0.002 (2)	-0.002 (3)	0.014 (3)
C9	0.052 (3)	0.053 (4)	0.051 (3)	-0.008 (3)	-0.005 (3)	0.003 (3)
C10	0.052 (3)	0.046 (3)	0.044 (3)	-0.002 (3)	0.010 (3)	-0.006 (2)
C11	0.035 (2)	0.040 (3)	0.047 (3)	0.001 (2)	0.007 (2)	0.005 (2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Ag1—N1	2.172 (4)	C1—H1A	0.9300
Ag1—N2 ⁱ	2.195 (4)	С2—Н2	0.9300
Ag1—O2	2.701 (4)	C3—C4	1.412 (6)
Ag1—O2 ⁱⁱ	2.810 (5)	С3—НЗА	0.9300
01—C11	1.376 (6)	C5—C6	1.511 (7)
01—H1	0.8400	C5—H5A	0.9700
O2—N4	1.242 (6)	С5—Н5В	0.9700
O3—N4	1.254 (6)	C6—C7	1.396 (7)
O4—N4	1.225 (6)	C6—C11	1.386 (7)
N1—C1	1.333 (6)	C7—C8	1.377 (8)
N1C4	1.352 (6)	С7—Н7	0.9300
N2—C3	1.314 (6)	C8—C9	1.376 (9)
N2-C2	1.344 (6)	C8—H8	0.9300
N2—Ag1 ⁱⁱⁱ	2.195 (4)	C9—C10	1.366 (8)
N3—C4	1.342 (6)	С9—Н9	0.9300
N3—C5	1.461 (7)	C10—C11	1.390 (8)
N3—H3	0.8800	C10—H10	0.9300
C1—C2	1.364 (6)		
N1—Ag1—N2 ⁱ	175.01 (15)	С4—С3—НЗА	119.0
N1 - Ag1 - O2	97 63 (13)	N1 - C4 - N3	118 3 (4)
$N2^{i}$ —Ag1—O2	87.27 (14)	N1—C4—C3	119.3 (4)

N1—Ag1—O2 ⁱⁱ	93.12 (13)	N3—C4—C3	122.4 (5)
N2 ⁱ —Ag1—O2 ⁱⁱ	85.21 (14)	N3—C5—C6	115.3 (4)
O2—Ag1—O2 ⁱⁱ	98.24 (12)	N3—C5—H5A	108.5
C11—O1—H1	109.5	C6—C5—H5A	108.5
N4—O2—Ag1	145.6 (3)	N3—C5—H5B	108.5
C1—N1—C4	117.2 (4)	C6—C5—H5B	108.5
C1—N1—Ag1	119.1 (3)	H5A—C5—H5B	107.5
C4—N1—Ag1	123.6 (3)	C7—C6—C11	118.1 (5)
C3—N2—C2	117.9 (4)	C7—C6—C5	120.7 (5)
C3—N2—Ag1 ⁱⁱⁱ	122.6 (3)	C11—C6—C5	121.2 (5)
C2—N2—Ag1 ⁱⁱⁱ	119.1 (3)	C6—C7—C8	120.8 (5)
C4—N3—C5	125.3 (4)	С6—С7—Н7	119.6
C4—N3—H3	117.3	С8—С7—Н7	119.6
C5—N3—H3	117.3	C9—C8—C7	120.2 (5)
O4—N4—O2	120.3 (5)	С9—С8—Н8	119.9
O4—N4—O3	120.3 (5)	С7—С8—Н8	119.9
O2—N4—O3	119.4 (5)	C8—C9—C10	120.0 (5)
N1—C1—C2	122.9 (5)	С8—С9—Н9	120.0
N1—C1—H1A	118.6	С10—С9—Н9	120.0
C2—C1—H1A	118.6	C9—C10—C11	120.3 (5)
C1—C2—N2	120.6 (4)	C9—C10—H10	119.8
С1—С2—Н2	119.7	C11—C10—H10	119.8
N2—C2—H2	119.7	C6—C11—C10	120.5 (5)
N2—C3—C4	121.9 (4)	C6—C11—O1	116.7 (5)
N2—C3—H3A	119.0	C10-C11-O1	122.7 (5)
N1—Ag1—O2—N4	-19.9 (6)	C5—N3—C4—N1	178.2 (5)
N2 ⁱ —Ag1—O2—N4	161.0 (6)	C5—N3—C4—C3	-0.7 (8)
O2 ⁱⁱ —Ag1—O2—N4	-114.2 (6)	N2-C3-C4-N1	-5.1 (7)
O2—Ag1—N1—C1	26.1 (4)	N2-C3-C4-N3	173.8 (5)
O2 ⁱⁱ —Ag1—N1—C1	124.9 (4)	C4—N3—C5—C6	73.9 (6)
O2 ⁱⁱ —Ag1—N1—C4	-59.3 (4)	N3—C5—C6—C7	-124.6 (5)
Ag1-02-N4-04	152.0 (5)	N3-C5-C6-C11	57.3 (6)
Ag1—O2—N4—O3	-26.1(9)	C11—C6—C7—C8	0.7 (8)
C4—N1—C1—C2	-1.2 (7)	C5—C6—C7—C8	-177.4 (5)
Ag1—N1—C1—C2	174.9 (4)	C6—C7—C8—C9	-0.8 (8)
N1—C1—C2—N2	-1.3 (8)	C7—C8—C9—C10	0.2 (9)
C3—N2—C2—C1	0.5 (7)	C8-C9-C10-C11	0.5 (9)
Ag1 ⁱⁱⁱ —N2—C2—C1	173.7 (4)	C7—C6—C11—C10	-0.1 (8)
C2—N2—C3—C4	2.6 (7)	C5-C6-C11-C10	178.1 (5)
Ag1 ⁱⁱⁱ —N2—C3—C4	-170.3 (4)	C7—C6—C11—O1	-179.0 (5)
C1—N1—C4—N3	-174.8 (4)	C5—C6—C11—O1	-0.9 (7)
Ag1—N1—C4—N3	9.2 (6)	C9—C10—C11—C6	-0.6 (8)
C1—N1—C4—C3	4.2 (7)	C9—C10—C11—O1	178.4 (5)
Ag1—N1—C4—C3	-171.8 (3)		

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
01—H1…O3 ^{iv}	0.84	1.96	2.795 (6)	171
N3—H3…O4 ⁱⁱ	0.88	2.22	2.982 (6)	145

Symmetry codes: (ii) -x, -y+1, -z+1; (iv) x, -y+3/2, z+1/2.