## metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## catena-Poly[[[{1-[(E)-phenyl(pyridin-2-yl- $\kappa N$ )methylidene]semicarbazidato- $\kappa^2 N^1$ ,O}copper(II)]- $\mu$ -dicyanamido- $\kappa^2 N^1 : N^5$ ] monohydrate]

#### Roji J. Kunnath,<sup>a</sup> M.R. Prathapachandra Kurup<sup>a</sup> and Seik Weng Ng<sup>b,c</sup>\*

<sup>a</sup>Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and <sup>c</sup>Chemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 30 July 2012; accepted 9 August 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.007 Å; disorder in solvent or counterion; R factor = 0.050; wR factor = 0.166; data-toparameter ratio = 17.5.

The  $Cu^{II}$  atoms in the title coordination polymer, {[Cu(C<sub>13</sub>H<sub>11</sub>- $N_4O(C_2N_3)$ ]·H<sub>2</sub>O<sub>1</sub>, are N,N',O-chelated by the deprotonated Schiff base ligands, and adjacent metal atoms are bridged by the dicyanamide ions, generating a polymeric chain that propagates along the b axis. The two independent metal atoms show a square-pyramidal N<sub>4</sub>O coordination. The two independent water molecules are disordered over two positions; each water molecule is a hydrogen-bond donor to a carbonyl O atom. Weak  $N-H \cdots N$  hydrogen bonding is also observed.

#### **Related literature**

For the synthesis of the Schiff base ligand, see: de Lima et al. (2008). For a related copper(II) derivative, see: Perez-Rebolledo et al. (2006).





V = 6957.8 (2) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.40 \times 0.30 \times 0.20 \text{ mm}$ 

 $\mu = 1.28 \text{ mm}^-$ 

T = 293 K

Z = 16

#### **Experimental**

#### Crystal data

[Cu(C13H11N4O)(C2N3)]·H2O  $M_r = 386.86$ Orthorhombic, Pbca a = 12.3996 (2) Å b = 21.0115 (4) Å c = 26.7059 (5) Å

#### Data collection

Bruker Kappa APEXII 110924 measured reflections diffractometer 7982 independent reflections Absorption correction: multi-scan 5027 reflections with  $I > 2\sigma(I)$  $R_{\rm int}=0.054$ (SADABS; Sheldrick, 1996)  $T_{\min} = 0.629, T_{\max} = 0.784$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.050$ | 12 restraints                                              |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.166$               | H-atom parameters constrained                              |
| S = 1.12                        | $\Delta \rho_{\rm max} = 0.80 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 7982 reflections                | $\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$ |
| 457 parameters                  |                                                            |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$          | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots \mathbf{A}$ |
|---------------------------|------|-------------------------|--------------|------------------------------------|
| $N4 - H42 \cdots N7^{i}$  | 0.88 | 2.13                    | 3.006 (5)    | 176                                |
| N8−H82···N3 <sup>ii</sup> | 0.88 | 2.15                    | 3.025 (5)    | 179                                |
| O1w−H1w1···O1             | 0.84 | 2.05                    | 2.88 (2)     | 169                                |
| $O2w-H2w1\cdots O2$       | 0.84 | 2.34                    | 3.151 (19)   | 161                                |
|                           |      |                         |              |                                    |

Symmetry codes: (i)  $x, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (ii)  $x, -y + \frac{1}{2}, z - \frac{1}{2}$ .

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008): molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

RJK thanks the University Grants Commission (India) for a Junior Research Fellowship. We thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, for the diffraction measurements. We also thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/ MOHE/SC/12) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5601).

#### References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Lima, D. F. de, Pérez-Rebolledo, A., Ellena, J. & Beraldo, H. (2008). Acta Cryst. E64, 0177.
- Perez-Rebolledo, A., Piro, O. E., Castellano, E. E., Teixeira, L. R., Batista, A. A. & Beraldo, H. (2006). J. Mol. Struct. 794, 18-23.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

## supporting information

Acta Cryst. (2012). E68, m1176 [doi:10.1107/S1600536812035283]

# *catena*-Poly[[[{1-[(*E*)-phenyl(pyridin-2-yl- $\kappa N$ )methylidene]semicarbazidato- $\kappa^2 N^1$ ,*O*}copper(II)]- $\mu$ -dicyanamido- $\kappa^2 N^1$ : $N^5$ ] monohydrate]

## Roji J. Kunnath, M.R. Prathapachandra Kurup and Seik Weng Ng

## S1. Comment

2-Benzoylpyridine semicarbazone (de Lima *et al.*, 2008) is a Schiff base that is capable of *N*,*N'*,*O*-chelation to transition metal ions. This feature has been documented a copper(II) dichloride adduct; in this, the Schiff base exists as a neutral molecule (Perez-Rebolledo *et al.*, 2006). However, the Cu<sup>II</sup> atom in the coordination polymer, [Cu(C<sub>2</sub>N<sub>3</sub>) (C<sub>13</sub>H<sub>11</sub>N<sub>4</sub>O)H<sub>2</sub>O]<sub>*n*</sub> (I), is *N*,*N'*,*O*-chelated instead by the deprotonated Schiff base (Fig. 1). Adjacent metal atoms are bridged by the dicyanamide ion to generate a chain that propagates along the *b* axis of the orthorhombic unit cell (Fig. 2). The two independent metal atoms show square pyramidal coordination. The two independent water molecules are disordered over two positions; each water molecule is a hydrogen-bond donor to a carbonyl O atom.

### S2. Experimental

A methanol solution (20 ml) of 2-benzoylpyridine semicarbazone (0.240 g,1 mmol) (de Lima *et al.*, 2008), copper acetate monohydrate (0.199 g, 1 mmol) and sodium dicyanamide (0.089 g, 1 mmol) was heated for 5 h. The dark green solid was collected and recrystallized from methanol.

### S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino H-atoms were similarly treated (N–H 0.88 Å) and their temperature factors tied by a factor of 1.2 times.

Omitted owing interference from the beam stop were (2 1 0), (0 0 2), (1 1 2), (1 1 4) and (1 2 1).

The presence of water was indicated by an infrared spectral measurement. The two independent water molecules are both disordered over two positions; the occupancy could not be refined, and was assumed as a 1:1 type of disorder. For one molecule, the disorder is such that two components are separated by about 2 Å, so that one hydrogen atom should be midway between two oxygen atoms. For the other, the two are separated by about 1 Å, so that one hydrogen atom should be occupying the site of the other oxygen atom. For both, hydrogen atoms were positioned on only one component oxygen atom so that each water molecule forms only one hydrogen bond. Furthermore, the hydrogen atoms were given full occupancy, *i.e.*, hydrogen atoms were not placed on those atoms that do not engage in hydrogen bonding. The temperature factors of the primed atoms were set to those of the unprimed ones, and the anisotropic temperature factors were tightly restrained to be nearly isotropic.



## Figure 1

Thermal ellipsoid plot (Barbour, 2001) of a portion of the chain structure of  $[Cu(C_2N_3)(C_{13}H_{11}N_4O)H_2O]_n$  at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the water molecules is not shown.



## Figure 2

Dicyanamide-bridged chain structure. Water molecules are not shown.

# *catena*-Poly[[[{1-[(*E*)-phenyl(pyridin-2-yl- $\kappa N$ )methylidene]semicarbazidato- $\kappa^2 N^1$ ,*O*}copper(II)]- $\mu$ -dicyanamido- $\kappa^2 N^1$ : $N^5$ ] monohydrate]

| Crystal data                                |                                                                |
|---------------------------------------------|----------------------------------------------------------------|
| $[Cu(C_{13}H_{11}N_4O)(C_2N_3)] \cdot H_2O$ | F(000) = 3152                                                  |
| $M_r = 386.86$                              | $D_x = 1.477 \text{ Mg m}^{-3}$                                |
| Orthorhombic, <i>Pbca</i>                   | Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$            |
| Hall symbol: -P 2ac 2ab                     | Cell parameters from 9967 reflections                          |
| a = 12.3996 (2) Å                           | $\theta = 2.7-26.5^{\circ}$                                    |
| b = 21.0115 (4) Å                           | $\mu = 1.28 \text{ mm}^{-1}$                                   |
| c = 26.7059 (5) Å                           | T = 293  K                                                     |
| V = 6957.8 (2) Å <sup>3</sup>               | Prim, green                                                    |
| Z = 16                                      | $0.40 \times 0.30 \times 0.20 \text{ mm}$                      |
| Data collection                             | 0.10 × 0.50 × 0.20 mm                                          |
| Bruker Kappa APEXII                         | 110924 measured reflections                                    |
| diffractometer                              | 7982 independent reflections                                   |
| Radiation source: fine-focus sealed tube    | 5027 reflections with $I > 2\sigma(I)$                         |
| Graphite monochromator                      | $R_{int} = 0.054$                                              |
| ω scans                                     | $\theta_{\rm max} = 27.5^\circ,  \theta_{\rm min} = 1.9^\circ$ |
| Absorption correction: multi-scan           | $h = -16 \rightarrow 14$                                       |
| (SADABS; Sheldrick, 1996)                   | $k = -27 \rightarrow 27$                                       |
| $T_{\min} = 0.629, T_{\max} = 0.784$        | $l = -34 \rightarrow 34$                                       |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.050$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.166$                               | neighbouring sites                                         |
| S = 1.12                                        | H-atom parameters constrained                              |
| 7982 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0668P)^2 + 9.8211P]$          |
| 457 parameters                                  | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                     |
| 12 restraints                                   | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.80 \ { m e} \ { m \AA}^{-3}$      |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$ |
|                                                 |                                                            |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x           | у            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|-------------|--------------|---------------|-----------------------------|-----------|
| Cu1  | 0.74889 (4) | 0.32160 (2)  | 0.591725 (16) | 0.03950 (15)                |           |
| Cu2  | 0.51236 (4) | 0.06952 (2)  | 0.406562 (15) | 0.03717 (15)                |           |
| 01   | 0.6417 (2)  | 0.38125 (13) | 0.61888 (10)  | 0.0541 (8)                  |           |
| O2   | 0.6166 (2)  | 0.13248 (12) | 0.38040 (10)  | 0.0489 (7)                  |           |
| O1W  | 0.4729 (16) | 0.4332 (10)  | 0.5571 (8)    | 0.269 (7)                   | 0.50      |
| H1W1 | 0.5266      | 0.4228       | 0.5745        | 0.404*                      |           |
| H1W2 | 0.4808      | 0.4710       | 0.5475        | 0.404*                      |           |
| O2W  | 0.8427 (16) | 0.1463 (9)   | 0.4332 (7)    | 0.234 (6)                   | 0.50      |
| H2W1 | 0.7879      | 0.1336       | 0.4177        | 0.280*                      |           |
| H2W2 | 0.8367      | 0.1858       | 0.4373        | 0.280*                      |           |
| O1W′ | 0.4691 (17) | 0.5292 (11)  | 0.5296 (8)    | 0.269 (7)                   | 0.50      |
| O2W′ | 0.7929 (19) | 0.1888 (10)  | 0.4402 (8)    | 0.234 (6)                   | 0.50      |
| N1   | 0.8834 (3)  | 0.26882 (16) | 0.58984 (12)  | 0.0469 (8)                  |           |
| N2   | 0.7736 (3)  | 0.31179 (14) | 0.66329 (11)  | 0.0362 (7)                  |           |
| N3   | 0.7020 (3)  | 0.33965 (15) | 0.69487 (11)  | 0.0419 (7)                  |           |
| N4   | 0.5629 (3)  | 0.41008 (19) | 0.69133 (14)  | 0.0644 (11)                 |           |
| H41  | 0.5184      | 0.4351       | 0.6749        | 0.077*                      |           |
| H42  | 0.5586      | 0.4073       | 0.7241        | 0.077*                      |           |
| N5   | 0.3807 (3)  | 0.01320 (15) | 0.40768 (10)  | 0.0396 (7)                  |           |
| N6   | 0.4882 (2)  | 0.06112 (14) | 0.33509 (11)  | 0.0358 (7)                  |           |
| N7   | 0.5555 (3)  | 0.09307 (15) | 0.30382 (11)  | 0.0394 (7)                  |           |
| N8   | 0.6909 (3)  | 0.16608 (17) | 0.30793 (13)  | 0.0555 (9)                  |           |
| H81  | 0.7353      | 0.1909       | 0.3246        | 0.067*                      |           |
| H82  | 0.6936      | 0.1649       | 0.2750        | 0.067*                      |           |
| N9   | 0.6399 (4)  | 0.2399 (2)   | 0.58076 (14)  | 0.0683 (12)                 |           |
| N10  | 0.5250 (4)  | 0.1525 (2)   | 0.55530 (14)  | 0.0735 (13)                 |           |
| N11  | 0.5158 (3)  | 0.09809 (17) | 0.47568 (12)  | 0.0497 (8)                  |           |
| N12  | 0.7496 (3)  | 0.35269 (18) | 0.52272 (13)  | 0.0509 (9)                  |           |
| N13  | 0.7622 (4)  | 0.3993 (2)   | 0.43995 (14)  | 0.0799 (15)                 |           |
| N14  | 0.8717 (3)  | 0.48903 (18) | 0.41363 (13)  | 0.0539 (9)                  |           |
| C1   | 0.9380 (4)  | 0.2496 (2)   | 0.54957 (17)  | 0.0673 (14)                 |           |
| H1   | 0.9131      | 0.2611       | 0.5180        | 0.081*                      |           |
| C2   | 1.0297 (5)  | 0.2132 (3)   | 0.5532 (2)    | 0.0814 (18)                 |           |
| H2   | 1.0658      | 0.1998       | 0.5246        | 0.098*                      |           |

| C3  | 1.0669 (5) | 0.1972 (2)    | 0.6000 (2)   | 0.0747 (16) |
|-----|------------|---------------|--------------|-------------|
| H3  | 1.1305     | 0.1741        | 0.6035       | 0.090*      |
| C4  | 1.0095 (4) | 0.2154 (2)    | 0.64189 (17) | 0.0546 (11) |
| H4  | 1.0326     | 0.2039        | 0.6737       | 0.066*      |
| C5  | 0.9172 (3) | 0.25110 (17)  | 0.63568 (14) | 0.0419 (9)  |
| C6  | 0.8486 (3) | 0.27313 (16)  | 0.67749 (13) | 0.0360 (8)  |
| C7  | 0.8605 (3) | 0.24717 (17)  | 0.72905 (13) | 0.0384 (8)  |
| C8  | 0.7886 (4) | 0.2016 (2)    | 0.74534 (17) | 0.0546 (11) |
| H8  | 0.7321     | 0.1890        | 0.7247       | 0.066*      |
| C9  | 0.8002 (5) | 0.1745 (2)    | 0.7924 (2)   | 0.0696 (14) |
| H9  | 0.7519     | 0.1436        | 0.8032       | 0.084*      |
| C10 | 0.8835 (5) | 0.1935 (3)    | 0.82286 (19) | 0.0758 (16) |
| H10 | 0.8909     | 0.1758        | 0.8546       | 0.091*      |
| C11 | 0.9552 (5) | 0.2379 (3)    | 0.80682 (19) | 0.0831 (17) |
| H11 | 1.0119     | 0.2504        | 0.8275       | 0.100*      |
| C12 | 0.9440 (4) | 0.2645 (2)    | 0.76020 (17) | 0.0653 (13) |
| H12 | 0.9937     | 0.2947        | 0.7494       | 0.078*      |
| C13 | 0.6370 (3) | 0.37643 (18)  | 0.66655 (14) | 0.0427 (9)  |
| C14 | 0.3281 (4) | -0.0096(2)    | 0.44722 (15) | 0.0527 (11) |
| H14 | 0.3484     | 0.0040        | 0.4790       | 0.063*      |
| C15 | 0.2455 (4) | -0.0522 (3)   | 0.44297 (19) | 0.0741 (16) |
| H15 | 0.2098     | -0.0671       | 0.4713       | 0.089*      |
| C16 | 0.2161 (5) | -0.0725 (3)   | 0.3959 (2)   | 0.0832 (18) |
| H16 | 0.1602     | -0.1016       | 0.3920       | 0.100*      |
| C17 | 0.2703 (4) | -0.0494(2)    | 0.35449 (17) | 0.0626 (13) |
| H17 | 0.2513     | -0.0627       | 0.3225       | 0.075*      |
| C18 | 0.3520 (3) | -0.00673 (18) | 0.36126 (13) | 0.0403 (8)  |
| C19 | 0.4168 (3) | 0.02092 (17)  | 0.32052 (13) | 0.0368 (8)  |
| C20 | 0.4045 (3) | -0.00038 (17) | 0.26745 (13) | 0.0369 (8)  |
| C21 | 0.3209 (4) | 0.0214 (2)    | 0.23788 (15) | 0.0562 (11) |
| H21 | 0.2697     | 0.0492        | 0.2508       | 0.067*      |
| C22 | 0.3144 (4) | 0.0011 (3)    | 0.18867 (17) | 0.0664 (13) |
| H22 | 0.2580     | 0.0154        | 0.1687       | 0.080*      |
| C23 | 0.3888 (4) | -0.0392(2)    | 0.16898 (16) | 0.0644 (14) |
| H23 | 0.3844     | -0.0514       | 0.1356       | 0.077*      |
| C24 | 0.4709 (4) | -0.0618 (2)   | 0.19901 (19) | 0.0647 (14) |
| H24 | 0.5207     | -0.0906       | 0.1862       | 0.078*      |
| C25 | 0.4789 (4) | -0.0417(2)    | 0.24776 (17) | 0.0521 (10) |
| H25 | 0.5354     | -0.0562       | 0.2676       | 0.062*      |
| C26 | 0.6197 (3) | 0.13029 (17)  | 0.33247 (14) | 0.0409 (9)  |
| C27 | 0.5897 (4) | 0.1987 (2)    | 0.56680 (14) | 0.0471 (10) |
| C28 | 0.5253 (3) | 0.12554 (19)  | 0.51235 (14) | 0.0447 (9)  |
| C29 | 0.7585 (3) | 0.3768 (2)    | 0.48527 (16) | 0.0483 (10) |
| C30 | 0.8225 (3) | 0.4478 (2)    | 0.42797 (13) | 0.0455 (10) |
|     | ~ /        |               | × /          | ~ /         |

# supporting information

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | U <sup>22</sup> | $U^{33}$    | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|------|-------------|-----------------|-------------|---------------|---------------|---------------|
| Cul  | 0.0501 (3)  | 0.0411 (3)      | 0.0272 (2)  | -0.00041 (19) | 0.00001 (19)  | -0.00053 (18) |
| Cu2  | 0.0476 (3)  | 0.0394 (3)      | 0.0245 (2)  | -0.0023 (2)   | -0.00390 (18) | -0.00204 (17) |
| 01   | 0.070 (2)   | 0.0597 (18)     | 0.0327 (14) | 0.0195 (15)   | -0.0050 (13)  | 0.0012 (12)   |
| O2   | 0.0662 (19) | 0.0471 (16)     | 0.0334 (14) | -0.0157 (14)  | -0.0080 (13)  | -0.0001 (11)  |
| O1W  | 0.220 (9)   | 0.323 (11)      | 0.266 (10)  | 0.038 (8)     | -0.025 (8)    | -0.002 (8)    |
| O2W  | 0.247 (10)  | 0.253 (11)      | 0.201 (8)   | 0.037 (8)     | -0.069 (8)    | -0.052 (8)    |
| 01W′ | 0.220 (9)   | 0.323 (11)      | 0.266 (10)  | 0.038 (8)     | -0.025 (8)    | -0.002 (8)    |
| O2W′ | 0.247 (10)  | 0.253 (11)      | 0.201 (8)   | 0.037 (8)     | -0.069 (8)    | -0.052 (8)    |
| N1   | 0.059 (2)   | 0.0457 (18)     | 0.0354 (17) | 0.0038 (16)   | 0.0107 (15)   | 0.0022 (14)   |
| N2   | 0.0452 (18) | 0.0354 (16)     | 0.0281 (14) | 0.0019 (14)   | -0.0007 (13)  | -0.0020 (12)  |
| N3   | 0.046 (2)   | 0.0472 (18)     | 0.0323 (16) | 0.0081 (15)   | -0.0028 (14)  | -0.0045 (14)  |
| N4   | 0.075 (3)   | 0.078 (3)       | 0.0401 (19) | 0.036 (2)     | 0.0021 (18)   | 0.0022 (18)   |
| N5   | 0.0458 (19) | 0.0448 (17)     | 0.0282 (15) | -0.0011 (14)  | 0.0010 (13)   | 0.0004 (13)   |
| N6   | 0.0418 (18) | 0.0395 (17)     | 0.0261 (14) | -0.0010 (13)  | -0.0031 (12)  | -0.0002 (12)  |
| N7   | 0.0487 (19) | 0.0429 (17)     | 0.0266 (14) | -0.0060 (15)  | -0.0046 (13)  | 0.0028 (13)   |
| N8   | 0.070 (3)   | 0.054 (2)       | 0.0427 (19) | -0.0245 (19)  | -0.0014 (17)  | 0.0026 (16)   |
| N9   | 0.090 (3)   | 0.063 (2)       | 0.052 (2)   | -0.027 (2)    | 0.001 (2)     | -0.0150 (19)  |
| N10  | 0.097 (3)   | 0.082 (3)       | 0.041 (2)   | -0.045 (3)    | 0.021 (2)     | -0.029 (2)    |
| N11  | 0.062 (2)   | 0.055 (2)       | 0.0321 (17) | -0.0067 (17)  | -0.0025 (15)  | -0.0054 (15)  |
| N12  | 0.058 (2)   | 0.056 (2)       | 0.0389 (19) | -0.0099 (17)  | 0.0001 (16)   | 0.0063 (16)   |
| N13  | 0.100 (3)   | 0.096 (3)       | 0.043 (2)   | -0.056 (3)    | -0.028 (2)    | 0.030 (2)     |
| N14  | 0.061 (2)   | 0.058 (2)       | 0.0425 (19) | -0.0145 (19)  | -0.0045 (17)  | 0.0155 (16)   |
| C1   | 0.089 (4)   | 0.068 (3)       | 0.044 (2)   | 0.022 (3)     | 0.027 (2)     | 0.007 (2)     |
| C2   | 0.101 (4)   | 0.084 (4)       | 0.060 (3)   | 0.041 (3)     | 0.036 (3)     | 0.007 (3)     |
| C3   | 0.079 (4)   | 0.069 (3)       | 0.076 (4)   | 0.035 (3)     | 0.031 (3)     | 0.011 (3)     |
| C4   | 0.062 (3)   | 0.051 (2)       | 0.051 (3)   | 0.012 (2)     | 0.007 (2)     | 0.009 (2)     |
| C5   | 0.050 (2)   | 0.0348 (19)     | 0.041 (2)   | 0.0007 (17)   | 0.0088 (17)   | 0.0028 (15)   |
| C6   | 0.043 (2)   | 0.0308 (17)     | 0.0345 (18) | -0.0025 (16)  | 0.0010 (15)   | 0.0002 (14)   |
| C7   | 0.043 (2)   | 0.0394 (19)     | 0.0326 (18) | 0.0044 (16)   | 0.0035 (16)   | 0.0042 (15)   |
| C8   | 0.062 (3)   | 0.047 (2)       | 0.056 (3)   | -0.007 (2)    | 0.004 (2)     | 0.005 (2)     |
| C9   | 0.079 (4)   | 0.056 (3)       | 0.074 (3)   | -0.002 (3)    | 0.023 (3)     | 0.020 (3)     |
| C10  | 0.088 (4)   | 0.089 (4)       | 0.051 (3)   | 0.012 (3)     | 0.002 (3)     | 0.034 (3)     |
| C11  | 0.081 (4)   | 0.121 (5)       | 0.048 (3)   | -0.013 (4)    | -0.019 (3)    | 0.025 (3)     |
| C12  | 0.064 (3)   | 0.085 (3)       | 0.047 (2)   | -0.025 (3)    | -0.011 (2)    | 0.016 (2)     |
| C13  | 0.051 (2)   | 0.042 (2)       | 0.035 (2)   | 0.0092 (18)   | -0.0012 (17)  | -0.0034 (16)  |
| C14  | 0.059 (3)   | 0.065 (3)       | 0.033 (2)   | -0.002 (2)    | 0.0065 (19)   | 0.0007 (18)   |
| C15  | 0.066 (3)   | 0.106 (4)       | 0.051 (3)   | -0.023 (3)    | 0.011 (2)     | 0.014 (3)     |
| C16  | 0.071 (4)   | 0.118 (5)       | 0.061 (3)   | -0.043 (3)    | -0.003 (3)    | 0.013 (3)     |
| C17  | 0.064 (3)   | 0.082 (3)       | 0.042 (2)   | -0.032 (3)    | -0.006 (2)    | 0.003 (2)     |
| C18  | 0.042 (2)   | 0.048 (2)       | 0.0305 (18) | -0.0046 (17)  | -0.0027 (15)  | -0.0003 (15)  |
| C19  | 0.042 (2)   | 0.0369 (19)     | 0.0314 (18) | -0.0001 (16)  | -0.0041 (15)  | 0.0008 (14)   |
| C20  | 0.042 (2)   | 0.0375 (19)     | 0.0307 (18) | -0.0070 (16)  | -0.0029 (15)  | -0.0030 (14)  |
| C21  | 0.059 (3)   | 0.071 (3)       | 0.038 (2)   | 0.011 (2)     | -0.011 (2)    | -0.008(2)     |
| C22  | 0.076 (3)   | 0.084 (3)       | 0.039 (2)   | -0.002 (3)    | -0.023 (2)    | -0.008 (2)    |
| C23  | 0.086 (4)   | 0.074 (3)       | 0.034 (2)   | -0.028(3)     | 0.004 (2)     | -0.019(2)     |

# supporting information

| C24 | 0.071 (3) | 0.055 (3) | 0.069 (3)   | -0.007 (2)   | 0.020 (3)    | -0.032 (2)   |
|-----|-----------|-----------|-------------|--------------|--------------|--------------|
| C25 | 0.053 (3) | 0.054 (3) | 0.049 (2)   | -0.001 (2)   | -0.003 (2)   | -0.007 (2)   |
| C26 | 0.050(2)  | 0.037 (2) | 0.0356 (19) | 0.0002 (17)  | -0.0006 (17) | 0.0036 (16)  |
| C27 | 0.060 (3) | 0.053 (2) | 0.0280 (18) | -0.007 (2)   | 0.0055 (18)  | -0.0048 (17) |
| C28 | 0.052 (2) | 0.049 (2) | 0.033 (2)   | -0.0117 (19) | 0.0037 (17)  | -0.0062 (17) |
| C29 | 0.047 (2) | 0.054 (2) | 0.043 (2)   | -0.0148 (19) | -0.0113 (18) | 0.0046 (19)  |
| C30 | 0.050(2)  | 0.062 (3) | 0.0252 (18) | -0.008 (2)   | -0.0133 (17) | 0.0066 (17)  |

Geometric parameters (Å, °)

| Cu1—N2               | 1.946 (3) | С1—Н1   | 0.9300    |
|----------------------|-----------|---------|-----------|
| Cu1—N12              | 1.955 (3) | C2—C3   | 1.376 (7) |
| Cu1—O1               | 1.966 (3) | С2—Н2   | 0.9300    |
| Cu1—N1               | 2.004 (4) | C3—C4   | 1.380 (6) |
| Cu1—N9               | 2.205 (4) | С3—Н3   | 0.9300    |
| Cu2—N6               | 1.940 (3) | C4—C5   | 1.377 (6) |
| Cu2—N11              | 1.941 (3) | C4—H4   | 0.9300    |
| Cu2—O2               | 1.977 (3) | C5—C6   | 1.479 (5) |
| Cu2—N5               | 2.016 (3) | C6—C7   | 1.488 (5) |
| Cu2—N14 <sup>i</sup> | 2.228 (4) | C7—C8   | 1.378 (6) |
| O1—C13               | 1.278 (4) | C7—C12  | 1.378 (6) |
| O2—C26               | 1.281 (4) | C8—C9   | 1.387 (7) |
| O1W—H1W1             | 0.8401    | C8—H8   | 0.9300    |
| O1W—H1W2             | 0.8401    | C9—C10  | 1.375 (8) |
| O2W—H2W1             | 0.8400    | С9—Н9   | 0.9300    |
| O2W—H2W2             | 0.8400    | C10—C11 | 1.359 (8) |
| N1—C1                | 1.333 (5) | C10—H10 | 0.9300    |
| N1—C5                | 1.346 (5) | C11—C12 | 1.371 (6) |
| N2—C6                | 1.292 (5) | C11—H11 | 0.9300    |
| N2—N3                | 1.358 (4) | C12—H12 | 0.9300    |
| N3—C13               | 1.349 (5) | C14—C15 | 1.364 (7) |
| N4—C13               | 1.334 (5) | C14—H14 | 0.9300    |
| N4—H41               | 0.8800    | C15—C16 | 1.377 (7) |
| N4—H42               | 0.8800    | C15—H15 | 0.9300    |
| N5—C14               | 1.331 (5) | C16—C17 | 1.383 (7) |
| N5—C18               | 1.356 (4) | C16—H16 | 0.9300    |
| N6—C19               | 1.284 (5) | C17—C18 | 1.365 (6) |
| N6—N7                | 1.358 (4) | С17—Н17 | 0.9300    |
| N7—C26               | 1.353 (5) | C18—C19 | 1.472 (5) |
| N8—C26               | 1.332 (5) | C19—C20 | 1.494 (5) |
| N8—H81               | 0.8800    | C20—C25 | 1.372 (6) |
| N8—H82               | 0.8800    | C20—C21 | 1.381 (6) |
| N9—C27               | 1.129 (5) | C21—C22 | 1.384 (6) |
| N10-C28              | 1.280 (5) | C21—H21 | 0.9300    |
| N10-C27              | 1.296 (6) | C22—C23 | 1.358 (7) |
| N11—C28              | 1.143 (5) | С22—Н22 | 0.9300    |
| N12—C29              | 1.127 (5) | C23—C24 | 1.381 (7) |
| N13—C29              | 1.300 (5) | C23—H23 | 0.9300    |

| N13—C30                  | 1.303 (6)   | C24—C25     | 1.372 (6) |
|--------------------------|-------------|-------------|-----------|
| N14-C30                  | 1.127(5)    | C24—H24     | 0.9300    |
| N14 $C1$ $C2$            | 2.228 (4)   | C25—H25     | 0.9300    |
| CI = C2                  | 1.372(7)    |             |           |
| N2—Cu1—N12               | 163.76 (14) | N2—C6—C7    | 125.0 (3) |
| N2—Cu1—O1                | 79.14 (12)  | C5—C6—C7    | 121.8 (3) |
| N12—Cu1—O1               | 97.91 (14)  | C8—C7—C12   | 118.6 (4) |
| N2—Cu1—N1                | 80.51 (13)  | C8—C7—C6    | 118.8 (4) |
| N12—Cu1—N1               | 99.07 (14)  | С12—С7—С6   | 122.4 (4) |
| O1—Cu1—N1                | 157.69 (13) | С7—С8—С9    | 120.3 (5) |
| N2—Cu1—N9                | 98.30 (14)  | С7—С8—Н8    | 119.9     |
| N12—Cu1—N9               | 97.91 (15)  | С9—С8—Н8    | 119.9     |
| O1—Cu1—N9                | 97.52 (15)  | С10—С9—С8   | 119.6 (5) |
| N1—Cu1—N9                | 94.37 (16)  | С10—С9—Н9   | 120.2     |
| N6—Cu2—N11               | 165.22 (14) | С8—С9—Н9    | 120.2     |
| N6—Cu2—O2                | 79.29 (12)  | C11—C10—C9  | 120.3 (4) |
| N11—Cu2—O2               | 96.58 (13)  | C11-C10-H10 | 119.8     |
| N6—Cu2—N5                | 80.58 (12)  | С9—С10—Н10  | 119.8     |
| N11—Cu2—N5               | 100.68 (13) | C10—C11—C12 | 120.0 (5) |
| O2—Cu2—N5                | 158.01 (11) | C10—C11—H11 | 120.0     |
| $N6$ — $Cu2$ — $N14^{i}$ | 96.54 (13)  | C12—C11—H11 | 120.0     |
| N11—Cu2—N14 <sup>i</sup> | 98.04 (14)  | C11—C12—C7  | 121.1 (4) |
| $O2$ — $Cu2$ — $N14^{i}$ | 96.66 (13)  | C11—C12—H12 | 119.5     |
| $N5-Cu2-N14^{i}$         | 94.34 (14)  | С7—С12—Н12  | 119.5     |
| C13—O1—Cu1               | 110.4 (2)   | O1—C13—N4   | 118.9 (4) |
| C26—O2—Cu2               | 110.4 (2)   | O1—C13—N3   | 125.2 (3) |
| H1W1—O1W—H1W2            | 108.7       | N4—C13—N3   | 115.9 (3) |
| H2W1—O2W—H2W2            | 107.9       | N5—C14—C15  | 122.6 (4) |
| C1—N1—C5                 | 119.4 (4)   | N5—C14—H14  | 118.7     |
| C1—N1—Cu1                | 127.6 (3)   | C15—C14—H14 | 118.7     |
| C5—N1—Cu1                | 112.9 (3)   | C14—C15—C16 | 118.6 (4) |
| C6—N2—N3                 | 124.0 (3)   | C14—C15—H15 | 120.7     |
| C6—N2—Cu1                | 117.9 (2)   | C16—C15—H15 | 120.7     |
| N3—N2—Cu1                | 117.5 (2)   | C15—C16—C17 | 119.5 (5) |
| C13—N3—N2                | 106.8 (3)   | C15—C16—H16 | 120.3     |
| C13—N4—H41               | 120.0       | C17—C16—H16 | 120.3     |
| C13—N4—H42               | 120.0       | C18—C17—C16 | 119.1 (4) |
| H41—N4—H42               | 120.0       | C18—C17—H17 | 120.5     |
| C14—N5—C18               | 119.1 (4)   | C16—C17—H17 | 120.5     |
| C14—N5—Cu2               | 128.3 (3)   | N5-C18-C17  | 121.2 (4) |
| C18—N5—Cu2               | 112.3 (2)   | N5-C18-C19  | 114.2 (3) |
| C19—N6—N7                | 124.2 (3)   | C17—C18—C19 | 124.5 (3) |
| C19—N6—Cu2               | 117.7 (2)   | N6—C19—C18  | 114.3 (3) |
| N7—N6—Cu2                | 117.7 (2)   | N6-C19-C20  | 123.7 (3) |
| C26—N7—N6                | 107.4 (3)   | C18—C19—C20 | 121.8 (3) |
| C26—N8—H81               | 120.0       | C25—C20—C21 | 119.7 (4) |
| C26—N8—H82               | 120.0       | C25—C20—C19 | 119.0 (3) |

| H81—N8—H82                   | 120.0      | C21—C20—C19                | 121.4 (3)         |
|------------------------------|------------|----------------------------|-------------------|
| C27—N9—Cu1                   | 168.1 (4)  | C20—C21—C22                | 119.0 (4)         |
| C28—N10—C27                  | 122.9 (4)  | C20—C21—H21                | 120.5             |
| C28—N11—Cu2                  | 166.7 (3)  | C22—C21—H21                | 120.5             |
| C29—N12—Cu1                  | 170.9 (4)  | C23—C22—C21                | 121.4 (5)         |
| C29—N13—C30                  | 122.2 (4)  | C23—C22—H22                | 119.3             |
| $C_{30}$ N14 $C_{12}^{ii}$   | 164.2 (3)  | C21—C22—H22                | 119.3             |
| N1-C1-C2                     | 1222(5)    | $C^{22}$ $C^{23}$ $C^{24}$ | 119.4 (4)         |
| N1-C1-H1                     | 118.9      | $C^{22} = C^{23} = H^{23}$ | 120.3             |
| $C^2$ — $C1$ — $H1$          | 118.9      | $C_{24}$ $C_{23}$ $H_{23}$ | 120.3             |
| $C_1 - C_2 - C_3$            | 118 5 (4)  | $C_{25} = C_{24} = C_{23}$ | 120.9<br>119.9(4) |
| C1 - C2 - H2                 | 120.7      | $C_{25} = C_{24} = C_{25}$ | 120.1             |
| $C_1 = C_2 = H_2$            | 120.7      | $C_{23} = C_{24} = H_{24}$ | 120.1             |
| $C_2 = C_2 = C_4$            | 120.7      | $C_{23} = C_{24} = 1124$   | 120.1             |
| $C_2 = C_3 = C_4$            | 119.7 (5)  | $C_{20} = C_{23} = C_{24}$ | 120.7 (4)         |
| $C_2 = C_3 = H_3$            | 120.1      | $C_{20} = C_{23} = H_{23}$ | 119.7             |
|                              | 120.1      | C24—C25—H25                | 119.7             |
| $C_{5}$                      | 118.8 (4)  | 02 - C26 - N8              | 119.4 (4)         |
| $C_{3}$ $C_{4}$ $H_{4}$      | 120.6      | 02-026-N/                  | 124.6 (3)         |
| C3—C4—H4                     | 120.6      | N8-C26-N/                  | 116.0 (3)         |
| NI-C5-C4                     | 121.2 (4)  | N9—C27—N10                 | 173.3 (5)         |
| NIC5C6                       | 114.9 (3)  | N11—C28—N10                | 172.7 (5)         |
| C4—C5—C6                     | 123.9 (4)  | N12—C29—N13                | 173.4 (5)         |
| N2—C6—C5                     | 112.9 (3)  | N14—C30—N13                | 174.2 (4)         |
|                              |            |                            |                   |
| N2—Cu1—O1—C13                | -7.3 (3)   | C3—C4—C5—N1                | -0.8 (7)          |
| N12—Cu1—O1—C13               | -171.1 (3) | C3—C4—C5—C6                | 179.6 (4)         |
| N1—Cu1—O1—C13                | -31.8 (5)  | N3—N2—C6—C5                | -178.4 (3)        |
| N9—Cu1—O1—C13                | 89.8 (3)   | Cu1—N2—C6—C5               | 10.5 (4)          |
| N6—Cu2—O2—C26                | -5.6 (3)   | N3—N2—C6—C7                | 7.6 (6)           |
| N11—Cu2—O2—C26               | -171.2 (3) | Cu1—N2—C6—C7               | -163.6 (3)        |
| N5—Cu2—O2—C26                | -29.6 (5)  | N1—C5—C6—N2                | -7.2 (5)          |
| N14 <sup>i</sup> —Cu2—O2—C26 | 89.9 (3)   | C4—C5—C6—N2                | 172.5 (4)         |
| N2—Cu1—N1—C1                 | -178.0 (4) | N1—C5—C6—C7                | 167.1 (3)         |
| N12—Cu1—N1—C1                | -14.5 (4)  | C4—C5—C6—C7                | -13.2 (6)         |
| O1—Cu1—N1—C1                 | -153.6 (4) | N2—C6—C7—C8                | 72.8 (5)          |
| N9—Cu1—N1—C1                 | 84.3 (4)   | C5—C6—C7—C8                | -100.8 (5)        |
| N2—Cu1—N1—C5                 | 3.5 (3)    | N2-C6-C7-C12               | -110.7 (5)        |
| N12—Cu1—N1—C5                | 167.1 (3)  | C5—C6—C7—C12               | 75.7 (5)          |
| 01—Cu1—N1—C5                 | 28.0 (5)   | C12—C7—C8—C9               | 0.6 (7)           |
| N9—Cu1—N1—C5                 | -94.2 (3)  | C6—C7—C8—C9                | 177.3 (4)         |
| N12—Cu1—N2—C6                | -98.0 (5)  | C7—C8—C9—C10               | 0.3 (7)           |
| O1—Cu1—N2—C6                 | -178.9 (3) | C8—C9—C10—C11              | -0.9 (9)          |
| N1—Cu1—N2—C6                 | -8.1 (3)   | C9-C10-C11-C12             | 0.6 (9)           |
| N9—Cu1—N2—C6                 | 84.9 (3)   | C10-C11-C12-C7             | 0.4 (9)           |
| N12—Cu1—N2—N3                | 90.3 (6)   | C8—C7—C12—C11              | -1.0(8)           |
| O1—Cu1—N2—N3                 | 9.4 (3)    | C6-C7-C12-C11              | -177.5 (5)        |
| N1— $Cu1$ — $N2$ — $N3$      | -179.8(3)  | Cu1-O1-C13-N4              | -175.2(3)         |
| N9—Cu1—N2—N3                 | -86.8 (3)  | Cu1—O1—C13—N3              | 5.1 (5)           |
|                              |            |                            | /                 |

| C6—N2—N3—C13                  | 180.0 (3)   | N2—N3—C13—O1    | 2.2 (5)    |
|-------------------------------|-------------|-----------------|------------|
| Cu1—N2—N3—C13                 | -8.9 (4)    | N2—N3—C13—N4    | -177.5 (4) |
| N6—Cu2—N5—C14                 | -179.3 (4)  | C18—N5—C14—C15  | -0.4 (7)   |
| N11—Cu2—N5—C14                | -14.2 (4)   | Cu2—N5—C14—C15  | -173.8 (4) |
| O2—Cu2—N5—C14                 | -155.3 (3)  | N5-C14-C15-C16  | 0.4 (9)    |
| N14 <sup>i</sup> —Cu2—N5—C14  | 84.8 (4)    | C14—C15—C16—C17 | -0.2 (10)  |
| N6—Cu2—N5—C18                 | 6.9 (3)     | C15—C16—C17—C18 | 0.0 (9)    |
| N11—Cu2—N5—C18                | 172.0 (3)   | C14—N5—C18—C17  | 0.2 (6)    |
| O2—Cu2—N5—C18                 | 30.9 (5)    | Cu2—N5—C18—C17  | 174.7 (4)  |
| N14 <sup>i</sup> —Cu2—N5—C18  | -89.0 (3)   | C14—N5—C18—C19  | -179.1 (4) |
| N11—Cu2—N6—C19                | -104.8 (6)  | Cu2—N5—C18—C19  | -4.7 (4)   |
| O2—Cu2—N6—C19                 | -179.8 (3)  | C16—C17—C18—N5  | 0.0 (8)    |
| N5—Cu2—N6—C19                 | -8.7 (3)    | C16—C17—C18—C19 | 179.2 (5)  |
| N14 <sup>i</sup> —Cu2—N6—C19  | 84.7 (3)    | N7—N6—C19—C18   | -178.9 (3) |
| N11—Cu2—N6—N7                 | 82.0 (6)    | Cu2—N6—C19—C18  | 8.4 (4)    |
| O2—Cu2—N6—N7                  | 7.0 (2)     | N7—N6—C19—C20   | 5.5 (6)    |
| N5—Cu2—N6—N7                  | 178.1 (3)   | Cu2—N6—C19—C20  | -167.3 (3) |
| N14 <sup>i</sup> —Cu2—N6—N7   | -88.5 (3)   | N5-C18-C19-N6   | -2.1 (5)   |
| C19—N6—N7—C26                 | -179.3 (3)  | C17-C18-C19-N6  | 178.6 (4)  |
| Cu2—N6—N7—C26                 | -6.6 (4)    | N5-C18-C19-C20  | 173.7 (3)  |
| N2—Cu1—N9—C27                 | -157 (2)    | C17—C18—C19—C20 | -5.7 (6)   |
| N12—Cu1—N9—C27                | 24 (2)      | N6-C19-C20-C25  | 74.0 (5)   |
| O1—Cu1—N9—C27                 | 123 (2)     | C18—C19—C20—C25 | -101.3 (4) |
| N1—Cu1—N9—C27                 | -76 (2)     | N6-C19-C20-C21  | -105.0 (5) |
| N6—Cu2—N11—C28                | -52.0 (19)  | C18—C19—C20—C21 | 79.7 (5)   |
| O2—Cu2—N11—C28                | 20.8 (16)   | C25—C20—C21—C22 | -0.3 (7)   |
| N5—Cu2—N11—C28                | -145.5 (16) | C19—C20—C21—C22 | 178.7 (4)  |
| N14 <sup>i</sup> —Cu2—N11—C28 | 118.5 (16)  | C20—C21—C22—C23 | -0.5 (8)   |
| C5—N1—C1—C2                   | -1.6 (8)    | C21—C22—C23—C24 | 1.8 (8)    |
| Cu1—N1—C1—C2                  | -179.9 (4)  | C22—C23—C24—C25 | -2.3 (7)   |
| N1—C1—C2—C3                   | -1.0 (9)    | C21—C20—C25—C24 | -0.3 (6)   |
| C1—C2—C3—C4                   | 2.7 (9)     | C19—C20—C25—C24 | -179.3 (4) |
| C2—C3—C4—C5                   | -1.8 (8)    | C23—C24—C25—C20 | 1.6 (7)    |
| C1—N1—C5—C4                   | 2.5 (6)     | Cu2—O2—C26—N8   | -175.3 (3) |
| Cu1—N1—C5—C4                  | -179.0 (3)  | Cu2—O2—C26—N7   | 4.0 (5)    |
| C1—N1—C5—C6                   | -177.8 (4)  | N6—N7—C26—O2    | 1.5 (5)    |
| Cu1—N1—C5—C6                  | 0.7 (4)     | N6—N7—C26—N8    | -179.2 (3) |

Symmetry codes: (i) -*x*+3/2, *y*-1/2, *z*; (ii) -*x*+3/2, *y*+1/2, *z*.

## Hydrogen-bond geometry (Å, °)

| D—H···A                    | D—H  | Н…А  | D····A     | <i>D</i> —H··· <i>A</i> |
|----------------------------|------|------|------------|-------------------------|
| N4—H42···N7 <sup>iii</sup> | 0.88 | 2.13 | 3.006 (5)  | 176                     |
| N8—H82…N3 <sup>iv</sup>    | 0.88 | 2.15 | 3.025 (5)  | 179                     |
| O1w—H1w1···O1              | 0.84 | 2.05 | 2.88 (2)   | 169                     |
| O2w—H2w1···O2              | 0.84 | 2.34 | 3.151 (19) | 161                     |

Symmetry codes: (iii) x, -y+1/2, z+1/2; (iv) x, -y+1/2, z-1/2.