Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

trans-Dichloridotetrapyrazineruthenium(II) dichloromethane disolvate

Vladimir N. Nesterov, ${ }^{\text {a }}$ Wajiha Khan, ${ }^{\text {b }}$ Alexandra E. Rangel $^{\text {b }}$ and Bradley W. Smucker ${ }^{\text {b* }}$
${ }^{\text {a }}$ Department of Chemistry, University of North Texas, 1155 Union Circle, \#305070, Denton, TX 76203-5070, USA, and ${ }^{\text {b }}$ Department of Chemistry, Austin College, 900 North Grand, Sherman, TX 75090-4400, USA
Correspondence e-mail: bsmucker@austincollege.edu

Received 2 August 2012; accepted 14 August 2012
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.016 ; w R$ factor $=0.040 ;$ data-to-parameter ratio $=17.3$.

In the title compound, $\left[\mathrm{RuCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, the $\mathrm{Ru}^{\text {II }}$ atom occupies a position of 222 symmetry and the C atom of the solvent molecule occupies a site with twofold symmetry. The $\mathrm{Ru}^{\mathrm{II}}$ atom has a slightly distorted octahedral geometry. The pyrazine rings are propeller-like and rotated 45.1 (1) ${ }^{\circ}$ from the RuN_{4} plane. In the crystal, the complex and solvent molecules are bridged by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds along the c axis. Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contacts link the complexes in the $a b$ plane, forming a network.

Related literature

The synthesis of the title complex and its use as a building block in coordination networks are described by Carlucci et al. (2002) and Coe (2004). For related structures using pyridine and varying trans ligands, see: Coe et al. (1995); Desjardins et al. (1999).
 $2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Experimental

Crystal data

$\left[\mathrm{RuCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

$$
\begin{aligned}
& a=7.3059(2) \AA \\
& c=47.3659(16) \AA \\
& V=2528.21(14) \AA^{3}
\end{aligned}
$$

$Z=4$

Mo $K \alpha$ radiation
$\mu=1.28 \mathrm{~mm}^{-1}$

Data collection

Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1996)
$T_{\text {min }}=0.882, T_{\text {max }}=0.908$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.040$
$S=1.03$
1399 reflections
81 parameters
H atoms treated by a mixture of independent and constrained refinement
$T=100 \mathrm{~K}$
$0.10 \times 0.10 \times 0.08 \mathrm{~mm}$

15409 measured reflections 1399 independent reflections 1363 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{Cl}^{\mathrm{i}}$	0.95	2.88	$3.555(2)$	129
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{~N} 2^{\mathrm{ii}}$	$0.92(2)$	$2.46(2)$	$3.338(2)$	$158(2)$

Symmetry codes: (i) $-x+1,-y+1, z$; (ii) $-x+1, y-\frac{1}{2},-z+\frac{1}{4}$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank Austin College (Cullen Funds) for supporting innovative undergraduate education and the Welch Foundation (AD-0007) for a chemistry department grant furthering undergraduate research. We also recognize the work of Jessie H. Berger, Tehreem Bilal, Michela L. Brumfield, Raven M. Clark, Edward J. Selvik, Jacob B. Smith, and Hans H. Yoon, who, as fellow students with WK and AER in an advanced inorganic lab, synthesized and attempted to grow crystals of the title compound.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5139).

References

Bruker (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Carlucci, L., Ciani, G., Porta, F., Proserpio, D. M. \& Santagostini, L. (2002). Angew. Chem. Int. Ed. 41, 1907-1911.
Coe, B. J. (2004). J. Chem. Ed. 81, 718-721.
Coe, B. J., Meyer, T. J. \& White, P. S. (1995). Inorg. Chem. 34, 593-602.
Desjardins, P., Yap, G. P. A. \& Crutchley, R. J. (1999). Inorg. Chem. 38, 59015905.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m1193 [doi:10.1107/S1600536812035817]

trans-Dichloridotetrapyrazineruthenium(II) dichloromethane disolvate

Vladimir N. Nesterov, Wajiha Khan, Alexandra E. Rangel and Bradley W. Smucker

S1. Comment

The pyrazine ligands are rotated $45.1(1)^{\circ}$ from the $\mathrm{N}-\mathrm{Ru}-\mathrm{N}$ plane (Fig. 1) consistent with other propeller-like structures (Coe et al., 1995 and references therein). The terminal chloride atoms on the $\mathrm{Ru}(\mathrm{pz})_{4} \mathrm{Cl}_{2}$ complexes are 2.86 $2.94 \AA$ from the four hydrogen atoms belonging to neighboring pyrazine groups (Fig. 2). This additional interaction enhances the stability of the propeller-like structure.

The $\mathrm{Ru}-\mathrm{Cl}$ bond length is 2.3920 (5) \AA and the $\mathrm{Ru}-\mathrm{N}$ bond length is 2.0620 (14) \AA. These distances are on the low side of the narrow range of bond lengths when this complex is used in supramolecular assemblies (Carlucci et al., 2002), indicating very little influence on bond distance upon further coordination of this metal-based building block. $\mathrm{Ru}-\mathrm{N}$ distances in tetrakis(pyridine) Ru_{2}, are $2.09 \AA$ ($L=$ 2-chlorophenylcyanamide) (Desjardins, et al., 1999), or $2.08 \AA(L=$ one chloride and one benzonitrile) (Coe et al., 1995).
H -bonds and intermolecular contacts form a network in the crystal. Atom Cl 1 has an intermolecular contact with a hydrogen atom on two pyrazine ligands on a neighboring complex (Fig. 3 and Table 1). At the same time, the hydrogen atoms of the dichloromethane solvate have weak hydrogen bonds between two terminal N -atoms on the pyrazine ligands of two separate $\mathrm{Ru}(\mathrm{pz})_{4} \mathrm{Cl}_{2}$ complexes (Fig. 4 and Table 1). Additionally, the solvent chloride atom is 3.383 (3) \AA from the C 2 atom near the uncoordinated nitrogen on the pyrazine ligand.

S2. Experimental

The ruthenium complex was synthesized by the student co-authors in the laboratory component of Austin College's advanced inorganic course according to procedures by Carlucci et al. (2002) and Coe (2004). Crystals of the title compound were grown from a slow diffusion of hexanes into a solution of the ruthenium complex dissolved in dichloromethane.

S3. Refinement

The H atoms attached to C atoms of the pyrazine molecules were placed in idealized positions $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ and allowed to ride on their parent atoms. Their positions were constrained so that the $U_{\text {iso }}(\mathrm{H})$ was equal to $1.2 U_{\text {eq }}$ of their respective parent atoms. The solvent molecule, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, occupies a special position in the unit cell so the H atom was located using a difference map and was refined with a constrained $U_{\text {iso }}(\mathrm{H})$ equal to $1.2 U_{\text {eq }}$ of its parent atom.
The maximum and minimum residual electron density peaks of 1.01 and $0.37 \mathrm{e}^{-3}$, respectively, were located $1.44 \AA$ and $0.76 \AA$ from the H 4 A and Ru1 atoms, respectively, with the large residue most likely due to imperfect absorption corrections frequently encountered in heavy-metal atom structures.

Figure 1
View of the title compound with 50% probability displacement ellipsoids.

Figure 2
View of the title compound showing intramolecular $\mathrm{Cl} \cdots \mathrm{H}$ contacts.

Figure 3
Fragment of the crystal packing of the compound along a c axis (dashed lines are $\mathrm{Cl} \cdots \mathrm{H}$ contacts).

Figure 4
Fragment of the crystal packing of the compound along an a axis (dashed lines are $\mathrm{C}-\mathrm{H} \cdots \mathrm{NH}$-bonds).

trans-Dichloridotetrapyrazineruthenium(II) dichloromethane disolvate

Crystal data

$\left[\mathrm{RuCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=662.19$
Tetragonal, $14_{1} 22$
Hall symbol: I 4bw 2bw
$a=7.3059$ (2) Å
$c=47.3659(16) \AA$
$V=2528.21(14) \AA^{3}$
$Z=4$
$F(000)=1320$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1996)
$T_{\text {min }}=0.882, T_{\text {max }}=0.908$

$$
\begin{aligned}
& D_{\mathrm{x}}=1.740 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 8671 \text { reflections } \\
& \theta=2.8-27.0^{\circ} \\
& \mu=1.28 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Plate, black } \\
& 0.10 \times 0.10 \times 0.08 \mathrm{~mm} \\
& \\
& 15409 \text { measured reflections } \\
& 1399 \text { independent reflections } \\
& 1363 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.030 \\
& \theta_{\max }=27.0^{\circ}, \theta_{\min }=1.7^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=-9 \rightarrow 9 \\
& l=-60 \rightarrow 60
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.040$
$S=1.03$
1399 reflections
81 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.022 P)^{2}+2.540 P\right]$ \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=1.01 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.38$ e \AA^{-3}

Absolute structure: Flack (1983), 508 Friedel pairs
Absolute structure parameter: 0.26 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ru1	1.0000	0.5000	0.2500	$0.01016(7)$
Cl1	$0.76849(5)$	$0.26849(5)$	0.2500	$0.01419(11)$
N1	$0.8611(2)$	$0.6437(2)$	$0.21927(3)$	$0.0125(3)$

C1	$0.9492(2)$	$0.7136(2)$	$0.19664(3)$	$0.0140(3)$
H1A	1.0775	0.6961	0.1949	0.017^{*}
C12	$0.74959(8)$	$0.41921(8)$	$0.141441(10)$	$0.02798(12)$
N2	$0.6770(2)$	$0.8453(2)$	$0.17735(3)$	$0.0194(3)$
C2	$0.8562(2)$	$0.8101(2)$	$0.17601(4)$	$0.0163(4)$
H2A	0.9230	0.8534	0.1601	0.020^{*}
C3	$0.5910(3)$	$0.7769(3)$	$0.19991(4)$	$0.0178(4)$
H3A	0.4634	0.7987	0.2019	0.021^{*}
C4	$0.6795(3)$	$0.6757(2)$	$0.22056(3)$	$0.0146(3)$
H4A	0.6108	0.6279	0.2359	0.018^{*}
C5	$0.6136(4)$	0.2500	0.1250	$0.0271(6)$
H5A	$0.546(3)$	$0.309(3)$	$0.1112(4)$	0.033^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	$0.00969(8)$	$0.00969(8)$	$0.01110(12)$	$0.00041(10)$	0.000	0.000
C11	$0.01315(16)$	$0.01315(16)$	$0.0163(2)$	$-0.0024(2)$	$-0.00218(17)$	$0.00218(17)$
N1	$0.0128(8)$	$0.0111(7)$	$0.0134(6)$	$0.0000(5)$	$0.0006(6)$	$-0.0012(6)$
C1	$0.0121(8)$	$0.0141(8)$	$0.0159(8)$	$-0.0009(6)$	$0.0015(6)$	$-0.0008(7)$
C12	$0.0296(3)$	$0.0277(3)$	$0.0266(3)$	$-0.0024(2)$	$-0.0107(2)$	$-0.0016(2)$
N2	$0.0207(8)$	$0.0184(8)$	$0.0191(7)$	$0.0031(6)$	$-0.0011(7)$	$0.0044(6)$
C2	$0.0187(9)$	$0.0150(9)$	$0.0153(8)$	$-0.0017(7)$	$0.0023(7)$	$0.0015(7)$
C3	$0.0133(9)$	$0.0194(9)$	$0.0207(9)$	$0.0024(7)$	$0.0013(7)$	$0.0011(7)$
C4	$0.0135(9)$	$0.0147(9)$	$0.0157(7)$	$0.0000(6)$	$0.0011(7)$	$0.0005(7)$
C5	$0.0182(14)$	$0.0382(19)$	$0.0249(14)$	0.000	0.000	$-0.0117(14)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Ru1-N1	2.0620 (14)	C12-C5	1.7668 (17)
Ru1-N1 ${ }^{\text {i }}$	2.0620 (14)	N2-C2	1.336 (2)
Ru1-N1 ${ }^{\text {ii }}$	2.0620 (14)	N2-C3	1.337 (2)
Ru1-N1 $1^{\text {iii }}$	2.0620 (14)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9500
$\mathrm{Ru}-\mathrm{Cl}^{\text {iii }}$	2.3920 (5)	C3-C4	1.386 (3)
Ru1-Cl1	2.3920 (5)	C3-H3A	0.9500
N1-C4	1.349 (2)	C4-H4A	0.9500
N1-C1	1.351 (2)	C5- $\mathrm{Cl}^{\text {iv }}$	1.7668 (17)
$\mathrm{C} 1-\mathrm{C} 2$	1.383 (2)	C5-H5A	0.92 (2)
C1-H1A	0.9500		
N1-Ru1-N1 ${ }^{\text {i }}$	89.82 (8)	C1-N1-Ru1	121.20 (12)
$\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{N} 1^{\text {ii }}$	178.62 (9)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	121.29 (16)
$\mathrm{N} 1{ }^{\text {i }}$-Ru1-N1 ${ }^{\text {ii }}$	90.20 (7)	N1-C1-H1A	119.4
N1—Ru1-N1 ${ }^{\text {iii }}$	90.20 (7)	C2-C1-H1A	119.4
N1 ${ }^{\text {i }}$-Ru1-N1 $1^{\text {iii }}$	178.62 (9)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	115.27 (16)
$\mathrm{N} 1{ }^{\text {ii }}$-Ru1- $1^{1 i i}$	89.82 (7)	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	123.07 (17)
N1-Ru1-Cl1 ${ }^{\text {iii }}$	89.31 (5)	N2-C2-H2A	118.5
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Ru} 1-\mathrm{Cl}^{\text {iii }}$	90.69 (5)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	118.5

supporting information

$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Ru} 1-\mathrm{Cl1} 1^{\text {iii }}$	89.31 (5)	N2-C3-C4	122.98 (17)
$\mathrm{N} 1{ }^{\text {iii }}$-Ru1-Cl1 ${ }^{\text {iii }}$	90.69 (5)	N2-C3-H3A	118.5
N1—Ru1-Cl1	90.69 (5)	C4-C3-H3A	118.5
N1--Ru1-Cl1	89.31 (5)	N1-C4-C3	121.27 (16)
N1i- ${ }^{\text {ii }} \mathrm{R} 1-\mathrm{Cl1}$	90.69 (5)	N1-C4-H4A	119.4
N1 ${ }^{\text {iii }}$-Ru1-Cl1	89.31 (5)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.4
Cl1iii-Ru1-Cl1	180.0	$\mathrm{Cl} 2-\mathrm{C} 5-\mathrm{Cl}^{2 \mathrm{iv}}$	111.58 (16)
C4-N1-C1	116.08 (15)	$\mathrm{Cl} 2-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	106.7 (15)
C4-N1-Ru1	122.71 (12)	$\mathrm{Cl} 2^{\text {iv }}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	108.1 (15)

Symmetry codes: (i) $-y+3 / 2,-x+3 / 2,-z+1 / 2$; (ii) $y+1 / 2, x-1 / 2,-z+1 / 2$; (iii) $-x+2,-y+1, z$; (iv) $x,-y+1 / 2,-z+1 / 4$.

Hydrogen-bond geometry (A, o)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 A \cdots \mathrm{Cl1}$				
$\mathrm{C} 5 — \mathrm{H} 5 A \cdots \mathrm{~N} 2^{\text {vi }}$	0.95	2.88	$3.555(2)$	129

Symmetry codes: (v) $-x+1,-y+1, z$; (vi) $-x+1, y-1 / 2,-z+1 / 4$.

