metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Acetyldicarbonyl(η^5 -cyclopentadienyl)(methyldiphenylphosphane)molybdenum(II)

Matthew T. Whited,^a* Joseph W. Boerma,^a Michael J. McClellan,^a Christian E. Padilla^a and Daron E. Janzen^b

^aDepartment of Chemistry, Carleton College, 1 N. College Street, Northfield, MN 55057, USA, and ^bDepartment of Chemistry, St Catherine University, 2004 Randolph Avenue, St. Paul, MN 55105, USA

Correspondence e-mail: mwhited@carleton.edu

Received 24 July 2012; accepted 1 August 2012

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.004 Å; R factor = 0.032; wR factor = 0.072; data-to-parameter ratio = 19.5.

The title compound, $[Mo(C_5H_5)(C_2H_3O)(C_{13}H_{13}P)(CO)_2]$, was prepared by reaction of $[Mo(CH_3)(C_5H_5)(CO)_3]$ with methyldiphenylphosphane. The Mo^{II} atom exhibits a fourlegged piano-stool coordination geometry with the acetyl and phosphane ligands *trans* to each other. There are several intermolecular $C-H\cdots O$ hydrogen-bonding interactions involving carbonyl and acetyl O atoms as acceptors. A close nearly parallel $\pi-\pi$ interaction between the cyclopentadienyl plane and the phenyl ring of the phosphane ligand is present, with an angle of 6.4 (1)° between the two least-squares planes. The centroid-to-centroid distance between these groups is 3.772 (3) Å, and the closest distance between two atoms of these groups is 3.449 (4) Å. Since each Mo complex is engaged in two of these interactions, the complexes form an infinite π stack coincident with the *a* axis.

Related literature

The synthesis of the title compound has been reported previously and its reactivity studied, though no structural information was provided (Adams *et al.*, 1997; Barnett *et al.*, 1972). A related structure has been reported for the triphenylphosphane-substituted version of the title compound (Churchill & Fennessey, 1968). For synthetic details, see: Gladysz *et al.* (1979).

Experimental

Crystal data

 $\begin{array}{l} [{\rm Mo}({\rm C}_{3}{\rm H}_{5})({\rm C}_{2}{\rm H}_{3}{\rm O})({\rm C}_{13}{\rm H}_{13}{\rm P}) - \\ ({\rm CO})_{2}] \\ M_{r} = 460.32 \\ {\rm Orthorhombic}, Pbca \\ a = 11.482 \ (7) \ {\rm \AA} \\ b = 17.648 \ (10) \ {\rm \AA} \\ c = 20.771 \ (12) \ {\rm \AA} \end{array}$

Data collection

Rigaku XtaLAB mini diffractometer Absorption correction: multi-scan (*REQAB*; Rigaku, 1998) $T_{\rm min} = 0.687, T_{\rm max} = 0.842$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	246 parameters
$wR(F^2) = 0.072$	H-atom parameters constrained
S = 1.13	$\Delta \rho_{\rm max} = 0.63 \text{ e } \text{\AA}^{-3}$
4809 reflections	$\Delta \rho_{\rm min} = -0.67 \ {\rm e} \ {\rm \AA}^{-3}$

 $V = 4209 (4) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.44 \times 0.24 \times 0.24$ mm

40944 measured reflections

4809 independent reflections 4311 reflections with $F^2 > 2\sigma(F^2)$

 $\mu = 0.72 \text{ mm}^-$

T = 193 K

 $R_{\rm int} = 0.037$

Z = 8

Table 1 Selected bond length

elected	bond	lengths	(A).	

Mo1-P1	2.4619 (15)	Mo1-C6	2.252 (3)
Mo1-C1	2.327 (3)	Mo1-C8	1.974 (3)
Mo1-C2	2.352 (3)	Mo1-C9	1.966 (3)
Mo1-C3	2.399 (3)	O1-C6	1.216 (3)
Mo1-C4	2.375 (3)	O2-C8	1.153 (4)
Mo1-C5	2.348 (3)	O3-C9	1.160 (3)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C10-H10A···O1 ⁱ	0.98	2.41	3.346 (3)	159
C16−H16···O2 ⁱⁱ	0.95	2.42	3.256 (3)	147
$C3-H3\cdots O1^{iii}$	1.00	2.45	3.390 (4)	156

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (ii) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, -z; (iii) -x, -y, -z.

Data collection: *CrystalClear* (Rigaku Americas and Rigaku, 2011); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku Americas and Rigaku, 2010); software used to prepare material for publication: *CrystalStructure*.

The authors gratefully acknowledge St Catherine University and NSF–MRI Award No. 1125975 'MRI Consortium: Acquisition of a Single-Crystal X-ray Diffractometer for a Regional PUI Molecular Structure Facility'. Additional funding was provided by the Department of Chemistry at Carleton College.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2666).

References

- Adams, H., Bailey, N. A., Blenkiron, P. & Morris, M. J. (1997). J. Chem. Soc. Dalton Trans. pp. 3589–3598.
- Barnett, K. W., Pollman, T. G. & Solomon, T. W. (1972). J. Organomet. Chem. 36, C23–C26.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Churchill, M. R. & Fennessey, J. P. (1968). Inorg. Chem. 7, 953–959.
- Gladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). *Inorg. Chem.* 18, 553–558.
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku Americas and Rigaku (2010). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Rigaku Americas and Rigaku (2011). *CrystalClear*. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

Acta Cryst. (2012). E68, m1158–m1159

supporting information

Acta Cryst. (2012). E68, m1158-m1159 [doi:10.1107/S1600536812034307]

trans-Acetyldicarbonyl(η^5 -cyclopentadienyl)(methyldiphenyl-phosphane)molybdenum(II)

Matthew T. Whited, Joseph W. Boerma, Michael J. McClellan, Christian E. Padilla and Daron E. Janzen

S1. Comment

Synthesis of the title complex, $[Mo(C_5H_5)(C_2H_3O)(CO)_2(C_{13}H_{13}P)]$, (I), has been previously reported and its reactivity studied, though no structural information was provided (Adams *et al.*, 1997; Barnett *et al.*, 1972).

The molecular structure of (Fig. 1), consists of a Mo(II) atom coordinated to a cyclopentadienyl ring in an η^5 fashion, two CO ligands, one PMePh₂ ligand, and one acetyl ligand. The orientation of the CO ligands can be described as *trans*. A view of the *trans* CO ligand orientation is shown in Fig. 2. The Mo—Cp centroid distance is 2.02959 (17) Å. The methyl group of the acetyl group is oriented in a *syn* fashion relative to the orientation of the methyl group of the PMePh₂ ligand. A unit cell packing diagram is shown in Fig. 3.

There are several particularly short intermolecular distances involving H atoms. One short contact (2.421 Å) is present between O2 of a carbonyl ligand and H16 of a phenyl group (symmetry code: x - 1/2, -y + 1/2, -z). Another short contact (2.414 Å) involves O1 of the acetyl group and H10A of the methyl group of a PMePh₂ ligand (symmetry code: -x + 1/2, y+ 1/2,z). A third short contact (2.453 Å) is present between O1 of the acetyl group and H3 of a Cp ring (symmetry code: -x, -y, -z).

A close nearly parallel π — π intermolecular interaction between the Cp plane and the phenyl ring of a PMePh₂ ligand is present. The angle between the least-squares planes of these close π systems is 6.4 (1)° (Cp ring plane composed of atoms C1–C5; phenyl ring plane composed of atoms C17–C22). While the Cp centroid–phenyl ring centroid distance is 3.772 (3) Å, the closest distance between these groups is 3.449 (4) Å between C20 and C5 (symmetry code: 1/2 + x, 1/2 y, -z). Each Mo complex is engaged in two of these interactions, forming an infinite stack that is coincident with the *a*axis. Fig. 4 shows the π overlap of neighboring molecules. Fig. 5 shows the infinite π -stacking interaction.

A related structure has been reported for the triphenylphosphane-substituted version of (I) (Churchill & Fennessey, 1968).

S2. Experimental

CpMo(CO)₃(CH₃). This compound was prepared by a modification of the method used by Gladysz *et al.* (1979) for the synthesis of a related iron compound. In an inert atmosphere glove box, $[CpMo(CO)_3]_2$ (181 mg, 0.370 mmol) was dissolved in THF (10 ml). LiEt₃BH (0.87 ml, 1*M* in THF) was added dropwise by syringe with stirring, causing the evolution of H₂ and a color change from purple to yellow. The solution was stirred for 30 min, then CH₃I (75 μ l, 1.2 mmol) was slowly added to the solution by micropipette, and the resulting solution was stirred for 2 h, causing a green–yellow precipitate to form. The solvent was removed *in vacuo* and the residues were extracted into pentane (2 × 15 ml) and filtered through a 2 cm plug of Al₂O₃ on a 30 ml fritted funnel, leaving a clear pale-yellow liquid. The Al₂O₃ was

washed with about 10 ml of pentane, and the solvent was removed *in vacuo* to afford a solid yellow product (87 mg, 45%). IR and NMR (¹H and ¹³C) spectral analyses confirmed the formation of the desired product.

CpMo(CO)₂(PMePh₂)(COCH₃), (I). In an inert-atmosphere glove box, CpMo(CO)₃(CH₃) (87.2 mg, 0.335 mmol) was dissolved in 10 ml acetonitrile. PMePh₂ (93 μ l, 0.50 mmol) was added with stirring, and the resulting solution was stirred for 48 h. Solvent was removed *in vacuo*, leaving an orange oil, which was dissolved in diethyl ether and dried *in vacuo* to a yellow powder. The powder was triturated with pentane (5 ml) and isolated by filtration to afford the desired product in pure form as a yellow powder (79 mg, 51%), as confirmed by IR and NMR (¹H, ¹³C, and ³¹P) spectral analyses. Crystalline material was obtained as yellow prisms by chilling a concentrated solution of (I) in diethyl ether.

S3. Refinement

H atoms were treated in calculated positions and refined in the riding model approximation with distances of C—H = 0.95, 1.00 and 0.98 Å for the phenyl, cyclopentadienyl and methyl groups, respectively, and with $U_{iso}(H) = kU_{eq}(C)$, k = 1.2 for phenyl and cyclopentadienyl groups and 1.5 for methyl groups. Methyl group H atoms were allowed to rotate in order to find the best rotameric conformation. The maximum and minimum electron densities in the final difference Fourier map are located 0.87 and 0.75 Å, respectively, from atom Mo1.

Figure 1

Numbered thermal ellipsoid plot (50% probability ellipsoids for non-H atoms) of the structure of (I).

Figure 2

View of (I) perpendicular to Cp least-squares plane showing *trans* CO orientation.

Figure 4

View of two complexes of (I) showing the π overlap (black atoms) of the phenyl ring of one molecule and the Cp ring of another molecule (symm. codes x, y, z for Cp, -1/2 + x, 1/2 - y, -z for Ph ring). H atoms omitted for clarity.

Figure 5

View of infinite intermolecular π - π stacking in (I) between Cp and Ph groups of neighboring complexes along the *a*-axis.

trans-Acetyldicarbonyl(η^5 - cyclopentadienyl)(methyldiphenylphosphane)molybdenum(II)

Crystal data	
$[Mo(C_{5}H_{5})(C_{2}H_{3}O)(C_{13}H_{13}P)(CO)_{2}]$ $M_{r} = 460.32$ Orthorhombic, <i>Pbca</i> Hall symbol: -P 2ac 2ab a = 11.482 (7) Å b = 17.648 (10) Å c = 20.771 (12) Å V = 4209 (4) Å ³ Z = 8	F(000) = 1872.00 $D_x = 1.453 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 1664 reflections $\theta = 5.8-27.4^{\circ}$ $\mu = 0.72 \text{ mm}^{-1}$ T = 193 K Prism, yellow $0.44 \times 0.24 \times 0.24 \text{ mm}$
Data collection	
Rigaku XtaLAB mini diffractometer Detector resolution: 6.849 pixels mm ⁻¹ ω scans	Absorption correction: multi-scan (REQAB; Rigaku, 1998) $T_{min} = 0.687, T_{max} = 0.842$ 40944 measured reflections 4809 independent reflections

4311 reflections with $F^2 > 2\sigma(F^2)$	$h = -14 \rightarrow 14$
$R_{\rm int} = 0.037$	$k = -22 \rightarrow 22$
$\theta_{\rm max} = 27.5^{\circ}$	$l = -26 \rightarrow 26$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.032$	map
$wR(F^2) = 0.072$	Hydrogen site location: inferred from
<i>S</i> = 1.13	neighbouring sites
4809 reflections	H-atom parameters constrained
246 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0289P)^2 + 2.9563P]$
0 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.63 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.67 \text{ e} \text{ Å}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Mo1	0.060442 (15)	0.126963 (10)	0.104324 (8)	0.02232 (7)
P1	0.10879 (5)	0.26230 (3)	0.09372 (2)	0.02307 (11)
01	0.13079 (18)	-0.03933 (9)	0.11872 (8)	0.0440 (5)
O2	0.26219 (18)	0.11759 (12)	0.00363 (10)	0.0571 (6)
O3	0.16580 (19)	0.16063 (12)	0.23997 (8)	0.0519 (5)
C1	-0.1051 (3)	0.06501 (17)	0.14181 (14)	0.0472 (7)
C2	-0.0856 (3)	0.03902 (16)	0.07757 (16)	0.0483 (7)
C3	-0.1018 (3)	0.09998 (17)	0.03529 (13)	0.0435 (6)
C4	-0.12974 (19)	0.16438 (16)	0.07247 (13)	0.0401 (6)
C5	-0.1332 (2)	0.14285 (16)	0.13805 (13)	0.0433 (6)
C6	0.1703 (2)	0.02414 (13)	0.12514 (10)	0.0318 (5)
C7	0.2962 (3)	0.02999 (15)	0.14855 (15)	0.0490 (7)
C8	0.1896 (2)	0.12249 (13)	0.04171 (11)	0.0325 (5)
C9	0.1317 (2)	0.14872 (13)	0.18841 (10)	0.0308 (5)
C10	0.2599 (2)	0.28503 (13)	0.11366 (11)	0.0335 (5)
C11	0.0223 (2)	0.32333 (12)	0.14697 (10)	0.0287 (5)
C12	0.0544 (3)	0.33488 (14)	0.21134 (12)	0.0393 (6)
C13	-0.0172 (4)	0.37648 (16)	0.25232 (13)	0.0545 (8)
C14	-0.1206 (3)	0.40696 (19)	0.22946 (14)	0.0626 (9)
C15	-0.1530 (3)	0.39641 (18)	0.16607 (15)	0.0573 (8)
C16	-0.0814 (3)	0.35472 (15)	0.12501 (12)	0.0403 (6)
C17	0.09086 (18)	0.30855 (13)	0.01478 (10)	0.0278 (5)
C18	0.06705 (19)	0.26664 (15)	-0.04063 (11)	0.0340 (5)
C19	0.0595 (3)	0.30314 (18)	-0.10050 (11)	0.0430 (7)
C20	0.0746 (3)	0.38056 (17)	-0.10492 (12)	0.0456 (7)
C21	0.0974 (3)	0.42270 (16)	-0.05024 (13)	0.0442 (7)
C22	0.1062 (3)	0.38683 (14)	0.00936 (12)	0.0379 (6)

H1	-0.1100	0.0326	0.1812	0.0566*
H2	-0.0722	-0.0148	0.0646	0.0580*
H3	-0.0998	0.0974	-0.0128	0.0522*
H4	-0.1517	0.2152	0.0551	0.0481*
Н5	-0.1600	0.1754	0.1746	0.0519*
H7A	0.3302	-0.0208	0.1512	0.0588*
H7B	0.2977	0.0537	0.1912	0.0588*
H7C	0.3413	0.0608	0.1183	0.0588*
H10A	0.2717	0.3399	0.1105	0.0402*
H10B	0.3121	0.2591	0.0835	0.0402*
H10C	0.2768	0.2682	0.1576	0.0402*
H12	0.1253	0.3143	0.2271	0.0471*
H13	0.0047	0.3840	0.2960	0.0654*
H14	-0.1694	0.4352	0.2576	0.0751*
H15	-0.2238	0.4174	0.1505	0.0688*
H16	-0.1038	0.3477	0.0814	0.0483*
H18	0.0560	0.2134	-0.0378	0.0408*
H19	0.0439	0.2744	-0.1382	0.0516*
H20	0.0693	0.4049	-0.1456	0.0547*
H21	0.1071	0.4760	-0.0533	0.0530*
H22	0.1229	0.4159	0.0467	0.0455*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.02136 (10)	0.02484 (10)	0.02077 (10)	-0.00183 (6)	0.00309 (6)	-0.00097 (7)
P1	0.0228 (3)	0.0254 (3)	0.0211 (3)	0.0007 (2)	-0.00052 (19)	0.0007 (2)
O1	0.0625 (13)	0.0279 (9)	0.0418 (10)	0.0008 (8)	-0.0040 (9)	0.0023 (8)
O2	0.0538 (13)	0.0667 (14)	0.0508 (12)	0.0067 (10)	0.0315 (10)	0.0057 (10)
O3	0.0704 (14)	0.0585 (12)	0.0267 (9)	0.0002 (10)	-0.0137 (9)	0.0010 (9)
C1	0.0326 (14)	0.0555 (17)	0.0535 (16)	-0.0186 (12)	0.0053 (12)	0.0097 (13)
C2	0.0282 (13)	0.0434 (15)	0.073 (2)	-0.0121 (11)	-0.0024 (13)	-0.0167 (14)
C3	0.0286 (13)	0.0616 (17)	0.0403 (14)	-0.0073 (12)	-0.0052 (11)	-0.0111 (13)
C4	0.0175 (11)	0.0498 (15)	0.0529 (15)	-0.0005 (10)	-0.0043 (10)	-0.0022 (12)
C5	0.0222 (12)	0.0583 (17)	0.0494 (15)	-0.0056 (11)	0.0118 (11)	-0.0113 (13)
C6	0.0408 (13)	0.0289 (11)	0.0257 (11)	0.0031 (10)	0.0073 (9)	0.0023 (9)
C7	0.0369 (15)	0.0408 (14)	0.0693 (19)	0.0089 (11)	-0.0017 (13)	0.0096 (14)
C8	0.0320 (12)	0.0313 (12)	0.0342 (12)	0.0011 (9)	0.0052 (10)	0.0034 (10)
C9	0.0339 (12)	0.0301 (11)	0.0284 (11)	0.0012 (9)	0.0015 (10)	0.0026 (9)
C10	0.0264 (12)	0.0325 (12)	0.0415 (13)	-0.0055 (9)	-0.0056 (10)	0.0041 (10)
C11	0.0340 (12)	0.0265 (11)	0.0257 (11)	0.0019 (9)	0.0016 (9)	-0.0007 (9)
C12	0.0521 (16)	0.0354 (13)	0.0303 (12)	0.0054 (11)	-0.0040 (11)	-0.0045 (10)
C13	0.080 (3)	0.0530 (17)	0.0304 (13)	0.0117 (16)	0.0023 (14)	-0.0119 (12)
C14	0.077 (3)	0.064 (2)	0.0466 (17)	0.0237 (18)	0.0154 (16)	-0.0158 (15)
C15	0.0537 (18)	0.068 (2)	0.0500 (17)	0.0300 (15)	0.0059 (14)	-0.0058 (15)
C16	0.0398 (14)	0.0490 (15)	0.0321 (13)	0.0147 (11)	0.0003 (10)	-0.0046 (11)
C17	0.0244 (11)	0.0352 (12)	0.0238 (10)	0.0036 (9)	0.0034 (8)	0.0051 (9)
C18	0.0307 (12)	0.0444 (14)	0.0270 (11)	-0.0010 (10)	-0.0014 (9)	0.0036 (10)

supporting information

C19	0.0343 (13)	0.0688 (19)	0.0259 (12)	-0.0019 (12)	-0.0027 (10)	0.0049 (12)
C20	0.0321 (14)	0.0682 (19)	0.0364 (14)	0.0097 (12)	0.0043 (10)	0.0256 (13)
C21	0.0418 (15)	0.0444 (15)	0.0462 (15)	0.0108 (12)	0.0094 (12)	0.0185 (12)
C22	0.0455 (15)	0.0342 (13)	0.0340 (13)	0.0049 (11)	0.0047 (11)	0.0051 (10)

Geometric parameters (Å, °)

Mo1—P1	2.4619 (15)	C17—C18	1.395 (4)
Mol—Cl	2.327 (3)	C17—C22	1.397 (4)
Mo1—C2	2.352 (3)	C18—C19	1.403 (4)
Mo1—C3	2.399 (3)	C19—C20	1.380 (5)
Mol—C4	2.375 (3)	C20—C21	1.383 (4)
Mo1—C5	2.348 (3)	C21—C22	1.394 (4)
Mo1—C6	2.252 (3)	C1—H1	1.000
Mol—C8	1.974 (3)	С2—Н2	1.000
Mo1—C9	1.966 (3)	С3—Н3	1.000
P1—C10	1.828 (3)	C4—H4	1.000
P1—C11	1.836 (3)	С5—Н5	1.000
P1—C17	1.843 (3)	С7—Н7А	0.980
O1—C6	1.216 (3)	С7—Н7В	0.980
O2—C8	1.153 (4)	С7—Н7С	0.980
O3—C9	1.160 (3)	C10—H10A	0.980
C1—C2	1.429 (5)	C10—H10B	0.980
C1—C5	1.413 (5)	C10—H10C	0.980
C2—C3	1.401 (5)	C12—H12	0.950
C3—C4	1.411 (4)	C13—H13	0.950
C4—C5	1.415 (4)	C14—H14	0.950
C6—C7	1.529 (4)	C15—H15	0.950
C11—C12	1.402 (4)	C16—H16	0.950
C11—C16	1.390 (4)	C18—H18	0.950
C12—C13	1.393 (4)	C19—H19	0.950
C13—C14	1.387 (5)	C20—H20	0.950
C14—C15	1.381 (5)	C21—H21	0.950
C15—C16	1.395 (4)	C22—H22	0.950
P1…O3	3.588 (3)	C2···H21 ^{vii}	3.5742
01…C1	3.310 (4)	C3····H2 ⁱ	3.2486
01···C2	2.969 (4)	C3····H10A ^{vii}	3.5224
O1…C8	3.342 (4)	C4····H10B ^{vii}	3.5725
O2…C6	3.194 (4)	C5····H20 ^{vii}	3.5218
O2…C7	3.406 (4)	C6···H3 ⁱ	3.2715
O2…C18	3.576 (4)	C6…H10A ⁱⁱ	3.3327
O3…C6	3.390 (4)	C6…H13 ⁱⁱⁱ	3.5838
O3…C7	3.341 (4)	C6···H14 ⁱⁱⁱ	2.8981
O3…C10	3.588 (4)	C6···H22 ⁱⁱ	3.4551
O3…C12	3.383 (4)	C7…H10A ⁱⁱ	3.5336
C4…C16	3.575 (5)	C7···H14 ⁱⁱⁱ	2.9531
C7…C8	3.015 (4)	C7···H20 ^{iv}	3.3399

C7…C9	2.940 (4)	C7…H22 ⁱⁱ	3.0641
C8…C10	3.334 (4)	C8····H2 ⁱ	3.2094
C8…C17	3.518 (4)	C8…H16 ^{iv}	3.5279
C8…C18	3.373 (4)	C10H3 ^{iv}	3.3599
C9…C10	3.220 (4)	C10…H19 ^{iv}	3.4630
C9…C11	3.437 (4)	C11…H7A ^{ix}	3.2309
C9…C12	3.436 (4)	C12···H7A ^{ix}	3.1301
C10····C12	3.234 (4)	C13…H1*	3.4102
C10···C22	3.322 (4)	C13···H7A ^{ix}	3.5078
C11···C14	2.794 (4)	C13···H10C ^{viii}	3.5690
C11···C22	3.218 (4)	C13···H19 ^{vi}	3.5713
C12···C15	2,782 (5)	C14····H10C ^{viii}	3 5888
C13···C16	2.762(3) 2.772(4)	$C14\cdots H12^{viii}$	3 4638
C16···C17	3 133 (4)	C15H21 ^{xiii}	3 2914
$C16\cdots C22$	3 276 (4)	C16H21 ^{xiii}	3 3506
C17C20	2.798(4)	$C17 \cdots H4^{iv}$	3 3192
C18C21	2.798 (4)	$C18 \cdots H4^{iv}$	3 2589
C10 - C21	2.763(3) 2.771(4)	$C18 \cdots H10 B^{vii}$	3 0935
0103^{i}	2.771(4) 3 300 (4)		3 4631
$O1 \cdots C10^{ii}$	3.390(4)	$C10 \dots H5^{iv}$	3,5002
$O1 \cdots C13^{\text{iii}}$	3.340(4)		3.3902
$O1 \cdots C14^{iii}$	3.329(4)	$C10H10P^{vii}$	3.4692
$O_{1} = C_{14}$	3.235(4)	C20H5iv	2 5154
02	3.230(4)		5.5154 2.9945
O_{2} C_{1}	3.441(4)	C_{20} $H_{7}C_{10}$	2.0043
	5.569 (4) 2.465 (4)	$C22 \dots H2iy$	2 2 2 7 5 2
$C_2 = C_1^{11}$	3.403 (4)		5.5675
	3.390 (4) 2.401 (4)	C_{22} H_{7} A_{1x}	3.3/19
C3C21 ^{**}	3.491(4)		3.4448
C4 C20 ^{vii}	3.480 (4)		3.3620
	3.551 (4)		3.4102
	3.520 (4)		2.8790
	3.591 (4)		2.9263
	3.441 (4)		3.4470
	3.449 (4)		2.8593
	3.346 (4)	$H2\cdots O2^{1}$	3.1709
	3.329 (4)	$H2\cdots C2^{1}$	3.4907
C14···O1 ^x	3.295 (4)	$H2\cdots C3^{1}$	3.2486
C16O2 ^{vn}	3.256 (4)	$H2\cdots C8^{i}$	3.2094
C19O3 ^{x1}	3.589 (4)	$H2\cdots H2^{1}$	3.1975
C20···O3 ^{x1}	3.465 (4)	H2…H3 ¹	2.6799
C20····C4 ^{iv}	3.551 (4)	H2…H13 ⁱⁱⁱ	3.4899
C20····C5 ^{iv}	3.449 (4)	H2···H15 ^{xii}	3.1778
C21···C3 ^{iv}	3.491 (4)	H2···H18 ⁱ	3.5528
C21····C4 ^{iv}	3.520 (4)	H3···O1 ⁱ	2.4532
C22····C3 ^{iv}	3.486 (4)	H3···C2 ⁱ	3.4843
C22····C4 ^{iv}	3.591 (4)	H3···C6 ⁱ	3.2715
Mo1…H7B	3.5141	H3····C10 ^{vii}	3.3599
Mo1…H7C	3.4422	H3…C22 ^{vii}	3.3875

Mo1…H18	3.3238	H3…H2 ⁱ	2.6799
P1…H4	3.2066	H3····H10A ^{vii}	2.7424
P1…H12	2.9240	H3····H10B ^{vii}	3.0966
P1…H16	2.8797	H3····H22 ^{vii}	3.2696
P1…H18	2.9289	H4…O2 ^{vii}	3.3418
P1…H22	2.8864	H4····C17 ^{vii}	3.3192
01…H1	3.3073	H4…C18 ^{vii}	3.2589
01…H2	2.6237	H4····C19 ^{vii}	3.4631
O1···H7A	2.4098	H4····C22 ^{vii}	3.5719
O1···H7B	2.9389	H4···H10B ^{vii}	2.9426
O1···H7C	2.9947	H5…O3 ^{viiii}	2.6865
O2···H7C	2.7383	H5…C19 ^{vii}	3.5902
O2…H10B	3.0530	H5····C20 ^{vii}	3.5154
O2…H18	3.0344	H5…H7B ^{viii}	3.5515
03…Н7В	2.6231	H5…H19 ^{vii}	3.5945
O3…H10C	2.8558	H5…H20 ^{vii}	3.4692
O3…H12	2.7637	H7A…C11 ⁱⁱ	3.2309
C1H3	3.2623	H7A…C12 ⁱⁱ	3.1301
C1…H4	3.2499	H7A…C13 ⁱⁱ	3.5078
C2…H4	3.2350	H7A…C22 ⁱⁱ	3,4448
C2…H5	3.2528	$H7A\cdots H10A^{ii}$	2.8504
C3…H1	3.2570	H7A…H12 ⁱⁱ	3.3486
С3…Н5	3.2543	H7A…H14 ⁱⁱⁱ	2.7577
C3…H18	3.0975	H7A…H20 ^{iv}	3.4250
C4…H1	3.2500	H7A…H22 ⁱⁱ	2.4989
C4…H2	3.2352	H7B…H1 ^v	2.8790
C4…H16	3.2540	H7B···H5 ^v	3.5515
C4…H18	3.2472	H7B…H14 ⁱⁱⁱ	2.7710
C5…H2	3.2502	H7B···H20 ^{iv}	3.3394
С5…Н3	3.2568	H7C····C19 ^{iv}	3.4892
С6…Н1	3 4260	H7C···C20 ^{iv}	2.8845
С6…Н2	3 1320	H7C···C21 ^{iv}	3 2752
C8…H3	3 5380	H7C···H20 ^{iv}	2.7456
C8…H7B	3 5574	H7C···H21 ^{iv}	3 3995
C8…H7C	2 5979	H7C…H22 ⁱⁱ	2 9857
C8…H10B	2.9238	$H10A\cdots O1^{ix}$	2.4134
C8…H18	2.5230	H10A····C3 ^{iv}	3 5224
С9…Н1	3 4534	$H10A \cdots C6^{ix}$	3 3327
С9…Н5	3 3938	$H10A\cdots C7^{ix}$	3 5336
C9H7B	2 5395	H10A···H3 ^{iv}	2,7424
C9…H7C	3 2132	$H10A \cdots H7A^{ix}$	2.8504
C9H10B	3 5830	$H10A \cdots H13^{v}$	3 3963
C9H10C	2 7631	$H10A \cdots H14^{v}$	3 2858
С9…Н12	3 0307	$H10R \cdots C4^{iv}$	3 5725
C10···H12	2 8641	H10B····C18 ^{iv}	3 0035
C10H22	2.0041	H10B $C10^{iv}$	3.0955
C10 1122	3 3 5 7 8	H10BH3iv	3.0002
C11···H5	3 3952	H10B···H4 ^{iv}	2 9426
~	2.2724	111VL 111	4.7749

C11H10A	2.9772	H10B···H18 ^{iv}	2.9960
C11…H10C	3.0888	H10B···H19 ^{iv}	2.9537
C11…H13	3.2807	H10C…C13 ^v	3.5690
C11…H15	3.2782	H10C…C14 ^v	3.5888
C11…H22	2.8885	H10C…H13 ^v	3.4564
C12…H10A	3.2587	$H10C\cdots H14^{v}$	3.4887
C12…H10C	3.0251	$H10C\cdots H19^{iv}$	3.1828
C12…H14	3.2652	H12…C14 ^v	3.4638
C12…H16	3.2612	H12····H7A ^{ix}	3.3486
C13…H15	3.2590	H12····H14 ^v	3.1961
C14…H12	3.2645	H12H15 ^v	3.5750
C14···H16	3 2543	H12H19 ^{vi}	3 3397
C15…H13	3 2571	H13O1×	2 7191
C16…H4	2 9705	H13···C6 ^x	3 5838
C16···H5	3 4489	H13···H1×	2 9263
C16···H12	3 2617	H13H2×	3 4899
C16···H14	3 2587	H13H104 viii	3 3963
С16 нич	3.0519	H13H10Cviii	3 4564
С10 1122	3 3421	H13H15v	3 3619
C17 II4 C17H10A	2 0281	H13H10 ^{vi}	3 1440
C17H10R	3.0416	H14O1×	2 6463
С17…Н16	2 7176	$H14\cdots C6^{x}$	2.0405
С17 н10	3 2788	$H14 \cdots C7^{x}$	2.0501
C17 H12	3 2810	$H14 \cdots H1^{xiv}$	3 4470
C17 H21 C18····H3	3 5950	H14H7A×	2 7577
C18····H4	3.3290	$H14 H7R^{x}$	2.7377
C18····H16	3.5094		3 2858
C18H20	3.2726		3.4887
C18 H20	3.2720	H14H12 ^{viii}	3 1061
C10 II22	3.2020	$H15O2^{vii}$	3 2645
C19 1121 C20H18	3 2606	$H15 \cdot O2$ $H15 \cdots C1^{xiv}$	3 2673
C20H22	3.2090	$H15 \cdots C2^{xiy}$	3.2073
C20 H22	3 2503	H15H1xiv	2 8503
C21 III9	2.0516		2.0393
C22 1110A	2.9510	П15 П2 Ц15Ц12 ^{viii}	3.1778
C22H18	2.9200	H15H13 ^{viii}	3.3730
C22 III8 C22H20	3 2620	H15H21 ^{xiii}	3.0672
U22 ¹¹ 1120	2 5088	H16O2 ^{vii}	2 4214
П1 П2 Ш1Ц5	2.5988	H16C8 ^{vii}	2.4214
нт н5 н2н3	2.5882	H16H21 ^{xiii}	3 1651
112 115 Ц2Ц4	2.5700	Ш18Ц2i	3.1031
П.3 П4 Ц2Ц19	2.3813		2,0060
ПЗ П18 ПЛЦ5	2.7070		2.9900
П4 П5 П4Ц16	2.3623	H10C10vii	3.1109
п ч …пто плпо	2.4031	H10C12xi	3.4030 2.5712
114 П18 U7СЦ10Р	J.UU/J 2 5002	П19 U13 U10U5 ^{iv}	5.5/15 2.5045
ціодцір	J.J07J 2 0010		3.3743 2.0527
1110A····112	2.9019		2.900/
Π10A…Π22	2.3432	п19 п100	3.1828

H10C…H12	2.4015	H19····H12 ^{xi}	3.3397
H12…H13	2.3407	H19…H13 ^{xi}	3.1440
H13…H14	2.3348	H20····O3 ^{xi}	2.8666
H14…H15	2.3309	H20…C5 ^{iv}	3.5218
H15…H16	2.3400	H20····C7 ^{vii}	3.3399
H16…H22	2.9569	H20…H5 ^{iv}	3.4692
H18…H19	2.3505	H20···H7A ^{vii}	3.4250
H19…H20	2.3268	H20···H7B ^{vii}	3.3394
H20···H21	2.3324	H20····H7C ^{vii}	2 7456
H21···H22	2.3392	$H21\cdots O2^{ix}$	3 1448
$01 \cdots H3^{i}$	2.5592	$H21\cdots C2^{iv}$	3 5742
$01 \cdots H10A^{ii}$	2.1332	$H21\cdots C15^{xiii}$	3 2914
01H13 ⁱⁱⁱ	2.4154	H21···C16 ^{xiii}	3 3506
01H14 ⁱⁱⁱ	2.7191	H21C22 ^{xiii}	3.5620
$01 \dots H22^{ii}$	2.0403		3.3020
02H2i	3.2953		3.3333
	2.2419		5.0072
$02 \cdot 115$	5.5418		3.1031
02HIG	3.2043		3.4149
	2.4214		3.2597
02···H21*	3.1448	H22···OI™	3.2953
	2.6865		3.4551
03···H19 ^{v1}	3.1109	H22····C/ ^{IX}	3.0641
O3…H20 ^{vi}	2.8666	H22···H3 ^{IV}	3.2696
C1···H15 ^{xii}	3.2673	H22···H7A ^{ix}	2.4989
C2···H2 ⁱ	3.4907	H22···H7C ^{ix}	2.9857
C2…H3 ⁱ	3.4843	H22···H21 ^{xiii}	3.2597
C2···H15 ^{xii}	3.4187		
P1—Mo1—C1	132.06 (8)	P1—C11—C16	119.97 (17)
P1—Mo1—C2	141.25 (8)	C12—C11—C16	118.7 (3)
P1—Mo1—C3	108.32 (8)	C11—C12—C13	120.2 (3)
P1—Mo1—C4	84.99 (8)	C12—C13—C14	120.0 (3)
P1—Mo1—C5	97.15 (8)	C13—C14—C15	120.3 (3)
P1—Mo1—C6	132.27 (7)	C14—C15—C16	119.7 (3)
P1—Mo1—C8	79.07 (7)	C11—C16—C15	121.0 (3)
P1—Mo1—C9	78.24 (7)	P1-C17-C18	121.40 (19)
C1—Mo1—C2	35.55 (11)	P1-C17-C22	119.70 (17)
C1—Mo1—C3	58.15 (11)	C18—C17—C22	118.8 (2)
C1—Mo1—C4	58.19 (11)	C17—C18—C19	120.0 (3)
C1—Mo1—C5	35.19 (11)	C18—C19—C20	120.4 (3)
C1—Mo1—C6	90.84 (10)	C19—C20—C21	120.1 (3)
C1—Mo1—C8	144.62 (10)	C20—C21—C22	119.9 (3)
C1—Mo1—C9	97.72 (11)	C17—C22—C21	120.8 (3)
C2—Mo1—C3	34.29 (11)	Mo1—C1—H1	126.077
C2—Mo1—C4	57.45 (10)	C2—C1—H1	126.080
C2—Mo1—C5	58.26 (10)	C5—C1—H1	126.073
C2—Mo1—C6	85.01 (10)	Mo1—C2—H2	125.537
C2—Mo1—C8	110.71 (11)	C1—C2—H2	125.531

C2—Mo1—C9	129.45 (11)	С3—С2—Н2	125.541
C3—Mo1—C4	34.38 (10)	Mo1—C3—H3	126.038
C3—Mo1—C5	57.76 (10)	С2—С3—Н3	126.024
C3—Mo1—C6	112.95 (10)	С4—С3—Н3	126.038
C3—Mo1—C8	100.46 (11)	Mo1—C4—H4	125.605
C3—Mo1—C9	153.22 (10)	C3—C4—H4	125.604
C4—Mo1—C5	34.85 (10)	C5—C4—H4	125.610
C4—Mo1—C6	142.42 (9)	Mo1—C5—H5	125.855
C4—Mo1—C8	121.21 (10)	C1—C5—H5	125.863
C4—Mo1—C9	125.13 (10)	C4—C5—H5	125.858
C5—Mo1—C6	124.71 (10)	С6—С7—Н7А	109.468
C5—Mo1—C8	155.88 (10)	C6—C7—H7B	109.471
C5-Mo1-C9	96.06 (10)	C6-C7-H7C	109 470
C6—Mo1—C8	70.94 (9)	H7A—C7—H7B	109.475
C6—Mo1—C9	75 75 (9)	H7A - C7 - H7C	109 467
C8-Mo1-C9	106 30 (11)	H7B - C7 - H7C	109.107
M_01 — $P1$ — $C10$	113 99 (8)	P1 - C10 - H10A	109.175
Mo1 P1 C11	113.15 (8)	P1_C10_H10B	109.400
Mol_Pl_C17	118.95 (8)	P1H10C	109.470
C10 P1 C11	104.38(11)	$H_{10}A_{10}H_{10}B$	109.404
C10 P1 C17	104.38(11) 102.14(10)	$H_{10A} = C_{10} = H_{10C}$	109.472
$C_{11} = P_1 = C_{17}$	102.14(10) 102.46(11)	H10R C10 H10C	109.467
$M_{01} C_{1} C_{2}$	73 17 (16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110 888
Mo1 = C1 = C2	73.17(10) 73.24(16)	$C_{11} = C_{12} = H_{12}$	119.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.24(10)	$C_{13} - C_{12} - C_{13} + C_{13}$	119.803
$M_{2} = C_{1} = C_{2}$	71.28(16)	$C_{12} - C_{13} - H_{13}$	119.974
Mo1 = C2 = C1	71.28 (10)	$C_{14} = C_{15} = 115$	119.977
1 - 2 - 3	108.6(3)	C_{13} C_{14} H_{14}	119.842
$M_{21} = C_{2} = C_{3}$	71.02(16)	C13 - C14 - 1114	119.049
$Mo1 = C_2 = C_4$	71.02(10) 71.01(15)	$C_{14} = C_{15} = H_{15}$	120.101
M01 - C3 - C4	(1.91(13))	C10-C15-H15	120.100
$C_2 = C_3 = C_4$	107.8(3)	C15 C16 U16	119.317
Mo1 = C4 = C5	75.71(15)	C13 - C10 - H10	119.301
M01 - C4 - C5	/1.55 (14)	C1/-C18-H18	120.007
$C_{3} - C_{4} - C_{5}$	108.5(5)	C19-C18-H18	120.002
Mo1 = C5 = C1	/1.5/(15)	C18—C19—H19	119.816
M01 - C5 - C4	/3.62 (14)	C20—C19—H19	119.814
CI = CS = C4	107.9 (3)	C19 - C20 - H20	119.951
Mol - C6 - Ol	120.81 (19)	$C_{21} = C_{20} = H_{20}$	119.945
Mol = C6 = C7	122.44 (17)	$C_{20} = C_{21} = H_{21}$	120.036
01 - C6 - C7	116.7 (3)	C22—C21—H21	120.032
Mo1-C8-O2	177.0 (2)	C17—C22—H22	119.627
Mol-C9-O3	175.0 (2)	C21—C22—H22	119.622
P1-C11-C12	121.15 (18)		
P1—Mo1—C1—C2	122.96 (9)	C3—Mo1—C5—C1	79.16 (13)
P1—Mo1—C1—C5	8.48 (17)	C3—Mo1—C5—C4	-36.69 (11)
C1—Mo1—P1—C10	141.40 (10)	C5—Mo1—C3—C2	-79.68 (13)
C1—Mo1—P1—C11	22.32 (10)	C5—Mo1—C3—C4	37.20 (11)

C1—Mo1—P1—C17	-97.99 (11)	C3—Mo1—C6—O1	-21.07 (19)
P1—Mo1—C2—C1	-95.59 (15)	C3—Mo1—C6—C7	159.70 (13)
P1—Mo1—C2—C3	20.6 (2)	C6—Mo1—C3—C2	37.97 (14)
C2—Mo1—P1—C10	-167.39 (13)	C6—Mo1—C3—C4	154.85 (10)
C2—Mo1—P1—C11	73.54 (14)	C8—Mo1—C3—C2	111.56 (12)
C2—Mo1—P1—C17	-46.77 (13)	C8—Mo1—C3—C4	-131.55 (12)
P1—Mo1—C3—C2	-166.59(8)	C9—Mo1—C3—C2	-66.2 (3)
P1—Mo1—C3—C4	-49.71 (12)	C9—Mo1—C3—C4	50.6 (3)
C3—Mo1—P1—C10	-155.34(7)	C4—Mo1—C5—C1	115.9 (2)
C3—Mo1—P1—C11	85.58 (9)	C4—Mo1—C5—C4	0.00 (12)
C3—Mo1—P1—C17	-34.73(8)	C5—Mo1—C4—C3	-116.5(2)
P1-Mo1-C4-C3	133.37 (11)	C5—Mo1—C4—C5	-0.00(12)
P1-Mo1-C4-C5	-110.15(10)	C4-Mo1-C6-O1	21(3)
C4—Mo1—P1—C10	179.04 (7)	C4—Mo1—C6—C7	-177 14 (12)
C4—Mo1—P1—C11	59.96 (8)	C6-Mo1-C4-C3	-39.91(19)
C4—Mo1—P1—C17	-60.34(7)	C6-Mo1-C4-C5	76 57 (17)
$P1_Mo1_C5_C1$	-173 66 (9)	C8—Mo1— $C4$ — $C3$	59 37 (15)
$P1_Mo1_C5_C4$	70.48(11)	$C_{8}^{$	$175\ 85\ (10)$
$C_{5}^{$	146 31 (8)	$C_{9}^{}M_{01}^{}C_{4}^{}C_{3}^{}$	-154.79(10)
$C_5 Mol Pl Cll$	27.24(7)	C^{9} Mol C^{4} C^{5}	-3831(16)
C_{2} Mol P_{1} C_{17}	-93.07(8)	$C_{2} = M_{01} = C_{4} = C_{2}$	44.6(2)
$P_1 = M_0 = C_0 = 01$	$-168\ 84\ (11)$	C_{5} Mol C_{6} C_{7}	$-134\ 60\ (14)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 02 (18)	$C_{0} = M_{0} + C_{0} + C_{1}$	-17.96(16)
$C_{6} = M_{01} = R_{1} = C_{10}$	-6.40(8)	$\begin{array}{c} C6 Mo1 C5 C4 \\ \end{array}$	-133.81(10)
C6-Mo1-P1-C11	-12557(8)	$C_{0} = M_{01} = C_{0} = C_{1}$	107.1(3)
C6 Mo1 P1 C17	114 13 (8)	C_8 Mol C_5 C_4	-87(3)
C_{0} Mol Pl Cl0	-57.82(8)	$C_{0} = M_{01} = C_{0} = C_{1}$	-94.80(12)
$C_8 Mo1 P1 C11$	-176.90(8)	C9 Mo1 C5 C4	149.35(12)
$C_8 M_{01} P_1 C_{17}$	62 70 (8)	$C_{3} = Mo1 = C_{3} = C_{4}$	-11464(18)
$C_0 = M_0 I = P_1 = C_1 I$	51.58(7)	C_{8}^{8} Mol C_{6}^{6} C_{7}^{7}	66 12 (15)
$C_{2} = MO_{1} = 1 = C_{10}$	-67.50(2)	C_{0} Mol C_{0} C_{1}	122 (15)
$C_{2} = MO_{1} = 1 = C_{11}$	172 10 (8)	C_{9} Mo1 C_{6} C_{7}	-47.08(14)
$C_{2} = Mo1 = C_{1} = C_{1}$	-0.00(12)	$M_{01} = \frac{1}{10000000000000000000000000000000000$	47.08 (14) 92.56 (16)
C1 = Mo1 = C2 = C1	116.2(2)	Mo1 = P1 = C11 = C12	-01.01(15)
C1 - M01 - C2 - C3	-0.00(12)	$M_{01} = P_1 = C_{11} = C_{10}$	-0.41(13)
$C_2 = Mo1 = C_1 = C_2$	-0.00(12) -114.5(2)	$M_{01} = P_1 = C_17 = C_{18}$	-9.41(10) 173 40 (10)
C_2 —Mo1— C_1 — C_3	-37.00(11)	$C_{10} = P_1 = C_{11} = C_{12}$	-40.92(18)
C1 = Mo1 = C3 = C2	-37.90(11)	C10 - P1 - C11 - C12	-40.92(18)
C1 - M01 - C3 - C4	76.99 (13)	C10 - F1 - C17 - C18	143.01(13) 117.05(16)
C_3 —Mo1— C_1 — C_2	50.55(11)	C10 P1 C17 C18	117.03(10)
$C_{3} = Mo_{1} = C_{4} = C_{3}$	-77.93(13)	C10 - F1 - C17 - C22	-00.14(17)
C1 = Mo1 = C4 = C5	-76.07(14)	$C_{11} = P_1 = C_{17} = C_{18}$	-133.02(13)
C1 - M01 - C4 - C3	57.01(11) 77.24(12)	C11 - P1 - C17 - C22	4/./0(1/) -147.12(15)
$C_{4} = W_{01} = C_{1} = C_{2}$	-27.24(13)	C1/C11C12 C17P1C11C12	-14/.13(13)
$C_{4} = W_{101} = C_{1} = C_{3}$	-37.24(11)	$C_1/-r_1-C_{11}-C_{10}$	37.40 (18) _0.0
C1 = Mo1 = C5 = C4	0.00(13)	$M_{01} = C_{1} = C_{2} = C_{2}$	
$C_1 - W_{01} - C_2 - C_4$	-115.9(2)	$M_{01} = C_{1} = C_{2} = C_{3}$	-65.93 (16)
C_{2} -Mo1-C1-C2	114.5 (2)	Mo1 - C1 - C5 - Mo1	0.0
U3-M01-U1-U3	0.00(12)	M01-C1-C5-C4	03.13 (14)

C1-Mo1-C6-O1	34.40 (17)	C2-C1-C5-Mo1	-65.80 (18)
C1—Mo1—C6—C7	-144.83 (15)	C2-C1-C5-C4	-0.6 (3)
C6—Mo1—C1—C2	-80.21 (12)	C5-C1-C2-Mo1	65.84 (19)
C6—Mo1—C1—C5	165.32 (12)	C5—C1—C2—C3	-0.1 (3)
C8—Mo1—C1—C2	-23.1 (3)	Mo1-C2-C3-Mo1	0.0
C8—Mo1—C1—C5	-137.59 (14)	Mo1-C2-C3-C4	-62.93 (15)
C9—Mo1—C1—C2	-155.94 (12)	C1-C2-C3-Mo1	63.71 (19)
C9—Mo1—C1—C5	89.59 (13)	C1—C2—C3—C4	0.8 (3)
C2—Mo1—C3—C2	0.00 (13)	Mo1-C3-C4-Mo1	-0.0
C2—Mo1—C3—C4	116.9 (2)	Mo1-C3-C4-C5	-63.53 (13)
C3—Mo1—C2—C1	-116.2 (2)	C2-C3-C4-Mo1	62.35 (18)
C3—Mo1—C2—C3	0.00 (12)	C2—C3—C4—C5	-1.2 (3)
C2—Mo1—C4—C3	-36.59 (12)	Mo1-C4-C5-Mo1	-0.0
C2—Mo1—C4—C5	79.89 (14)	Mo1-C4-C5-C1	-63.81 (14)
C4—Mo1—C2—C1	-79.49 (13)	C3-C4-C5-Mo1	64.94 (17)
C4—Mo1—C2—C3	36.69 (11)	C3—C4—C5—C1	1.1 (3)
C2—Mo1—C5—C1	38.48 (12)	P1-C11-C12-C13	-174.91 (15)
C2—Mo1—C5—C4	-77.37 (14)	P1-C11-C16-C15	175.00 (15)
C5—Mo1—C2—C1	-38.08 (11)	C12-C11-C16-C15	-0.6 (4)
C5—Mo1—C2—C3	78.10 (13)	C16—C11—C12—C13	0.6 (4)
C2-Mo1-C6-O1	-0.71 (17)	C11—C12—C13—C14	-0.3 (4)
C2—Mo1—C6—C7	-179.94 (16)	C12-C13-C14-C15	-0.1 (5)
C6—Mo1—C2—C1	98.48 (12)	C13—C14—C15—C16	0.2 (5)
C6—Mo1—C2—C3	-145.34 (13)	C14-C15-C16-C11	0.2 (5)
C8—Mo1—C2—C1	165.94 (10)	P1-C17-C18-C19	-176.91 (13)
C8—Mo1—C2—C3	-77.89 (14)	P1-C17-C22-C21	177.60 (15)
C9—Mo1—C2—C1	31.55 (17)	C18—C17—C22—C21	0.3 (4)
C9—Mo1—C2—C3	147.72 (12)	C22—C17—C18—C19	0.3 (3)
C3—Mo1—C4—C3	-0.00 (12)	C17—C18—C19—C20	-0.5 (4)
C3—Mo1—C4—C5	116.5 (2)	C18—C19—C20—C21	0.1 (4)
C4—Mo1—C3—C2	-116.9 (2)	C19—C20—C21—C22	0.6 (4)
C4—Mo1—C3—C4	-0.00 (12)	C20—C21—C22—C17	-0.8 (4)

Symmetry codes: (i) -*x*, -*y*, -*z*; (ii) -*x*+1/2, *y*-1/2, *z*; (iii) -*x*, *y*-1/2, -*z*+1/2; (iv) *x*+1/2, -*y*+1/2, -*z*; (v) *x*+1/2, *y*, -*z*+1/2; (vi) *x*, -*y*+1/2, *z*+1/2; (vii) *x*-1/2, -*y*+1/2, *z*+1/2; (vii) *x*-1/2, *y*-1/2, *z*; (viii) *x*-1/2, *y*-1/2, *z*; (viii) *x*-1/2, *y*+1/2, *z*+1/2; (vii) *x*+1/2, *y*

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H··· A
C10—H10A…O1 ^{ix}	0.98	2.41	3.346 (3)	159
C16—H16…O2 ^{vii}	0.95	2.42	3.256 (3)	147
C3—H3···O1 ⁱ	1.00	2.45	3.390 (4)	156

Symmetry codes: (i) -x, -y, -z; (vii) x-1/2, -y+1/2, -z; (ix) -x+1/2, y+1/2, z.