metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrabutylammonium tetrakis(trimethylsilanolato-κO)ferrate(III)

Michael Hay,^a* Richard Staples^b and Andre Lee^c

^aPenn State Beaver, 100 University Drive, Monaca, PA 15061, USA, ^bCenter for Crystallographic Research, Michigan State University, Department of Chemistry East, Lansing, MI 48824, USA, and ^cMichigan State University, Chemical Engineering and Material Science, 3514 Engineering Building, East Lansing, MI 48824, USA Correspondence e-mail: mth7@psu.edu

Received 25 July 2012; accepted 9 August 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.088; data-to-parameter ratio = 26.3.

In the title salt, $(C_{16}H_{36}N)$ [Fe(C₃H₉OSi)₄], the cation contains a central N atom bonded to four *n*-butyl alkyl groups in a tetrahedral arrangement, while the anion contains a central Fe^{III} atom tetrahedrally coordinated by four trimethylsilanolate ligands.

Related literature

For general background to the structural characterization of silsesquioxane compounds containing tetrabutylammonium iron(III), see: Hay & Geib (2007); Hay *et al.* (2003, 2009). For details of the synthesis, see: Shapley *et al.* (2003).

Experimental

Crystal data (C₁₆H₃₆N)[Fe(C₃H₉OSi)₄] M_r = 655.08

Triclinic, $P\overline{1}$ a = 10.4952 (5) Å

b = 10.5143 (5) Å c = 19.3506 (9) Å $\alpha = 82.722 (1)^{\circ}$ $\beta = 82.834 (1)^{\circ}$ $\gamma = 81.658 (1)^{\circ}$ $V = 2083.37 (17) \text{ Å}^{3}$	Z = 2 Mo K α radiation $\mu = 0.50 \text{ mm}^{-1}$ T = 173 K $0.56 \times 0.35 \times 0.28 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{min} = 0.767, T_{max} = 0.872$	18068 measured reflections 9424 independent reflections 6223 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.071$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.088$ S = 0.93 9424 reflections	359 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.36 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

Fe1-O1	1.8608 (13)	Fe1-O3	1.8515 (14)
Fe1-O2	1.8591 (13)	Fe1-O4	1.8583 (13)

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the University College of the Pennsylvania State University and the Air Force Office of Scientific Research (FA9550–08-1–0213 F A9550–08-1–0213) for their financial support. The CCD-based X-ray diffractometer at Michigan State University was upgraded and/or replaced by departmental funds.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2048).

References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hay, M. T. & Geib, S. J. (2007). Acta Cryst. E63, m445-m446.
- Hay, M. T., Geib, S. J. & Pettner, D. A. (2009). Polyhedron, 28, 2183-2186.
- Hay, M. T., Hainaut, B. J. & Geib, S. J. (2003). Inorg. Chem. Commun. 6, 431–434.
- Shapley, P. A., Bigham, W. S. & Hay, M. T. (2003). Inorg. Chim. Acta, 345, 255– 260.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m1186 [doi:10.1107/S1600536812035337]

Tetrabutylammonium tetrakis(trimethylsilanolato-κO)ferrate(III)

Michael Hay, Richard Staples and Andre Lee

S1. Comment

Over the past decade, Hay *et al.* reported on the structural characterization of numerous tetrabutylammonium iron (III) containing silsesquioxane compounds (Hay *et al.*, 2003; Hay & Geib, 2007, Hay *et al.*, 2009). In order to make a more complete structural study of these compounds, it was useful to have structural data on an analogous tetrabutylammonium iron (III) silanolato compound – the title compound (Fig. 1). Its structural arrangement contains a pair of tetrabutyl-ammonium cations and tetrakistrimethylsilanolato ferrate (III) anions in a triclinic unit cell (Fig. 2). The tetrabutyl-ammonium cation, $C_{16}H_{36}N^+$, consists of a tetrahedrally arranged central nitrogen atom, with N—C bond lengths in the range of 1.515 (2)–1.520 (2) Å and C—N—C bond angles in the range of 105.74 (13)–111.41 (14)°. The complex anion, $C_{12}H_{36}FeO_4Si_4$, contains a four coordinate Fe^{III} atom with a tetrahedral arrangement of four trimethylsilanolato ligands. The O—Fe—O bond angles are 105.17 (6)–112.58 (6)°. The Fe—O bond lengths are in the range of 1.8515 (14)–1.8608 (13) Å.

S2. Experimental

The following synthetic protocol is adapted from the previously reported procedure (Shapley, *et al.*, 2003). A yellow solution of $[C_{16}H_{36}N][FeCl_4]$ (1.136 mmol, 0.5000 g) in dichloromethane (10 ml) was treated with four equivalents of solid sodium trimethlysilanate (4.544 mmol, 0.5098 g). Immediately, the yellow solution turned red due to the formation of a dark red precipitate. The reaction mixture was stirred for 40 minutes before the precipitate was removed by filtration through celite. The resulting pale green filtrate was concentrated under reduced pressure to give a pale green powder. The powder was extracted with diethyl ether and filtered to remove any insoluble material. Hexanes were added to the diethyl ether filtrate and the sample was stored at 243 K for about 30 minutes before colorless block crystals formed which were analyzed.

S3. Refinement

All H atoms were placed in calculated positions and refined using a riding model. C—H(aromatic) = 0.94 Å and $U_{iso}(H) = 1.2U_{eq}(C)$; C—H (alaphatic) = 0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$; CH₂ = 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$; CH₃ = 0.97 Å and $U_{iso}(H) = 1.5U_{eq}(C)$; N—H = 0.86 (0.92) Å and $U_{iso}(H) = 1.2U_{eq}(N)$; O—H(alcohol) = 0.85 Å and $U_{iso}(H) = 1.2U_{eq}(O)$; O —H(acid) = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

A 50% thermal ellipsoidal drawing of the asymmetric cell.

Figure 2

Drawing of the packing along the *b* axis.

Tetrabutylammonium tetrakis(trimethylsilanolato-κO)ferrate(III)

Crystal data (C₁₆H₃₆N)[Fe(C₃H₉OSi)₄] $M_r = 655.08$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 10.4952 (5) Å b = 10.5143 (5) Å c = 19.3506 (9) Å a = 82.722 (1)° $\beta = 82.834$ (1)° $\gamma = 81.658$ (1)° V = 2083.37 (17) Å³

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Z = 2 F(000) = 722 $D_x = 1.044 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7900 reflections $\theta = 2.3-27.4^{\circ}$ $\mu = 0.50 \text{ mm}^{-1}$ T = 173 KBlock, colourless $0.56 \times 0.35 \times 0.28 \text{ mm}$

Detector resolution: 836.6 pixels mm⁻¹ ω and φ 0.5 deg scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008)

$T_{\min} = 0.767, \ T_{\max} = 0.872$	$\theta_{\rm max} = 28.6^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
18068 measured reflections	$h = -14 \rightarrow 13$
9424 independent reflections	$k = -13 \rightarrow 14$
6223 reflections with $I > 2\sigma(I)$	$l = -25 \rightarrow 25$
$R_{\rm int} = 0.071$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.088$	neighbouring sites
S = 0.93	H-atom parameters constrained
9424 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0118P)^2]$
359 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a glass fiber or nylon loop using Paratone oil for Mo radiation and Mineral oil for Copper radiation. Data were measured using omega and phi scans of 0.5° per frame for 30 s. The total number of images were based on results from the program *COSMO* where redundancy was expected to be 4 and completeness to 0.83 Å to 100%. Cell parameters were retrieved using *APEX* II software and refined using *SAINT* on all observed reflections. Data reduction was performed using the *SAINT* software which corrects for Lp. Scaling and absorption corrections were applied using *SADABS6* multi-scan technique (Sheldrick, 2008). The structures are solved by the direct method using the *SHELXS97* program and refined by least squares method on F^2 , *SHELXL97*, incorporated in *SHELXTL*-PC.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. _michigan_contact_Crystallographer_name 'Richard Staples' _michigan_contact_Crystallographer_email xraystaples@chemistry.msu.com

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Fe1	0.74285 (3)	0.64074 (3)	0.746004 (14)	0.03091 (9)	
Si1	0.79239 (6)	0.42170 (6)	0.87610 (3)	0.04012 (16)	
Si2	0.72382 (6)	0.43686 (6)	0.63710 (3)	0.04463 (17)	
Si3	0.54754 (6)	0.86616 (6)	0.82993 (3)	0.03772 (15)	
Si4	0.88113 (6)	0.84989 (6)	0.63377 (3)	0.03860 (16)	
01	0.82805 (13)	0.52860 (13)	0.81292 (7)	0.0461 (4)	
O2	0.67258 (13)	0.54525 (13)	0.68921 (7)	0.0456 (4)	
03	0.60452 (14)	0.74786 (13)	0.78552 (7)	0.0483 (4)	
O4	0.86943 (13)	0.73219 (13)	0.69549 (7)	0.0416 (4)	
C1	0.8425 (3)	0.4626 (3)	0.95884 (12)	0.0724 (8)	
H1A	0.9368	0.4608	0.9541	0.109*	
H1B	0.8164	0.3994	0.9978	0.109*	
H1C	0.8007	0.5493	0.9681	0.109*	
C2	0.8795 (2)	0.2593 (2)	0.85816 (15)	0.0737 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H2A	0.8566	0.2371	0.8140	0.111*
H2B	0.8546	0.1942	0.8965	0.111*
H2C	0.9732	0.2612	0.8546	0.111*
C3	0.6159 (2)	0.4104 (3)	0.88869 (14)	0.0755 (9)
H3A	0.5684	0.4925	0.9020	0.113*
H3B	0.5979	0.3407	0.9258	0.113*
H3C	0.5881	0.3919	0.8449	0.113*
C4	0.9026 (2)	0.4104 (3)	0.62274 (16)	0.0805 (9)
H4A	0.9343	0.4884	0.5974	0.121*
H4B	0.9306	0.3374	0.5951	0.121*
H4C	0.9377	0.3913	0.6681	0.121*
C5	0.6691 (2)	0.2787(2)	0.67500 (16)	0.0762 (9)
H5A	0.7098	0.2473	0.7179	0.114*
H5B	0.6941	0.2155	0.6410	0.114*
H5C	0.5747	0.2903	0.6859	0.114*
C6	0.6578 (3)	0.4858(3)	0 55180 (13)	0.0842 (9)
H6A	0 5632	0 4910	0 5587	0.126*
H6B	0.6930	0.4217	0 5194	0.126*
H6C	0.6824	0.5705	0.5322	0.126*
C7	0.0021 0.4713(2)	0.8052(2)	0.91776 (11)	0.0580(7)
H7A	0.3996	0.7586	0.9120	0.087*
H7B	0.4384	0.8783	0.9446	0.087*
H7C	0.5360	0.7465	0.9428	0.087*
C8	0.3300 0.4215(2)	0.9769 (2)	0.9420 0.78437 (12)	0.0525 (6)
H8A	0.4607	1 0150	0.7393	0.0323 (0)
HSR	0.3846	1.0150	0.8135	0.079*
HSC	0.3528	0.0282	0.7764	0.079*
	0.5528 0.6750 (2)	0.9282 0.9638 (2)	0.7704	0.079 0.0503 (7)
Нол	0.0730 (2)	0.9038 (2)	0.8672	0.0393 (7)
HOR	0.7425	1.0346	0.8600	0.089*
HOC	0.7134	0.0006	0.7965	0.089
C10	0.7134 0.7182 (2)	0.9990 0.0270(2)	0.7905	0.089
	0.7182 (2)	0.9279 (2)	0.5072	0.0974 (7)
	0.0713	0.0097	0.5972	0.082*
	0.7277	0.9982	0.5745	0.082*
	0.0095	0.9029	0.0337 0.66132(12)	0.082°
	0.9093 (2)	0.9731 (2)	0.00132(12) 0.7034	0.0329(0)
	0.9220	1.00/1	0.7034	0.079*
	0.9700	1.0440	0.0255	0.079*
HIIC C12	1.0304	0.9331	0.0/15	$0.0/9^{*}$
	0.9728 (2)	0.7892 (2)	0.55258 (12)	0.0647(7)
HI2A	1.0562	0.7410	0.5638	0.09/*
HI2B	0.98/8	0.8627	0.51/4	0.09/*
HI2C	0.9224	0.7322	0.5341	0.09/*
NI	0.24290 (14)	0.52480 (15)	0.75675 (8)	0.0290 (4)
013	0.12540 (17)	0.61155 (18)	0.78604 (10)	0.0324 (5)
HI3A	0.0806	0.6579	0.7462	0.039*
HI3B	0.0651	0.5559	0.8142	0.039*
C14	0.15129 (19)	0.7106 (2)	0.83111 (11)	0.0417 (5)

H14A	0.1976	0.6660	0.8707	0.050*
H14B	0.2078	0.7701	0.8030	0.050*
C15	0.0275 (2)	0.7877 (2)	0.85923 (11)	0.0438 (6)
H15A	-0.0253	0.7287	0.8906	0.053*
H15B	-0.0224	0.8250	0.8196	0.053*
C16	0.0493(2)	0.8961 (2)	0.89928 (14)	0.0655 (7)
H16A	0.0958	0.8598	0.9397	0.098*
H16B	-0.0345	0.9430	0.9156	0.098*
H16C	0.1007	0.9556	0.8685	0.098*
C17	0.34387(18)	0.60341 (19)	0.71623 (10)	0.0326 (5)
H17A	0.4220	0.5432	0.7025	0.039*
H17B	0.3688	0.6603	0.7479	0.039*
C18	0.30222 (19)	0.6867(2)	0.7475	0.0391(5)
H18A	0.2888	0.6304	0.6157	0.0371 (3)
H18B	0.2180	0.0304	0.6627	0.047
C10	0.2189 0.4030(2)	0.7709	0.0027	0.047
U10A	0.4030 (2)	0.7727(2)	0.61905 (11)	0.0444 (0)
П19А 1110D	0.4009	0.7191	0.6123	0.053*
П19D С20	0.4098	0.8349	0.0330	0.033°
C20	0.3703(2)	0.8464 (2)	0.55050(11)	0.0601 (7)
H20A	0.3/13	0.7853	0.5161	0.090*
H20B	0.4345	0.9055	0.5337	0.090*
H20C	0.2840	0.8961	0.5568	0.090*
C21	0.31012 (18)	0.44134 (18)	0.81477 (10)	0.0329 (5)
H21A	0.3380	0.4990	0.8450	0.039*
H21B	0.3893	0.3916	0.7932	0.039*
C22	0.23097 (19)	0.3468 (2)	0.86101 (10)	0.0400 (5)
H22A	0.1541	0.3951	0.8854	0.048*
H22B	0.2004	0.2894	0.8316	0.048*
C23	0.3114 (2)	0.2658 (2)	0.91458 (10)	0.0420 (5)
H23A	0.3423	0.3236	0.9437	0.050*
H23B	0.3882	0.2178	0.8899	0.050*
C24	0.2344 (2)	0.1701 (2)	0.96193 (12)	0.0609 (7)
H24A	0.1604	0.2175	0.9881	0.091*
H24B	0.2902	0.1181	0.9949	0.091*
H24C	0.2030	0.1132	0.9333	0.091*
C25	0.19311 (19)	0.44218 (19)	0.70961 (10)	0.0344 (5)
H25A	0.1265	0.3941	0.7378	0.041*
H25B	0.1502	0.5003	0.6726	0.041*
C26	0.2951 (2)	0.3457 (2)	0.67477 (11)	0.0448 (6)
H26A	0.3357	0.2839	0.7112	0.054*
H26B	0.3635	0.3922	0.6471	0.054*
C27	0.2357(2)	0.2720 (2)	0.62695 (13)	0.0622 (7)
H27A	0.1715	0.2212	0.6554	0.075*
H27B	0.1895	0.3346	0.5929	0.075*
C28	0.3361 (3)	0.1820 (3)	0.58759 (15)	0.0907 (10)
H28A	0.3972	0.2323	0.5574	0.136*
H28B	0.2933	0.1345	0.5588	0.136*
H28C	0.3830	0.1206	0.6211	0.136*
11200	0.2020	0.1200	0.0211	0.150

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.03597 (17)	0.02678 (16)	0.03030 (17)	-0.00261 (13)	-0.00944 (13)	-0.00036 (12)
Si1	0.0344 (3)	0.0395 (4)	0.0461 (4)	-0.0115 (3)	-0.0156 (3)	0.0149 (3)
Si2	0.0378 (4)	0.0445 (4)	0.0565 (4)	0.0014 (3)	-0.0152 (3)	-0.0219 (3)
Si3	0.0411 (4)	0.0376 (3)	0.0337 (3)	-0.0011 (3)	-0.0025 (3)	-0.0072 (3)
Si4	0.0440 (4)	0.0387 (3)	0.0314 (3)	-0.0072 (3)	-0.0058 (3)	0.0063 (3)
01	0.0402 (8)	0.0498 (9)	0.0476 (9)	-0.0145 (7)	-0.0188 (7)	0.0210 (7)
O2	0.0356 (8)	0.0480 (9)	0.0580 (10)	0.0021 (7)	-0.0150 (8)	-0.0235 (8)
O3	0.0533 (9)	0.0416 (9)	0.0477 (9)	0.0050 (8)	-0.0012 (8)	-0.0130 (7)
O4	0.0465 (9)	0.0388 (8)	0.0377 (8)	-0.0081 (7)	-0.0100 (7)	0.0114 (7)
C1	0.082 (2)	0.087 (2)	0.0508 (16)	-0.0161 (17)	-0.0132 (15)	-0.0040 (15)
C2	0.0672 (18)	0.0410 (15)	0.119 (2)	-0.0111 (14)	-0.0364 (18)	0.0005 (15)
C3	0.0402 (15)	0.083 (2)	0.097 (2)	-0.0209 (15)	-0.0119 (15)	0.0309 (17)
C4	0.0470 (16)	0.086 (2)	0.114 (2)	-0.0026 (16)	0.0061 (17)	-0.0519 (19)
C5	0.0668 (18)	0.0441 (15)	0.120 (3)	0.0008 (14)	-0.0237 (18)	-0.0148 (16)
C6	0.111 (2)	0.084 (2)	0.0618 (19)	0.0044 (19)	-0.0300 (18)	-0.0245 (16)
C7	0.0594 (16)	0.0718 (17)	0.0410 (14)	-0.0125 (14)	0.0010 (12)	-0.0021 (12)
C8	0.0564 (15)	0.0482 (14)	0.0511 (15)	0.0045 (12)	-0.0079 (12)	-0.0102 (12)
C9	0.0579 (16)	0.0612 (16)	0.0626 (17)	-0.0139 (14)	-0.0074 (14)	-0.0136 (13)
C10	0.0578 (15)	0.0532 (15)	0.0488 (15)	-0.0031 (13)	-0.0166 (13)	0.0130 (12)
C11	0.0542 (15)	0.0461 (14)	0.0578 (15)	-0.0126 (12)	-0.0058 (13)	0.0032 (12)
C12	0.0726 (18)	0.0747 (18)	0.0430 (15)	-0.0062 (15)	0.0006 (14)	-0.0025 (13)
N1	0.0224 (8)	0.0352 (9)	0.0299 (9)	-0.0038 (7)	-0.0066 (7)	-0.0014 (7)
C13	0.0224 (10)	0.0390 (12)	0.0350 (12)	-0.0030 (9)	-0.0043 (9)	-0.0013 (9)
C14	0.0330 (12)	0.0459 (13)	0.0467 (13)	-0.0041 (11)	-0.0023 (11)	-0.0106 (11)
C15	0.0413 (13)	0.0398 (13)	0.0477 (14)	-0.0014 (11)	0.0012 (11)	-0.0050 (11)
C16	0.0629 (17)	0.0500 (15)	0.0823 (19)	-0.0071 (14)	0.0130 (15)	-0.0228 (14)
C17	0.0239 (10)	0.0388 (12)	0.0344 (11)	-0.0050 (9)	-0.0025 (9)	-0.0015 (9)
C18	0.0357 (12)	0.0439 (13)	0.0361 (12)	-0.0050 (10)	-0.0057 (10)	0.0028 (10)
C19	0.0500 (14)	0.0397 (13)	0.0412 (13)	-0.0080 (11)	-0.0017 (11)	0.0032 (10)
C20	0.0754 (18)	0.0564 (16)	0.0459 (15)	-0.0174 (14)	-0.0037 (14)	0.0116 (12)
C21	0.0273 (11)	0.0377 (12)	0.0327 (11)	0.0011 (9)	-0.0103 (9)	0.0000 (9)
C22	0.0341 (12)	0.0475 (13)	0.0370 (12)	-0.0077 (11)	-0.0039 (10)	0.0035 (10)
C23	0.0481 (13)	0.0433 (13)	0.0341 (12)	-0.0077 (11)	-0.0071 (11)	0.0017 (10)
C24	0.0762 (18)	0.0606 (16)	0.0462 (15)	-0.0233 (15)	-0.0104 (14)	0.0130 (13)
C25	0.0332 (12)	0.0395 (12)	0.0326 (11)	-0.0081 (10)	-0.0082 (9)	-0.0041 (9)
C26	0.0433 (13)	0.0457 (14)	0.0456 (14)	-0.0005 (11)	-0.0070 (11)	-0.0096 (11)
C27	0.0691 (18)	0.0645 (17)	0.0581 (16)	0.0015 (15)	-0.0169 (14)	-0.0282 (14)
C28	0.112 (3)	0.081 (2)	0.082 (2)	0.0331 (19)	-0.040 (2)	-0.0439 (17)

Geometric parameters (Å, °)

Fe1—O1	1.8608 (13)	C12—H12B	0.9800	
Fe1—O2	1.8591 (13)	C12—H12C	0.9800	
Fe1—O3	1.8515 (14)	N1—C21	1.515 (2)	
Fel—O4	1.8583 (13)	N1—C17	1.518 (2)	

Sil—Ol	1.5993 (14)	N1—C13	1.518 (2)
Si1—C3	1.857 (2)	N1—C25	1.520 (2)
Sil—Cl	1.864 (2)	C13—C14	1.514 (3)
Si1—C2	1.869 (2)	C13—H13A	0.9900
Si2—O2	1.6071 (14)	С13—Н13В	0.9900
Si2—C4	1 847 (2)	C14—C15	1 507 (3)
Si2—C6	1 853 (2)	C14—H14A	0.9900
Si2-C5	1 870 (2)	C14—H14B	0.9900
Si2_03	1.670(2)	C_{15}	1.515(3)
Si3_C0	1.855 (2)	C15 H15A	0.0000
Si3C9	1.853 (2)	C15 H15R	0.9900
SIJ	1.802(2)		0.9900
SI3	1.804(2)		0.9800
S14	1.0143(13)		0.9800
S14—C10	1.859 (2)		0.9800
S14—C11	1.863 (2)		1.520 (2)
Si4—C12	1.871 (2)	C17—H17A	0.9900
C1—H1A	0.9800	C17—H17B	0.9900
C1—H1B	0.9800	C18—C19	1.510 (3)
C1—H1C	0.9800	C18—H18A	0.9900
C2—H2A	0.9800	C18—H18B	0.9900
C2—H2B	0.9800	C19—C20	1.511 (3)
C2—H2C	0.9800	C19—H19A	0.9900
С3—НЗА	0.9800	C19—H19B	0.9900
С3—Н3В	0.9800	C20—H20A	0.9800
С3—НЗС	0.9800	C20—H20B	0.9800
C4—H4A	0.9800	C20—H20C	0.9800
C4—H4B	0.9800	C21—C22	1.519 (2)
C4—H4C	0.9800	C21—H21A	0.9900
C5—H5A	0.9800	C21—H21B	0.9900
C5—H5B	0 9800	C^{22} C^{23}	1 516 (2)
C5—H5C	0.9800	C22_H22A	0.9900
C6—H6A	0.9800	C22_H22B	0.9900
C6—H6B	0.9800	C_{23} C_{24}	1.524(3)
C6 H6C	0.9800	C23 H23A	0.0000
C7 H7A	0.9800	C23 H23R	0.9900
C7_H7P	0.9800	C24 H24A	0.9900
C7_H7B	0.9800	C_{24} H_{24} H_{24}	0.9800
C^{2}	0.9800	С24—П24В	0.9800
	0.9800	C24—H24C	0.9800
C8—H8B	0.9800	C25—C26	1.519(3)
C8—H8C	0.9800	С25—Н25А	0.9900
C9—H9A	0.9800	С25—Н25В	0.9900
С9—Н9В	0.9800	C26—C27	1.520 (3)
С9—Н9С	0.9800	C26—H26A	0.9900
C10—H10A	0.9800	C26—H26B	0.9900
C10—H10B	0.9800	C27—C28	1.510 (3)
C10—H10C	0.9800	С27—Н27А	0.9900
C11—H11A	0.9800	С27—Н27В	0.9900
C11—H11B	0.9800	C28—H28A	0.9800

C11—H11C	0.9800	C28—H28B	0.9800
C12—H12A	0.9800	C28—H28C	0.9800
O3—Fe1—O4	112.58 (6)	H12A—C12—H12C	109.5
O3—Fe1—O2	105.76 (6)	H12B—C12—H12C	109.5
O4—Fe1—O2	111.55 (6)	C21—N1—C17	105.74 (13)
O3—Fe1—O1	112.53 (7)	C21—N1—C13	111.41 (14)
O4—Fe1—O1	105.17 (6)	C17—N1—C13	111.40 (14)
O2—Fe1—O1	109.33 (6)	C21—N1—C25	111.07 (14)
O1—Si1—C3	111.45 (9)	C17—N1—C25	111.13 (15)
O1—Si1—C1	109.84 (10)	C13—N1—C25	106.18 (13)
C3—Si1—C1	108.97 (13)	C14—C13—N1	116.35 (15)
O1—Si1—C2	110.30 (11)	C14—C13—H13A	108.2
C3—Si1—C2	107.99 (12)	N1—C13—H13A	108.2
C1—Si1—C2	108.20 (12)	C14—C13—H13B	108.2
O2—Si2—C4	111.65 (10)	N1—C13—H13B	108.2
O2—Si2—C6	109.81 (10)	H13A—C13—H13B	107.4
C4—Si2—C6	109.42 (14)	C15—C14—C13	111.60 (16)
O2—Si2—C5	110.26 (11)	C15—C14—H14A	109.3
C4—Si2—C5	107.23 (12)	C13—C14—H14A	109.3
C6—Si2—C5	108.38 (13)	C15—C14—H14B	109.3
O3—Si3—C9	111.92 (10)	C13—C14—H14B	109.3
O3—Si3—C8	110.69 (9)	H14A—C14—H14B	108.0
C9—Si3—C8	107.22 (11)	C14—C15—C16	113.43 (18)
O3—Si3—C7	110.32 (10)	C14—C15—H15A	108.9
C9—Si3—C7	108.60 (11)	C16—C15—H15A	108.9
C8—Si3—C7	107.95 (11)	C14—C15—H15B	108.9
O4—Si4—C10	110.89 (9)	C16—C15—H15B	108.9
O4—Si4—C11	109.98 (9)	H15A—C15—H15B	107.7
C10—Si4—C11	109.09 (10)	C15—C16—H16A	109.5
O4—Si4—C12	110.34 (9)	C15—C16—H16B	109.5
C10—Si4—C12	108.16 (11)	H16A—C16—H16B	109.5
C11—Si4—C12	108.32 (11)	C15—C16—H16C	109.5
Si1—O1—Fe1	137.69 (9)	H16A—C16—H16C	109.5
Si2—O2—Fe1	137.57 (8)	H16B—C16—H16C	109.5
Si3—O3—Fe1	151.05 (10)	N1—C17—C18	115.47 (14)
Si4—O4—Fe1	139.01 (8)	N1—C17—H17A	108.4
Si1—C1—H1A	109.5	C18—C17—H17A	108.4
Si1—C1—H1B	109.5	N1—C17—H17B	108.4
H1A—C1—H1B	109.5	C18—C17—H17B	108.4
Si1—C1—H1C	109.5	H17A—C17—H17B	107.5
H1A—C1—H1C	109.5	C19—C18—C17	111.02 (15)
H1B—C1—H1C	109.5	C19—C18—H18A	109.4
Si1—C2—H2A	109.5	C17—C18—H18A	109.4
Si1—C2—H2B	109.5	C19—C18—H18B	109.4
H2A—C2—H2B	109.5	C17—C18—H18B	109.4
Si1—C2—H2C	109.5	H18A—C18—H18B	108.0
H2A—C2—H2C	109.5	C18—C19—C20	111.97 (17)

H2B—C2—H2C	109.5	C18—C19—H19A	109.2
Si1—C3—H3A	109.5	С20—С19—Н19А	109.2
Si1—C3—H3B	109.5	C18—C19—H19B	109.2
НЗА—СЗ—НЗВ	109.5	C20—C19—H19B	109.2
Si1—C3—H3C	109.5	H19A—C19—H19B	107.9
НЗА—СЗ—НЗС	109.5	C19—C20—H20A	109.5
НЗВ—СЗ—НЗС	109.5	C19—C20—H20B	109.5
Si2—C4—H4A	109.5	H20A—C20—H20B	109.5
Si2—C4—H4B	109.5	C19—C20—H20C	109.5
H4A—C4—H4B	109.5	H20A—C20—H20C	109.5
Si2—C4—H4C	109.5	H20B—C20—H20C	109.5
H4A—C4—H4C	109.5	N1—C21—C22	116.20 (14)
H4B—C4—H4C	109.5	N1—C21—H21A	108.2
Si2—C5—H5A	109.5	C22—C21—H21A	108.2
Si2—C5—H5B	109.5	N1—C21—H21B	108.2
H5A—C5—H5B	109.5	C22—C21—H21B	108.2
Si2—C5—H5C	109.5	H21A—C21—H21B	107.4
H5A—C5—H5C	109.5	C23—C22—C21	110.69 (15)
H5B—C5—H5C	109.5	С23—С22—Н22А	109.5
Si2—C6—H6A	109.5	C21—C22—H22A	109.5
Si2—C6—H6B	109.5	C23—C22—H22B	109.5
H6A—C6—H6B	109.5	C21—C22—H22B	109.5
Si2—C6—H6C	109.5	H22A—C22—H22B	108.1
H6A—C6—H6C	109.5	C22—C23—C24	111.91 (17)
H6B—C6—H6C	109.5	С22—С23—Н23А	109.2
Si3—C7—H7A	109.5	C24—C23—H23A	109.2
Si3—C7—H7B	109.5	С22—С23—Н23В	109.2
H7A—C7—H7B	109.5	C24—C23—H23B	109.2
Si3—C7—H7C	109.5	H23A—C23—H23B	107.9
H7A—C7—H7C	109.5	C23—C24—H24A	109.5
H7B—C7—H7C	109.5	C23—C24—H24B	109.5
Si3—C8—H8A	109.5	H24A—C24—H24B	109.5
Si3—C8—H8B	109.5	C23—C24—H24C	109.5
H8A—C8—H8B	109.5	H24A—C24—H24C	109.5
Si3—C8—H8C	109.5	H24B—C24—H24C	109.5
H8A—C8—H8C	109.5	C26—C25—N1	115.46 (15)
H8B—C8—H8C	109.5	С26—С25—Н25А	108.4
Si3—C9—H9A	109.5	N1—C25—H25A	108.4
Si3—C9—H9B	109.5	C26—C25—H25B	108.4
Н9А—С9—Н9В	109.5	N1—C25—H25B	108.4
Si3—C9—H9C	109.5	H25A—C25—H25B	107.5
Н9А—С9—Н9С	109.5	C25—C26—C27	111.05 (17)
Н9В—С9—Н9С	109.5	C25—C26—H26A	109.4
Si4—C10—H10A	109.5	C27—C26—H26A	109.4
Si4—C10—H10B	109.5	C25—C26—H26B	109.4
H10A—C10—H10B	109.5	C27—C26—H26B	109.4
Si4—C10—H10C	109.5	H26A—C26—H26B	108.0
H10A-C10-H10C	109.5	C28—C27—C26	112.4 (2)

H10B-C10-H10C	109.5	C28—C27—H27A	109.1
Si4—C11—H11A	109.5	С26—С27—Н27А	109.1
Si4—C11—H11B	109.5	С28—С27—Н27В	109.1
H11A—C11—H11B	109.5	С26—С27—Н27В	109.1
Si4—C11—H11C	109.5	H27A—C27—H27B	107.9
H11A—C11—H11C	109.5	C27—C28—H28A	109.5
H11B—C11—H11C	109.5	C27—C28—H28B	109.5
Si4—C12—H12A	109.5	H28A—C28—H28B	109.5
Si4—C12—H12B	109.5	С27—С28—Н28С	109.5
H12A—C12—H12B	109.5	H28A—C28—H28C	109.5
Si4—C12—H12C	109.5	H28B—C28—H28C	109.5
C3—Si1—O1—Fe1	-3.07 (19)	O2—Fe1—O4—Si4	66.36 (15)
C1—Si1—O1—Fe1	-123.94 (15)	O1—Fe1—O4—Si4	-175.23 (13)
C2-Si1-O1-Fe1	116.88 (16)	C21—N1—C13—C14	63.1 (2)
O3—Fe1—O1—Si1	55.77 (16)	C17—N1—C13—C14	-54.7 (2)
O4—Fe1—O1—Si1	178.67 (13)	C25—N1—C13—C14	-175.85 (16)
O2—Fe1—O1—Si1	-61.44 (16)	N1-C13-C14-C15	-177.98 (16)
C4—Si2—O2—Fe1	-7.49 (19)	C13-C14-C15-C16	-174.84 (18)
C6—Si2—O2—Fe1	-129.04 (15)	C21—N1—C17—C18	174.73 (16)
C5—Si2—O2—Fe1	111.60 (15)	C13—N1—C17—C18	-64.1 (2)
O3—Fe1—O2—Si2	178.46 (13)	C25—N1—C17—C18	54.1 (2)
O4—Fe1—O2—Si2	55.75 (15)	N1-C17-C18-C19	173.01 (17)
O1—Fe1—O2—Si2	-60.14 (15)	C17—C18—C19—C20	174.14 (18)
C9—Si3—O3—Fe1	12.8 (2)	C17—N1—C21—C22	-176.67 (16)
C8—Si3—O3—Fe1	132.34 (18)	C13—N1—C21—C22	62.1 (2)
C7—Si3—O3—Fe1	-108.2 (2)	C25—N1—C21—C22	-56.0 (2)
O4—Fe1—O3—Si3	-48.4 (2)	N1—C21—C22—C23	177.55 (16)
O2—Fe1—O3—Si3	-170.41 (18)	C21—C22—C23—C24	179.85 (18)
O1—Fe1—O3—Si3	70.3 (2)	C21—N1—C25—C26	-58.1 (2)
C10—Si4—O4—Fe1	7.56 (17)	C17—N1—C25—C26	59.3 (2)
C11—Si4—O4—Fe1	128.31 (14)	C13—N1—C25—C26	-179.38 (16)
C12—Si4—O4—Fe1	-112.26 (15)	N1-C25-C26-C27	-177.93 (17)
O3—Fe1—O4—Si4	-52.36 (15)	C25—C26—C27—C28	176.0 (2)