Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

\{4,4'-Dimethyl-2,2'-[2,2-dimethyl-propane-1,3-diylbis(nitrilomethanylylidene)]diphenolato\}copper(II) monohydrate

Hadi Kargar, ${ }^{\text {a* }}$ Reza Kia, ${ }^{\text {b }}$ Fatemeh Ganji ${ }^{\text {a }}$ and Valiollah Mirkhani ${ }^{\text {c }}$

${ }^{\text {a Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, }}$ I. R. of IRAN, ${ }^{\text {b }}$ Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and ${ }^{\text {c }}$ Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
Correspondence e-mail: h.kargar@pnu.ac.ir
Received 23 July 2012; accepted 2 August 2012

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$; R factor $=0.084 ; w R$ factor $=0.209$; data-to-parameter ratio $=14.2$.

The asymmetric unit of the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{21} \mathrm{H}_{24}{ }^{-}\right.\right.$ $\left.\left.\mathrm{N}_{2} \mathrm{O}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, comprises half of a Schiff base complex and half of a water molecule. The whole compound is generated by crystallographic twofold rotation symmetry. The geometry around the $\mathrm{Cu}^{\mathrm{II}}$ atom, located on a twofold axis, is distorted square-planar, which is supported by the $\mathrm{N}_{2} \mathrm{O}_{2}$ donor atoms of the coordinating Schiff base ligand. The dihedral angle between the symmetry-related benzene rings is 47.5 (4) ${ }^{\circ}$. In the crystal, the water molecule that is hydrogen bonded to the coordinated O atoms links the molecules via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions into chains parallel to [001]. The crystal structure is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, and by $\pi-\pi$ interactions involving inversion-related chelate rings [centroid-centroid distance $=3.480(4) \AA$ A .

Related literature

For applications of Schiff bases in coordination chemistry, see: Granovski et al. (1993); Blower (1998). For related structures, see: Ghaemi et al. (2011); Kargar et al. (2011, 2012). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=417.98$
Monoclinic, C2/c
$a=13.353$ (5) A
$b=15.986$ (5) A
$c=10.023$ (5) \AA
$\beta=104.696$ (5) ${ }^{\circ}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.891, T_{\text {max }}=0.948$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.084$
$w R\left(F^{2}\right)=0.209$
$S=0.95$
1779 reflections
$V=2069.5(14) \AA^{3}$
$Z=4$
Mo K α radiation
$\mu=1.08 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.11 \times 0.08 \times 0.05 \mathrm{~mm}$

4967 measured reflections 1779 independent reflections 1053 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.101$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 1$	0.85	2.46	2.783 (7)	103
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O}^{\text {i }}$	0.85	2.44	2.783 (7)	105
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1 W^{\text {ii }}$	0.93	2.55	3.48 (1)	173
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{Cg} 1{ }^{\text {iii }}$	0.97	2.83	3.693 (9)	148
C11-H11B $\cdots \mathrm{Cg} 1^{\text {iv }}$	0.96	2.98	3.850 (12)	151
Symmetry codes: $x+\frac{3}{2}, y+\frac{1}{2}, z-1 ; \text { (iv) }$	$\begin{aligned} & -x+ \\ & \frac{1}{2}, y+ \end{aligned}$	$\begin{equation*} \frac{1}{2} \tag{iii} \end{equation*}$	$-x+\frac{1}{2},-y-\frac{1}{2},-z-1$	

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HK and FG thank PNU for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2488).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Ghaemi, A., Rayati, S., Elahi, E., Ng, S. W. \& Tiekink, E. R. T. (2011). Acta Cryst. E67, m1445-m1446.
Granovski, A. D., Nivorozhkin, A. L. \& Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.
Kargar, H., Kia, R., Pahlavani, E. \& Tahir, M. N. (2011). Acta Cryst. E67, m941.
Kargar, H., Kia, R., Sharafi, Z. \& Tahir, M. N. (2012). Acta Cryst. E68, m82.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, m1172 [doi:10.1107/S1600536812034502]

\{4,4'-Dimethyl-2,2'-[2,2-dimethylpropane-1,3-diylbis(nitrilomethanylylidene)]diphenolato\}copper(II) monohydrate

Hadi Kargar, Reza Kia, Fatemeh Ganji and Valiollah Mirkhani

S1. Comment

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993; Blower, 1998). In continuation of our work on the structural analysis of Schiff base metal complexes (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011), we synthesized the title compound and report herein on its crystal structure.
The asymmetric unit of the title compound, Fig. 1, comprises half of a Schiff base complex and half a water molecule. The Cu 1 and C 9 atoms of the complex and the O atom of the water molecule lie on a two-fold rotation axis which generates the whole complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those reported for related structures (Kargar et al., 2012; Kargar et al., 2011; Ghaemi et al., (2011). The geometry around the $\mathrm{Cu}^{\mathrm{II}}$ atom is distorted square-planar which is supported by the $\mathrm{N}_{2} \mathrm{O}_{2}$ donor atoms of the coordinated Schiff base ligand. The dihedral angle between the substituted benzene rings is $47.5(4)^{\circ}$.
In the crystal, the water molecule that is hydrogen bonded to the coordinated O atoms, O 1 , mediates linking of molecules by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1 and Fig. 2). The crystal structure is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 1), and by $\pi-\pi$ interactions involving inversion related chelate rings $\left[C g \cdots C g^{i}=3.480(4) \AA\right.$; Cg is the centroid of the $\mathrm{Cu} 1 / \mathrm{O} 1 / \mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{N} 1$ ring; symmetry code: (i) $1-x,-y,-1-z]$.

S2. Experimental

The title compound was synthesized by adding 5-methyl-salicylaldehyde-2,2-dimethyl-1,3-propanediamine (2 mmol) to a solution of $\mathrm{CuCl}_{2} .4 \mathrm{H}_{2} \mathrm{O}(2.1 \mathrm{mmol})$ in ethanol $(30 \mathrm{ml})$. The mixture was refluxed with stirring for 30 min . The resultant solution was filtered. Dark-green single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

S3. Refinement

The water H atom was located in a difference Fourier map and refined as a riding atom with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{O})$. The C bound H -atoms were included in calculated positions and treated as riding atoms: $\mathrm{C}-\mathrm{H}=0.93,0.96$ and $0.97 \AA$ for CH , CH_{3} and $\mathrm{CH}_{2} \mathrm{H}$-atoms, respectively, with $\mathrm{U}_{\text {iso }}(\mathrm{H})=\mathrm{kx} \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$, where $\mathrm{k}=1.5$ for $\mathrm{CH}_{3} \mathrm{H}$-atoms, and $=1.2$ for other H atoms.

Figure 1

A view of the molecular structure of the title compound, with the atom numbering. The displacement ellipsoids are drawn at the 40% probability level. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines (see Table 1 for details; symmetry code for suffix $\mathrm{A}=-x+1, y,-z-1 / 2)$.

Figure 2
A view along the b axis of the crystal packing of the title compound showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions as dashed lines [see Table 1 for details; only the H atoms involved in these interactions are shown].
\{4,4'-Dimethyl-2,2'-[2,2-dimethylpropane-1,3-diylbis(nitrilomethanylylidene)]diphenolato\}copper(II) monohydrate

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=417.98$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=13.353$ (5) \AA
$b=15.986$ (5) \AA
$c=10.023$ (5) \AA
$\beta=104.696(5)^{\circ}$
$V=2069.5(14) \AA^{3}$
$Z=4$
$F(000)=876$
$D_{\mathrm{x}}=1.342 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 512 reflections
$\theta=2.5-27.4^{\circ}$
$\mu=1.08 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, dark-green
$0.11 \times 0.08 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min }=0.891, T_{\max }=0.948$

> 4967 measured reflections
> 1779 independent reflections
> 1053 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.101$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=2.0^{\circ}$
> $h=-15 \rightarrow 11$
> $k=-18 \rightarrow 18$
> $l=-10 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.084$
$w R\left(F^{2}\right)=0.209$
$S=0.95$
1779 reflections
125 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\mathrm{eq}}$
Cu1	0.5000	$0.01026(6)$	-0.2500	$0.0266(5)$
O1	$0.4089(4)$	$-0.0737(2)$	$-0.3499(6)$	$0.0312(14)$
N1	$0.4554(5)$	$0.0944(3)$	$-0.3912(7)$	$0.0305(16)$
C1	$0.3331(6)$	$-0.0612(4)$	$-0.4620(9)$	$0.0293(19)$
C2	$0.2617(6)$	$-0.1276(4)$	$-0.5073(10)$	$0.042(3)$
H2	0.2662	-0.1758	-0.4541	0.050^{*}
C3	$0.1860(7)$	$-0.1214(5)$	$-0.6291(11)$	$0.046(3)$
H3	0.1375	-0.1642	-0.6530	0.055^{*}
C4	$0.1790(6)$	$-0.0526(5)$	$-0.7191(10)$	$0.045(2)$
C6	$0.3222(6)$	$0.0109(4)$	$-0.5441(9)$	$0.0311(19)$
C7	$0.3854(6)$	$0.0845(4)$	$-0.5067(10)$	$0.032(2)$
H7	0.3753	0.1282	-0.5699	0.038^{*}
C8	$0.5166(6)$	$0.1727(4)$	$-0.3691(9)$	$0.036(2)$
H8A	0.4984	0.2056	-0.4531	0.043^{*}
H8B	0.5894	0.1587	-0.3512	0.043^{*}
C9	0.5000	$0.2260(6)$	-0.2500	$0.048(4)$

C5	$0.2449(6)$	$0.0134(5)$	$-0.6699(10)$	$0.042(2)$
H5	0.2380	0.0621	-0.7224	0.051^{*}
C11	$0.1004(8)$	$-0.0471(7)$	$-0.8564(12)$	$0.069(3)$
H11B	0.1206	-0.0042	-0.9113	0.104^{*}
H11A	0.0338	-0.0338	-0.8421	0.104^{*}
H11C	0.0968	-0.0999	-0.9032	0.104^{*}
C10	$0.4033(10)$	$0.2806(6)$	$-0.2988(13)$	$0.087(5)$
H10B	0.3947	0.3149	-0.2238	0.130^{*}
H10A	0.3436	0.2455	-0.3299	0.130^{*}
H10C	0.410	0.3157	-0.3733	0.130^{*}
O1W	0.5000	$-0.2254(4)$	-0.2500	$0.091(5)$
H1W1	0.5281	-0.1936	-0.2981	0.137^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0194(7)$	$0.0263(6)$	$0.0300(9)$	0.000	$-0.0015(6)$	0.000
O1	$0.026(3)$	$0.026(2)$	$0.031(4)$	$-0.0008(18)$	$-0.012(3)$	$-0.005(2)$
N 1	$0.033(4)$	$0.032(3)$	$0.030(5)$	$-0.005(2)$	$0.016(4)$	$0.003(3)$
C1	$0.018(4)$	$0.038(4)$	$0.030(5)$	$0.001(3)$	$0.003(4)$	$-0.005(3)$
C2	$0.031(5)$	$0.037(4)$	$0.049(7)$	$0.000(3)$	$-0.007(5)$	$0.000(4)$
C3	$0.020(5)$	$0.060(5)$	$0.052(7)$	$-0.007(3)$	$0.001(5)$	$-0.014(5)$
C4	$0.017(4)$	$0.068(5)$	$0.046(7)$	$-0.005(4)$	$-0.003(5)$	$-0.003(5)$
C6	$0.022(4)$	$0.036(3)$	$0.032(5)$	$0.007(3)$	$0.001(4)$	$0.001(3)$
C7	$0.030(5)$	$0.029(3)$	$0.036(6)$	$0.007(3)$	$0.006(5)$	$0.011(3)$
C8	$0.026(5)$	$0.032(4)$	$0.044(6)$	$-0.007(3)$	$-0.002(5)$	$0.004(3)$
C9	$0.046(9)$	$0.025(5)$	$0.073(12)$	0.000	$0.018(8)$	0.000
C5	$0.026(5)$	$0.052(4)$	$0.043(6)$	$0.005(3)$	$-0.002(4)$	$0.007(4)$
C11	$0.036(6)$	$0.113(8)$	$0.049(8)$	$-0.013(5)$	$-0.007(6)$	$0.000(6)$
C10	$0.123(12)$	$0.058(6)$	$0.089(11)$	$0.050(6)$	$0.045(9)$	$0.034(6)$
O1W	$0.106(10)$	$0.033(5)$	$0.106(11)$	0.000	$-0.026(8)$	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$1.914(4)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.441(10)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.914(4)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.934(6)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.527(10)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.934(6)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{O} 1-\mathrm{C} 1$	$1.322(9)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{~N} 1-\mathrm{C} 7$	$1.300(10)$	$\mathrm{C} 9-\mathrm{C} 8^{\mathrm{i}}$	$1.527(10)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.480(8)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.533(10)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.403(10)$	$\mathrm{C} 9-\mathrm{C} 10^{\mathrm{i}}$	$1.533(10)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.423(10)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.377(12)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9600
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9600
$\mathrm{C} 3-\mathrm{C} 4$	$1.411(13)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	0.9600
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9600
$\mathrm{C} 4-\mathrm{C} 5$	$1.382(11)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9600

C4-C11	1.507 (12)
C6-C5	1.413 (11)
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 1$	91.0 (3)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	93.9 (2)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	155.2 (3)
$\mathrm{Ol}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	155.1 (3)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	93.9 (2)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	91.9 (4)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cu} 1$	125.9 (4)
C7-N1-C8	118.8 (6)
C7-N1-Cu1	125.8 (4)
C8-N1-Cu1	115.0 (5)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	124.5 (6)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	117.8 (7)
C6- $\mathrm{C} 1-\mathrm{C} 2$	117.6 (8)
C3-C2-C1	120.8 (8)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.6
C2-C3-C4	122.5 (7)
C2-C3-H3	118.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	118.8
C5-C4-C3	115.8 (8)
C5-C4-C11	121.0 (9)
C3-C4-C11	123.1 (8)
C1-C6-C5	119.4 (7)
C1-C6-C7	123.4 (7)
C5-C6-C7	117.1 (7)
N1-C7-C6	124.9 (7)
N1-C7-H7	117.5
C6-C7-H7	117.5
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1$	-166.5 (8)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1$	92.1 (9)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{Cl}$	-10.9 (7)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 7$	101.3 (8)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 7$	0.5 (8)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 7$	-155.3 (9)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 8$	-71.3 (8)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 8$	-172.1 (6)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 8$	32.1 (4)
$\mathrm{Cu}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	15.7 (11)
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	-168.6 (6)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-174.8 (8)
C6-C1-C2-C3	1.2 (14)
C1-C2-C3-C4	4.2 (15)
C2-C3-C4-C5	-7.7 (15)

$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	0.9600
O1W—H1W1	0.8513

113.9 (7)
108.8
108.8
108.8
108.8
107.7
112.2 (8)
110.2 (6)
106.9 (6)
106.9 (6)
110.2 (6)
110.5 (11)
123.4 (8)
118.3
118.3
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
-2.8(12)
-7.9 (13)
176.4 (8)
178.2 (8)
5.8 (13)
-3.6(14)
175.7 (8)
116.3 (8)
-70.5 (7)
35.3 (4)
-83.7 (9)
156.2 (8)
6.1 (15)
-177.9 (9)
-1.0 (14)

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 11$	$176.4(10)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$179.7(9)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$172.9(8)$		

Symmetry code: (i) $-x+1, y,-z-1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W — \mathrm{H} 1 W 1 \cdots \mathrm{O} 1$	0.85	2.46	$2.783(7)$	103
$\mathrm{O} 1 W — \mathrm{H} 1 W 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.85	2.44	$2.783(7)$	105
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O} 1 W^{\text {di }}$	0.93	2.55	$3.48(1)$	173
$\mathrm{C} 8 — \mathrm{H} 8 B \cdots C g 1^{\text {iii }}$	0.97	2.83	$3.693(9)$	148
$\mathrm{C} 11 — \mathrm{H} 11 B \cdots C g 1^{\text {iv }}$	0.96	2.98	$3.850(12)$	151

Symmetry codes: (i) $-x+1, y,-z-1 / 2$; (ii) $-x+1 / 2,-y-1 / 2,-z-1$; (iii) $x+3 / 2, y+1 / 2, z-1$; (iv) $-x+1 / 2, y+1 / 2,-z-1 / 2$.

