Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-{[2,2-Bis(diethylamino)ethan-2-yliumthioyl]sulfanyl}-1,1-bis(diethylamino)ethylium bis(perchlorate)

Keiji Ohno,^a Tomoaki Sugaya,^a Takashi Fujihara^b* and Akira Nagasawa^a

^aDepartment of Chemistry, Graduate School of Science and Engineering , Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, and ^bComprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan

Correspondence e-mail: fuji@chem.saitama-u.ac.jp

Received 5 July 2012; accepted 10 August 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.005 Å; R factor = 0.055; wR factor = 0.140; data-to-parameter ratio = 21.2.

The title salt, $C_{20}H_{42}N_4S_2^{2^+}\cdot 2ClO_4^-$, was obtained from the reaction of bis(diethylamino)carbeniumdithiocarboxylate, $(Et_2N)_2C_2S_2$, with Fe(ClO₄)₂·6H₂O in CH₂Cl₂. The title compound, in which one of the S atoms of $(Et_2N)_2C_2S_2$ is bound to a 1,1-bis(diethylamino)ethane moiety, has two carbenium C atoms, and the charge compensation is provided by two perchlorate anions. The N₂C-CS₂ bond length is 1.512 (4) Å, corresponding to a C-C single bond, and the dihedral angle between N₂C- and -CS₂ planes [72.0 (2)°] is smaller than that of $(Et_2N)_2C_2S_2$ [82.0 (1)°]. The crystal structure features C-H···S hydrogen bonds.

Related literature

For general background to bis(*N*,*N*-disubstituted amino)carbeniumdithiocarboxylates, see: Winberg & Coffman (1965); Nagasawa *et al.* (1995); Nakayama & Akiyama (1992); Nakayama *et al.* (1997, 2000); Nakayama (2000, 2002); Miller *et al.* (2000); Fujihara *et al.* (2002); Siemeling *et al.* (2012). For transition metal complexes, see: Miyashita *et al.* (1998); Banerjee *et al.* (2002); Fujihara *et al.* (2004); Sugaya *et al.* (2009). For the cationic dimer of bis(*N*,*N*-disubstituted amino)carbeniumdithiocarboxylates, see: Otani *et al.* (1998); Banerjee & Zubieta (2004). For reference bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $C_{20}H_{42}N_4S_2^{-2+}.2CIO_4^{-1}$ $M_r = 601.62$ Orthorhombic, $P2_12_12_1$ a = 8.4158 (7) Å b = 16.1889 (13) Å c = 21.7213 (18) Å

Data collection

```
Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{\rm min} = 0.881, T_{\rm max} = 0.923
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	
$wR(F^2) = 0.140$	
S = 1.02	
7058 reflections	
333 parameters	
H-atom parameters constrained	

 $V = 2959.4 \text{ (4) } \text{\AA}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.41 \text{ mm}^{-1}$ T = 150 K 0.32 \times 0.21 \times 0.20 mm

21803 measured reflections 7058 independent reflections 5641 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.046$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C14-H14B\cdots S1^{i}$	0.98	2.91	3.893 (4)	177
C	1			

Symmetry code: (i) x - 1, y, z.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: *SHELXTL*; molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

This work was supported by a Grant-in-Aid for Scientific Research(C) (11005897 to TF) from the Japan Society for the Promotion of Science (JSPS).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2371).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–19.
- Banerjee, S. R., Nagasawa, A. & Zubieta, J. (2002). Inorg. Chim. Acta, 340, 155–162.
- Banerjee, S. R. & Zubieta, J. (2004). Acta Cryst. C60, m208-m209.
- Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fujihara, T., Ohba, T., Nagasawa, A., Nakayama, J. & Yoza, K. (2002). Acta Cryst. C58, 0558–0559.
- Fujihara, T., Sugaya, T., Nagasawa, A. & Nakayama, J. (2004). Acta Cryst. E60, m282–m284.
- Miller, G. P., Jeon, I., Faix, A. N., Jainski, J. P., Arhans, A. J. & Tetreau, M. C. (2000). J. Chem. Soc., Perkin Trans. 2, pp. 1777–1780.
- Miyashita, I., Matsumoto, K., Kobayashi, M., Nagasawa, A. & Nakayama, J. (1998). *Inorg. Chim. Acta*, **283**, 256–259.

- Nagasawa, A., Akiyama, I., Mashima, S. & Nakayama, J. (1995). Heteroat. Chem. 6, 45–49.
- Nakayama, J. (2000). CACS Forum, 20, 7-20.
- Nakayama, J. (2002). J. Synth. Org. Chem. Jpn, 60, 106–114.
- Nakayama, J. & Akiyama, I. (1992). J. Chem. Soc. Chem. Commun. p. 1522. Nakayama, J., Kitahara, T., Sugihara, Y., Sakamoto, A. & Ishii, A. (2000). J.
- Am. Chem. Soc. **122**, 9120–9126. Nakayama, J., Otani, T., Sugihara, Y. & Ishii, A. (1997). Tetrahedron Lett. **38**, 5013–5016.
- Otani, T., Sugihara, Y., Ishii, A. & Nakayama, J. (1998). Heteroat. Chem. 9, 703–707.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemeling, U., Memczak, H., Bruhn, C., Vogel, F., Träger, F., Baiod, E. J. & Weidner, T. (2012). Dalton Trans. 41, 2986–2994.
- Sugaya, T., Fujihara, T., Nagasawa, A. & Unoura, K. (2009). Inorg. Chim. Acta, 362, 4813–4822.
- Winberg, H. E. & Coffman, D. D. (1965). J. Am. Chem. Soc. 45, 2776-2777.

supporting information

Acta Cryst. (2012). E68, o2753-o2754 [doi:10.1107/S1600536812035453]

2-{[2,2-Bis(diethylamino)ethan-2-yliumthioyl]sulfanyl}-1,1-bis(diethylamino)ethylium bis(perchlorate)

Keiji Ohno, Tomoaki Sugaya, Takashi Fujihara and Akira Nagasawa

S1. Comment

Bis(*N*,*N*-disubsituted amino)carbeniumdithiocarboxylates [(R_2N)₂ C_2S_2], which have a zwitterionic (inner-salt) form and a neutral form as canonical structures (Nagasawa *et al.*, 1995; Fujihara *et al.*, 2002), are structurally and reactively interesting (Winberg & Coffman, 1965; Otani *et al.*, 1998; Nakayama & Akiyama, 1992; Nakayama *et al.*, 2000; Nakayama, 2000, 2002; Banerjee & Zubieta, 2004; Siemeling *et al.*, 2012). We have reported the syntheses, structures, and properties of the various transition metal complexes using (R_2N)₂ C_2S_2 as ligands (Miyashita *et al.*, 1998; Banerjee *et al.*, 2002; Fujihara *et al.*, 2004; Sugaya *et al.*, 2009), and the ligands act as neutral monodentate, bridging, and chelating ligands maintaining the characteristic zwitterionic form.

In the process of a preparation of iron(II) complex with bis(N,N-diethylamino) carbenium dithio carboxylate [(Et₂N)₂C₂S₂] (II) (Fig 1), we obtained the unexpectedly bis(diethylamino)-methylium bis(diethylamino)-2-ethyliumcarbodithioate perchlorate $[(C_{10}H_{20}N_2S_2)(C_{10}H_{20}N_2)](ClO_4)_2$ (I) and report here its molecular structure. We suppose that I was formed through an oxidation of II, which has taken place under gentle conditions for several months in solution. The molecular structure of I is shown in Fig. 2. The C11–S1 bond length is 1.794 (3) Å, which corresponds to the C–S single bond [1.79 (1)–1.82 (1)Å; Miller et al., 2000; 1.78 (4)Å; Nakayama et al., 1997]. The N–C(CS₂) bond lengths in the range of 1.316 (4)–1.333 (4) Å are slightly shorter than the normal $C(sp^3)$ –N(sp³) bond length (1.36Å; Allen *et al.*, 1987) suggesting that the C2 and C12 atoms are carbenium carbons. The bond lengths of C1–S2 [1.615 (3) Å] and C1–S1 [1.729 (3) Å] are close to those of the CS terminal and the -C-S- bridging bonds of methylated species of I, respectively [1.608 (14)Å and 1.714 (13)Å, respectively; Nakayama et al., 1997], indicating localization of electron on S-C-S moiety. The C1–C2 bond length [1.512 (4) Å] and dihedral angle between N₂C– and –CS₂ planes [71.99 (22)°] are slightly longer and smaller, respectively, than those of II [1.477Å-1.506 (2)Å and 82.0 (1)°, respectively; Nagasawa et al., 1995], and these change mean that decrease of interaction between the unfilled p orbital of carbenium carbon (C2) and electrons on S-C-S moiety. The C11-C12 bond length 1.523 (4)Å is slightly longer than that of C1-C2. The S1-C1-S2, N1-C2-N2, and N3-C12-N4 bond angles are similar values for those of II [S-C-S: 129.4 (8)° and N-C-N: 122 (1)°; Nagasawa et al., 1995]. Two ClO₄ per one I exist as counter ions in the crystal. The crystal structure consists of a chain structure through intermolecular weak C-H···S hydrogen bonding [H14B···S1': 2.9138 Å, C14-H14B···S1': 176.69°] (Fig. 3 and Hydrogen-bond geometry).

S2. Experimental

All the processes were carried out under an argon atmosphere using standard Schlenk techniques. Fe(ClO₄)₂·6H₂O (0.076 g, 0.21 mmol) was dissolved in CH₃CN (15 cm³). After stirring for 1 h at room temperature, the solvent was removed by evaporation under reduced pressure. The resulting powder (white) and **II** (0.141 g, 0.60 mmol) were dissolved in CH₂Cl₂ (30 cm³) and stirred for 1 h at room temperature. The insoluble salt was then filtered off, and the solvent of the filtrate

was removed by evaporation under reduced pressure. The resulting powder was dissolved in CH₂Cl₂, layered with Et₂O, and set aside for several months at room temperature. The red-purple crystals were obtained and dried *in vacuo*. Yield 0.011 g. (6.2% based on the II). ¹H NMR, CD₃CN δ 4.62 (*s*, 2H, -S–CH₂-), 3.55 (*dq*, 16H, CH₃–CH₂-) 1.27 (*q*, 24H, CH₃-). ¹³C NMR, CD₃CN δ 213.3 (S-C-S), 167.0 (N–C–N), 163.6 (N–C–N), 49.1 (CH₃–CH₂-), 48.7 (CH₃–CH₂-), 36.9 (S-CH₂-), 13.7 (CH₃). Analysis found: C 39.72, H 7.04, N 9.16%; calculated for C₂₀H₄₂Cl₂N₄O₈S₂: C 39.93, H 7.04, N 9.31%.

S3. Refinement

All the non-hydrogen atoms were refined anisotropically. All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms with C–H = 0.99Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene atoms and C–H = 0.98Å, $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl atoms.

The chemical structure of (II).

Figure 2

The molecular structure of **I** with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Figure 3

A view of the crystal packing, showing the hydrogen bonding (dashed lines). All counter ions (ClO_4) have been omitted for clarity.

2-{[2,2-Bis(diethylamino)ethan-2-yliumthioyl]sulfanyl}-1,1-bis(diethylamino)ethylium bis(perchlorate)

Crystal data

 $C_{20}H_{42}N_4S_2^{2+}\cdot 2ClO_4^{-}$ $M_r = 601.62$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 8.4158 (7) Å b = 16.1889 (13) Å c = 21.7213 (18) Å V = 2959.4 (4) Å³ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.366 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.881, T_{\max} = 0.923$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.140$ S = 1.027058 reflections 333 parameters F(000) = 1280 $D_x = 1.350 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3791 reflections $\theta = 2.3-25.2^{\circ}$ $\mu = 0.41 \text{ mm}^{-1}$ T = 150 KBlock, red $0.32 \times 0.21 \times 0.20 \text{ mm}$

21803 measured reflections 7058 independent reflections 5641 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 27.9^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -11 \rightarrow 11$ $k = -20 \rightarrow 21$ $l = -18 \rightarrow 28$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0814P)^2P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.70$ e Å⁻³

Special details

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

 $\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3}$

pairs

Absolute structure: Flack (1983), 3081 Friedel

Absolute structure parameter: 0.00 (7)

- 6.5375 (0.0177) x + 3.5865 (0.0590) y + 12.8042 (0.0841) z = 5.1962 (0.0328)* 0.0000 (0.0000) N1 * 0.0000 (0.0000) C2 * 0.0000 (0.0000) N2Rms deviation of fitted atoms = 0.00006.1258 (0.0105) x + 10.6803 (0.0361) y + 4.0595 (0.0680) z = 11.1638 (0.0232)Angle to previous plane (with approximate e.s.d.) = 71.99 (0.22)* 0.0000 (0.0000) S1 * 0.0000 (0.0000) C1 * 0.0000 (0.0000) S2Rms deviation of fitted atoms = 0.0000

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	v	Z	U_{iso}^*/U_{eq}	
$\overline{C1}$	0.0803 (3)	0 92906 (17)	0 18456 (13)	0.0266 (6)	
C2	0.1428(3)	0.87247(17)	0.23435 (13)	0.0275 (6)	
C3	-0.0518(4)	0 7694 (2)	0 20201 (15)	0.0402 (8)	
НЗА	-0.0328	0.7193	0.1769	0.048*	
H3B	-0.0864	0.8142	0 1741	0.048*	
C4	-0.1802(6)	0.7523 (4)	0.2484(2)	0.0905 (19)	
H4A	-0.1428	0.7108	0.2779	0.136*	
H4B	-0.2750	0.7315	0.2272	0.136*	
H4C	-0.2066	0.8033	0.2703	0.136*	
C5	0.1951 (5)	0.7249 (2)	0.25762 (18)	0.0510 (9)	
H5A	0.1389	0.6720	0.2506	0.061*	
H5B	0.2093	0.7319	0.3026	0.061*	
C6	0.3555 (7)	0.7219 (3)	0.2270 (2)	0.0891 (19)	
H6A	0.3418	0.7134	0.1826	0.134*	
H6B	0.4176	0.6762	0.2443	0.134*	
H6C	0.4116	0.7741	0.2341	0.134*	
C7	0.2630 (4)	0.8720 (2)	0.33875 (14)	0.0381 (8)	
H7A	0.3331	0.9100	0.3619	0.046*	
H7B	0.3157	0.8174	0.3369	0.046*	
C8	0.1063 (5)	0.8636 (2)	0.37214 (16)	0.0456 (8)	
H8A	0.0482	0.9160	0.3698	0.068*	
H8B	0.1260	0.8496	0.4154	0.068*	
H8C	0.0432	0.8198	0.3529	0.068*	
C9	0.3319 (4)	0.98111 (19)	0.26184 (16)	0.0378 (7)	
H9A	0.3147	1.0217	0.2953	0.045*	
H9B	0.2930	1.0058	0.2230	0.045*	
C10	0.5082 (5)	0.9627 (3)	0.2561 (2)	0.0628 (11)	
H10A	0.5488	0.9430	0.2958	0.094*	
H10B	0.5649	1.0131	0.2442	0.094*	
H10C	0.5247	0.9201	0.2248	0.094*	

011	0.11(1.(2))	0.00(70(17)	0.0(450.(12)	0.0074 (()
	0.1161 (3)	0.986/0(1/)	0.06450 (13)	0.02/4 (6)
HIIA	0.1500	1.0391	0.0841	0.033*
HIIB	0.1794	0.9803	0.0264	0.033*
C12	-0.0572 (3)	0.99655 (17)	0.04567 (12)	0.0258 (6)
C13	-0.3217 (4)	0.9369 (2)	0.04633 (17)	0.0427 (8)
H13A	-0.3786	0.9335	0.0065	0.051*
H13B	-0.3464	0.9911	0.0652	0.051*
C14	-0.3781 (5)	0.8689 (3)	0.0880 (2)	0.0585 (11)
H14A	-0.3607	0.8154	0.0680	0.088*
H14B	-0.4917	0.8761	0.0964	0.088*
H14C	-0.3187	0.8708	0.1268	0.088*
C15	-0.0855 (4)	0.85068 (19)	0.01460 (15)	0.0334 (7)
H15A	-0.1061	0.8083	0.0465	0.040*
H15B	0.0309	0.8551	0.0090	0.040*
C16	-0.1614 (5)	0.8243 (2)	-0.04533 (17)	0.0479 (9)
H16A	-0.2754	0.8154	-0.0390	0.072*
H16B	-0.1123	0.7728	-0.0595	0.072*
H16C	-0.1457	0.8675	-0.0763	0.072*
C17	-0.2247(5)	1.0945 (3)	-0.01183(18)	0.0527 (10)
H17A	-0.2348	1.1554	-0.0140	0.063*
H17B	-0.3297	1.0719	-0.0001	0.063*
C18	-0.1813(5)	1.0624 (3)	-0.07407(18)	0.0593 (11)
H18A	-0.0680	1 0720	-0.0816	0.089*
H18B	-0.2440	1 0912	-0.1055	0.089*
HISC	-0.2035	1 0031	-0.0760	0.089*
C19	-0.0413(5)	1 1461 (2)	0.0700	0.009
H19A	0.0134	1 1278	0.1064	0.058*
H10R	-0.1296	1.1270	0.0807	0.058*
C20	0.1290	1 1038 (2)	0.0307 0.0293(2)	0.053
H20A	0.0758 (0)	1.1556 (2)	0.0295 (2)	0.0075 (15)
1120A 1120A	0.1165	1.1374	0.0100	0.101
	0.1103	1.2402	-0.0072	0.101*
H20C	0.0100	1.2140 0.70287 (15)	-0.0075	0.101°
IN I NO	0.0970(3)	0.79387(13)	0.23329(12) 0.27527(11)	0.0338(0)
N2	0.2405 (3)	0.90405 (16)	0.2/53/(11)	0.0304 (5)
N3	-0.1489(3)	0.93085 (14)	0.03540 (12)	0.0282 (5)
N4	-0.10/6(3)	1.0/31/(15)	0.03665 (13)	0.0372(7)
01	0.6764 (4)	0.61374 (17)	0.34864 (12)	0.0564 (7)
02	0.4000 (4)	0.6153 (3)	0.35918 (17)	0.0945 (12)
03	0.5508 (5)	0.73360 (19)	0.37979 (16)	0.0918 (12)
04	0.5645 (4)	0.6189 (2)	0.44602 (13)	0.0710 (9)
05	0.6992 (4)	0.53757 (17)	0.07763 (13)	0.0663 (9)
O6	0.9442 (4)	0.58632 (19)	0.11349 (17)	0.0749 (9)
07	0.7235 (4)	0.6719 (2)	0.11376 (18)	0.0878 (11)
08	0.8378 (4)	0.6359 (2)	0.02204 (14)	0.0705 (9)
C11	0.54701 (11)	0.64601 (6)	0.38326 (4)	0.0490 (2)
Cl2	0.80215 (10)	0.60677 (5)	0.08213 (4)	0.0389 (2)
S 1	0.16983 (8)	0.90400 (4)	0.11539 (3)	0.02782 (16)
S2	-0.05125 (11)	0.99911 (6)	0.19878 (4)	0.0407 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0269 (15)	0.0247 (14)	0.0283 (14)	-0.0014 (11)	-0.0026 (12)	-0.0001 (12)
C2	0.0311 (15)	0.0273 (14)	0.0242 (14)	0.0008 (12)	-0.0004 (12)	0.0014 (12)
C3	0.0454 (19)	0.0397 (17)	0.0354 (17)	-0.0164 (16)	-0.0078 (15)	0.0043 (15)
C4	0.072 (3)	0.147 (5)	0.053 (3)	-0.055 (4)	0.005 (3)	0.008 (3)
C5	0.078 (3)	0.0277 (16)	0.047 (2)	0.0047 (18)	-0.012 (2)	0.0011 (15)
C6	0.121 (5)	0.085 (3)	0.061 (3)	0.061 (3)	0.021 (3)	0.016 (3)
C7	0.0467 (19)	0.0410 (18)	0.0266 (15)	0.0019 (15)	-0.0076 (14)	0.0004 (14)
C8	0.060(2)	0.0443 (19)	0.0328 (18)	-0.0042 (17)	0.0051 (16)	0.0030 (16)
C9	0.0430 (18)	0.0341 (16)	0.0362 (17)	-0.0109 (15)	-0.0032 (15)	-0.0036 (14)
C10	0.046 (2)	0.083 (3)	0.059 (3)	-0.014 (2)	0.0002 (19)	0.000 (2)
C11	0.0263 (14)	0.0280 (14)	0.0279 (15)	-0.0055 (11)	0.0043 (11)	0.0046 (12)
C12	0.0285 (14)	0.0261 (13)	0.0228 (13)	0.0040 (12)	0.0070 (12)	0.0036 (12)
C13	0.0271 (16)	0.052 (2)	0.049 (2)	0.0059 (15)	-0.0021 (15)	-0.0039 (17)
C14	0.0356 (19)	0.075 (3)	0.065 (3)	-0.0094 (19)	0.0131 (19)	0.005 (2)
C15	0.0310 (16)	0.0314 (16)	0.0377 (16)	-0.0018 (13)	-0.0020 (13)	-0.0010 (13)
C16	0.050(2)	0.048 (2)	0.046 (2)	0.0013 (18)	-0.0098 (18)	-0.0121 (17)
C17	0.048 (2)	0.052 (2)	0.058 (2)	0.0180 (19)	0.0010 (18)	0.0167 (19)
C18	0.047 (2)	0.083 (3)	0.047 (2)	0.017 (2)	-0.0052 (19)	0.021 (2)
C19	0.065 (2)	0.0273 (16)	0.052 (2)	0.0037 (17)	0.012 (2)	-0.0016 (16)
C20	0.097 (4)	0.036 (2)	0.069 (3)	-0.011 (2)	0.008 (3)	0.0147 (19)
N1	0.0466 (16)	0.0240 (12)	0.0306 (14)	-0.0041 (11)	-0.0069 (12)	0.0060 (11)
N2	0.0334 (13)	0.0315 (13)	0.0263 (12)	0.0000 (11)	-0.0033 (10)	0.0040 (11)
N3	0.0217 (12)	0.0288 (12)	0.0342 (13)	0.0015 (10)	-0.0012 (10)	0.0016 (11)
N4	0.0410 (15)	0.0299 (13)	0.0407 (16)	0.0100 (12)	0.0044 (13)	0.0078 (12)
01	0.0625 (17)	0.0525 (15)	0.0543 (16)	0.0216 (14)	0.0191 (14)	0.0003 (13)
O2	0.0563 (19)	0.143 (3)	0.084 (2)	0.002 (2)	-0.0089 (17)	0.042 (2)
O3	0.143 (3)	0.0545 (17)	0.078 (2)	0.049 (2)	0.012 (3)	0.0031 (17)
O4	0.0634 (19)	0.102 (2)	0.0473 (16)	0.0145 (18)	0.0108 (14)	0.0237 (17)
05	0.093 (2)	0.0591 (16)	0.0472 (15)	-0.0381 (17)	-0.0234 (16)	0.0195 (13)
O6	0.0643 (19)	0.0660 (17)	0.094 (2)	0.0070 (16)	-0.0421 (19)	0.0015 (18)
O7	0.066 (2)	0.096 (2)	0.102 (3)	0.0200 (18)	-0.016 (2)	-0.057 (2)
08	0.071 (2)	0.086 (2)	0.0544 (16)	-0.0347 (18)	-0.0061 (15)	0.0210 (16)
C11	0.0517 (5)	0.0519 (5)	0.0434 (5)	0.0224 (4)	0.0125 (4)	0.0125 (4)
Cl2	0.0420 (4)	0.0345 (4)	0.0402 (4)	-0.0056 (3)	-0.0080 (3)	0.0004 (3)
S 1	0.0269 (3)	0.0302 (3)	0.0263 (3)	0.0038 (3)	-0.0007 (3)	0.0006 (3)
S2	0.0430 (5)	0.0411 (4)	0.0380 (4)	0.0119 (4)	0.0069 (4)	0.0016 (4)

Geometric parameters (Å, °)

C1—C2	1.512 (4)	C12—N3	1.333 (4)	
C1—S2	1.615 (3)	C13—N3	1.476 (4)	
C1—S1	1.729 (3)	C13—C14	1.503 (5)	
C2—N2	1.316 (4)	C13—H13A	0.9900	
C2—N1	1.328 (4)	C13—H13B	0.9900	
C3—N1	1.483 (4)	C14—H14A	0.9800	

C3—C4	1.504 (6)	C14—H14B	0.9800
С3—НЗА	0.9900	C14—H14C	0.9800
С3—Н3В	0.9900	C15—N3	1.474 (4)
C4—H4A	0.9800	C15—C16	1.512 (5)
C4—H4B	0.9800	C15—H15A	0.9900
C4—H4C	0.9800	C15—H15B	0.9900
C5—N1	1.483 (4)	C16—H16A	0.9800
C5—C6	1.506 (7)	C16—H16B	0.9800
C5—H5A	0.9900	C16—H16C	0.9800
C5—H5B	0.9900	C17—N4	1.483 (5)
C6—H6A	0.9800	C17—C18	1494(5)
C6—H6B	0.9800	C17—H17A	0 9900
С6—Н6С	0.9800	C17—H17B	0.9900
C7—N2	1483(4)	C18—H18A	0.9900
C7 - C8	1.511 (5)	C18—H18B	0.9800
C7H7A	0.9900	C_{18} H18C	0.9800
C7 H7P	0.9900	C10 N4	1,477(4)
	0.9900	C_{19} C_{20}	1.477(4) 1.503(5)
	0.9800	C_{19} H_{19A}	0.0000
	0.9800	C10 H10B	0.9900
$C_0 = N_2$	1.405(A)	C20 H20A	0.9900
C_{0} C_{10}	1.518 (5)	C_{20} H_{20R}	0.9800
	0.0000	C_{20} H_{20C}	0.9800
	0.9900	$C_{20} = 1120C$	1,420 (3)
C10 H10A	0.9900	Cl101	1.420(3)
C10 H10R	0.9800	$C_{11} = 0_1$	1.423(3) 1.432(4)
	0.9800	$C_{11} = 02$	1.432(4)
	1.523(4)	C_{12} C_{12} C_{12} C_{13}	1.435(3)
$C_{11} = C_{12}$	1.523(4) 1 704 (3)	$C_{12} = 00$	1.413(3) 1.420(3)
	0.0000	$C_{12} = 0.05$	1.420(3)
	0.9900	$C_{12} = 0.8$	1.420(3)
C12 N/	1.326(A)	012-07	1.422 (3)
C12	1.520 (4)		
C_{2} C_{1} S_{2}	121 8 (2)	H13A_C13_H13B	108.0
$C_2 - C_1 - S_2$	121.0(2) 109.1(2)	C13 - C14 - H144	100.0
S2_C1_S1	109.1(2) 129.03(18)	C13 - C14 - H14B	109.5
$N_2 C_2 N_1$	129.03(10) 124.3(3)	$H_{14A} = C_{14} = H_{14B}$	109.5
$N_2 = C_2 = C_1$	124.3(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$N_2 = C_2 = C_1$	117.0(2)	H_{14} C_{14} H_{14} H_{14}	109.5
N1 = C2 = C1 N1 = C3 = C4	117.9(3)	$H_{14}A = C_{14} = H_{14}C$	109.5
N1 = C3 = C4	100.5	$M_{-}C_{1}$	109.5
C_{4} C_{3} H_{3} A	109.5	$N_{3} = C_{15} = C_{10}$	100 /
N1 C3 H3R	109.5	$C_{16} C_{15} H_{15A}$	109.4
C4 - C3 - H3B	109.5	N3C15H15R	109.4
$C_{\tau} = C_{\tau} = 0.00$	109.5	$C_{16} = C_{15} = H_{15} B$	109.4
$C_3 = C_4 = H_4 \Lambda$	100.1	H15A C15 H15P	109.4
$C_3 - C_4 - H_4 B$	109.5	C15_C16_H16A	100.0
H4A - C4 - H4B	109.5	C15—C16—H16B	109.5
	101.0		10/.0

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—H4C	109.5	H16A—C16—H16B	109.5
H4B-C4-H4C 109.5 H16A-C16-H16C 109.5 N1-C5-C6 111.3 (3) H16B-C16-H16C 109.5 N1-C5-H5A 109.4 N4-C17-C18 113.5 (3) C6-C5-H5A 109.4 N4-C17-H17A 108.9 N1-C5-H5B 109.4 N4-C17-H17B 108.9 C6-C5-H5B 109.4 N4-C17-H17B 108.9 C5-C6-H6A 109.5 H17A-C17-H17B 108.9 C5-C6-H6B 109.5 H17A-C17-H17B 109.5 H6A-C6-H6C 109.5 H18A-C18-H18B 109.5 H6A-C6-H6C 109.5 H18A-C18-H18C 109.5 H6A-C6-H6C 109.5 H18A-C18-H18C 109.5 N2-C7-H7A 109.3 N4-C19-C20 112.9 (3) C8-C7-H7A 109.3 N4-C19-H19A 109.0 C8-C7-H7B 109.3 C20-C19-H19A 109.0 C8-C7-H7B 109.3 C20-C19-H19A 109.0 C7-C8-H8A 109.5 H9A-C19-H19B 107.8 C7-C8-H8B 109.5 C19-C2	H4A—C4—H4C	109.5	C15—C16—H16C	109.5
$\begin{split} & \text{NI}-\text{CS}-\text{C6} & \text{III.3}(3) & \text{Hi6B}-\text{C16}-\text{Hi6C} & 109.5 \\ & \text{NI}-\text{CS}-\text{H5A} & 109.4 & \text{N4}-\text{C17}-\text{C18} & 113.5 (3) \\ & \text{C6}-\text{CS}-\text{H5A} & 109.4 & \text{N4}-\text{C17}-\text{H17A} & 108.9 \\ & \text{NI}-\text{CS}-\text{H5B} & 109.4 & \text{C18}-\text{C17}-\text{H17A} & 108.9 \\ & \text{C6}-\text{CS}-\text{H5B} & 109.4 & \text{C18}-\text{C17}-\text{H17B} & 108.9 \\ & \text{C6}-\text{CS}-\text{H5B} & 109.4 & \text{C18}-\text{C17}-\text{H17B} & 108.9 \\ & \text{C5}-\text{C6}-\text{H6A} & 109.5 & \text{C17}-\text{C18}-\text{H18A} & 109.5 \\ & \text{C5}-\text{C6}-\text{H6B} & 109.5 & \text{C17}-\text{C18}-\text{H18A} & 109.5 \\ & \text{C5}-\text{C6}-\text{H6B} & 109.5 & \text{C17}-\text{C18}-\text{H18B} & 109.5 \\ & \text{C5}-\text{C6}-\text{H6C} & 109.5 & \text{C17}-\text{C18}-\text{H18B} & 109.5 \\ & \text{C5}-\text{C6}-\text{H6C} & 109.5 & \text{C17}-\text{C18}-\text{H18C} & 109.5 \\ & \text{H6A}-\text{C6}-\text{H6C} & 109.5 & \text{H18A}-\text{C18}-\text{H18C} & 109.5 \\ & \text{N2}-\text{C7}-\text{C8} & \text{II1.4} (3) & \text{H8B}-\text{C18}-\text{H18C} & 109.5 \\ & \text{N2}-\text{C7}-\text{C8} & \text{II1.4} (3) & \text{H8B}-\text{C18}-\text{H18C} & 109.5 \\ & \text{N2}-\text{C7}-\text{H7A} & 109.3 & \text{N4}-\text{C19}-\text{H19A} & 109.0 \\ & \text{N2}-\text{C7}-\text{H7B} & 109.3 & \text{N4}-\text{C19}-\text{H19A} & 109.0 \\ & \text{N2}-\text{C7}-\text{H7B} & 109.3 & \text{N4}-\text{C19}-\text{H19B} & 109.0 \\ & \text{C7}-\text{C8}-\text{H8A} & 109.5 & \text{C19}-\text{C20}-\text{H20A} & 109.5 \\ & \text{C7}-\text{C8}-\text{H8B} & 109.5 & \text{C19}-\text{C20}-\text{H20A} & 109.5 \\ & \text{C7}-\text{C8}-\text{H8B} & 109.5 & \text{C19}-\text{C20}-\text{H20A} & 109.5 \\ & \text{C7}-\text{C8}-\text{H8B} & 109.5 & \text{C19}-\text{C20}-\text{H20A} & 109.5 \\ & \text{N4}-\text{C8}-\text{H8C} & 109.5 & \text{H9A}-\text{C19}-\text{H19B} & 109.5 \\ & \text{C7}-\text{C8}-\text{H8B} & 109.5 & \text{C19}-\text{C20}-\text{H20B} & 109.5 \\ & \text{C7}-\text{C8}-\text{H8B} & 109.5 & \text{C19}-\text{C20}-\text{H20B} & 109.5 \\ & \text{N2}-\text{C9}-\text{C10} & 110.8 (3) & \text{H20B}-\text{C20}-\text{H20C} & 109.5 \\ & \text{N8}-\text{C8}-\text{H8C} & 109.5 & \text{C19}-\text{C20}-\text{H20B} & 109.5 \\ & \text{N2}-\text{C9}-\text{H9B} & 109.5 & \text{O3}-\text{C1}-\text{O2} & 102.5 \\ & \text{N2}-\text{C9}-\text{H9B} & 109.5 & \text{O3}-\text{C1}-\text{O2} & 102.5 \\ & \text{N2}-\text{C9}-\text{H9B} & 109.5 & \text{O3}-\text{C1}-\text{O2} & 109.5 \\ & \text{N2}-\text{C9}-\text{H9B} & 109.5 & \text{O3}-\text{C1}-\text{O2} & 109.5 \\ & \text{C1}-\text{C2}-\text{H9B} & 109.5 & \text{O3}-\text{C1}-\text{O2} & 109.5 \\ & \text{C2}-\text{C1}-\text{H11A} & 107.6 & \text{C2}-\text{N1}-\text{C3} & 105.8 \\ & 10.0 (2) \\ & \text{C2}-\text{C1}$	H4B—C4—H4C	109.5	H16A—C16—H16C	109.5
$\begin{split} & \text{NI} - \text{CS} - \text{HSA} & 109.4 & \text{N4} - \text{C17} - \text{C18} & 113.5 (3) \\ & \text{CG} - \text{CS} - \text{HSA} & 109.4 & \text{N4} - \text{C17} - \text{H17A} & 108.9 \\ & \text{NI} - \text{CS} - \text{HSB} & 109.4 & \text{N4} - \text{C17} - \text{H17B} & 108.9 \\ & \text{CG} - \text{CS} - \text{HSB} & 109.4 & \text{N4} - \text{C17} - \text{H17B} & 108.9 \\ & \text{CG} - \text{CS} - \text{HSB} & 109.4 & \text{CI8} - \text{C17} - \text{H17B} & 107.7 \\ & \text{CS} - \text{CG} - \text{HGA} & 109.5 & \text{H17A} - \text{C17} - \text{H17B} & 109.5 \\ & \text{HCA} - \text{CG} - \text{HGB} & 109.5 & \text{C17} - \text{C18} - \text{H18B} & 109.5 \\ & \text{CG} - \text{CG} - \text{HGC} & 109.5 & \text{H18A} - \text{C18} - \text{H18B} & 109.5 \\ & \text{HGA} - \text{CG} - \text{HGC} & 109.5 & \text{H18A} - \text{C18} - \text{H18B} & 109.5 \\ & \text{HGA} - \text{CG} - \text{HGC} & 109.5 & \text{H18A} - \text{C18} - \text{H18C} & 109.5 \\ & \text{HGA} - \text{CG} - \text{HGC} & 109.5 & \text{H18A} - \text{C18} - \text{H18C} & 109.5 \\ & \text{N2} - \text{C7} - \text{CS} & 111.4 (3) & \text{H18B} - \text{C18} - \text{H18C} & 109.5 \\ & \text{N2} - \text{C7} - \text{CR} & 111.4 (3) & \text{H18B} - \text{C18} - \text{H18C} & 109.0 \\ & \text{N2} - \text{C7} - \text{H7A} & 109.3 & \text{N4} - \text{C19} - \text{H19A} & 109.0 \\ & \text{N2} - \text{C7} - \text{H7A} & 109.3 & \text{N4} - \text{C19} - \text{H19B} & 109.0 \\ & \text{N2} - \text{C7} - \text{H7B} & 109.3 & \text{N4} - \text{C19} - \text{H19B} & 109.0 \\ & \text{C7} - \text{C8} - \text{H8B} & 109.5 & \text{H19A} - \text{C19} - \text{H19B} & 109.0 \\ & \text{C7} - \text{C8} - \text{H8B} & 109.5 & \text{C19} - \text{C20} - \text{H20B} & 109.5 \\ & \text{H8A} - \text{C8} - \text{H8B} & 109.5 & \text{C19} - \text{C20} - \text{H20B} & 109.5 \\ & \text{H8A} - \text{C8} - \text{H8B} & 109.5 & \text{C19} - \text{C20} - \text{H20B} & 109.5 \\ & \text{H8A} - \text{C8} - \text{H8B} & 109.5 & \text{C19} - \text{C20} - \text{H20B} & 109.5 \\ & \text{C7} - \text{C8} - \text{H8B} & 109.5 & \text{C19} - \text{C20} - \text{H20B} & 109.5 \\ & \text{C7} - \text{C8} - \text{H8B} & 109.5 & \text{C19} - \text{C20} - \text{H20B} & 109.5 \\ & \text{S4A} - \text{C8} - \text{H8B} & 109.5 & \text{C19} - \text{C20} - \text{H20B} & 109.5 \\ & \text{C7} - \text{C8} - \text{H8B} & 109.5 & \text{C19} - \text{C20} - \text{H20B} & 109.5 \\ & \text{C10} - \text{C9} - \text{H9A} & 109.5 & \text{C19} - \text{C20} - \text{H20B} & 109.5 \\ & \text{C10} - \text{C9} - \text{H9A} & 109.5 & \text{C19} - \text{C20} - \text{H20B} & 109.5 \\ & \text{C10} - \text{C9} - \text{H9B} & 109.5 & \text{C1} - \text{C1} - \text{C1} & 108.8 (2) \\ & \text{C10} - \text{C9} - \text{H9B} & 109.5$	N1—C5—C6	111.3 (3)	H16B—C16—H16C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C5—H5A	109.4	N4—C17—C18	113.5 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C5—H5A	109.4	N4—C17—H17A	108.9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N1—C5—H5B	109.4	C18—C17—H17A	108.9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C6—C5—H5B	109.4	N4—C17—H17B	108.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H5A—C5—H5B	108.0	C18—C17—H17B	108.9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С5—С6—Н6А	109.5	H17A—C17—H17B	107.7
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С5—С6—Н6В	109.5	C17—C18—H18A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H6A—C6—H6B	109.5	C17—C18—H18B	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С5—С6—Н6С	109.5	H18A—C18—H18B	109.5
H6B—C6—H6C109.5H18A—C18—H18C109.5N2—C7—C8111.4 (3)H18B—C18—H18C109.5N2—C7—H7A109.3N4—C19—C20112.9 (3)C8—C7—H7A109.3N4—C19—H19A109.0N2—C7—H7B109.3C20—C19—H19A109.0C8—C7—H7B109.3N4—C19—H19B109.0C8—C7—H7B109.5H19A—C19—H19B109.0C7—C8—H8A109.5C19—C20—H20A109.5C7—C8—H8B109.5C19—C20—H20B109.5C7—C8—H8B109.5C19—C20—H20B109.5K8A—C8—H8C109.5C19—C20—H20C109.5N8A—C8—H8C109.5C19—C20—H20C109.5N2—C9—C10110.8 (3)H20B—C20—H20C109.5N2—C9—H9A109.5O3—C11—O1108.8 (2)C10—C9—H9A109.5O3—C11—O2109.9 (2)C10—C9—H9B109.5O3—C11—O4110.6 (2)H9A—C9—H9B109.5O4—C12—O7109.2 (2)C9—C10—H10A109.5O5—C12—O7109.5 (2)H10A—C10—H10B109.5O5—C12—O7109.5 (2)H10A—C10—H10C109.5O5—C12—O7109.5 (2)H10B—C10—H10C109.5O5—C12—O7109.5 (3)S1—C11—H11A107.6C2—NI—C3123.8 (3)S1—C11—H11B107.6C2—NI—C3123.8 (3)S1—C11—H11B107.6C2—NI—C3123.8 (3)S1—C11—H11B107.6C2—NI—C3123.8 (3)S1—C11—H11B107.6C2—NI—C3123.8 (3)S1—C	H6A—C6—H6C	109.5	C17—C18—H18C	109.5
N2-C7-C8 111.4 (3) H18B-C18-H18C 109.5 N2-C7-H7A 109.3 N4-C19-C20 112.9 (3) C8-C7-H7A 109.3 N4-C19-H19A 109.0 N2-C7-H7B 109.3 C20-C19-H19A 109.0 C8-C7-H7B 109.3 N4-C19-H19B 109.0 C7-C8-H8A 109.5 H19A-C19-H19B 109.0 C7-C8-H8A 109.5 C19-C20-H20A 109.5 C7-C8-H8B 109.5 C19-C20-H20B 109.5 C7-C8-H8B 109.5 C19-C20-H20B 109.5 C7-C8-H8C 109.5 C19-C20-H20B 109.5 C7-C8-H8C 109.5 C19-C20-H20C 109.5 RA-C8-H8C 109.5 C19-C20-H20C 109.5 N2-C9-C10 110.8 (3) H20B-C20-H20C 109.5 N2-C9-H9A 109.5 O3-C11-O1 108.8 (2) C10-C9-H9A 109.5 O3-C11-O2 109.9 (2) C10-C9-H9B 109.5 O3-C11-O4 106.(2) N9A-C9-H9B 109.5 O4-C10-O4 109.2 (2) C9-C10-H10A 109.5 O5-C12-O7 <td>H6B—C6—H6C</td> <td>109.5</td> <td>H18A—C18—H18C</td> <td>109.5</td>	H6B—C6—H6C	109.5	H18A—C18—H18C	109.5
N2C7H7A 109.3 N4C19C20 112.9 (3) C8C7H7A 109.3 N4C19H19A 109.0 N2C7H7B 109.3 C20C19H19A 109.0 N7C7-H7B 109.3 N4C19H19A 109.0 H7AC7-H7B 109.3 N4C19H19B 109.0 C7C8-H7B 109.5 H19AC19H19B 109.0 C7C8-H8B 109.5 C19C20-H20A 109.5 H8AC8-H8B 109.5 C19C20-H20B 109.5 H8AC8-H8C 109.5 C19C20-H20B 109.5 H8BC8-H8C 109.5 H20AC20-H20C 109.5 N2C9-C10 110.8 (3) H20BC20-H20C 109.5 N2C9-H9A 109.5 O3C11-O2 102.3 N2C9-H9B 109.5 O3C11-O2 109.2 (3) N2C9-H9B 109.5 O3C11-O4 106.6 (2) C9C10-H10B 109.5 O3C11-O4 109.2 (2) C9C10-H10B 109.5 O6C12-O5 111.35 (18) H10AC10-H1	N2—C7—C8	111.4 (3)	H18B—C18—H18C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C7—H7A	109.3	N4—C19—C20	112.9 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С8—С7—Н7А	109.3	N4—C19—H19A	109.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N2—C7—H7B	109.3	C20—C19—H19A	109.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С8—С7—Н7В	109.3	N4—C19—H19B	109.0
C7-C8-H8A109.5H19A-C19-H19B107.8 $C7-C8-H8B$ 109.5 $C19-C20-H20A$ 109.5 $H8A-C8-H8B$ 109.5 $C19-C20-H20B$ 109.5 $C7-C8-H8C$ 109.5 $H20A-C20-H20B$ 109.5 $H8A-C8-H8C$ 109.5 $C19-C20-H20C$ 109.5 $H8B-C8-H8C$ 109.5 $H20A-C20-H20C$ 109.5 $N2-C9-C10$ 110.8 (3) $H20B-C20-H20C$ 109.5 $N2-C9-H9A$ 109.5 $O3-C11-O1$ 108.8 (2) $C10-C9-H9A$ 109.5 $O3-C11-O2$ 110.2 (3) $N2-C9-H9B$ 109.5 $O3-C11-O2$ 109.9 (2) $C10-C9-H9B$ 109.5 $O3-C11-O4$ 106.2 (2) $H9A-C9-H9B$ 109.5 $O2-C11-O4$ 109.2 (2) $C9-C10-H10A$ 109.5 $O2-C11-O4$ 109.2 (2) $C9-C10-H10B$ 109.5 $O6-C12-O5$ 111.35 (18) $H10A-C10-H10B$ 109.5 $O5-C12-O7$ 109.5 (2) $H10A-C10-H10C$ 109.5 $O5-C12-O7$ 109.5 (2) $C12-C11-H11A$ 107.6 $C2-N1-C5$ 123.8 (3) $S1-C11-H11B$ 107.6 $C2-N1-C5$ 123.8 (3) $S1-C11-H11B$ 107.6 $C2-N1-C5$ 123.8 (3) $S1-C11-H11B$ 107.6 $C2-N2-C7$ 124.9 (3) $H14-C12-N3$ 122.4 (3) $C7-N2-C9$ 124.9 (3) $N4-C12-C11$ 116.4 (3) $C12-N$	H7A—C7—H7B	108.0	C20—C19—H19B	109.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—С8—Н8А	109.5	H19A—C19—H19B	107.8
H8A-C8-H8B109.5 $C19-C20-H20B$ 109.5C7-C8-H8C109.5H20A-C20-H20C109.5H8A-C8-H8C109.5C19-C20-H20C109.5H8B-C8-H8C109.5H20A-C20-H20C109.5N2-C9-C10110.8 (3)H20B-C20-H20C109.5N2-C9-H9A109.5O3-C11-O1108.8 (2)C10-C9-H9A109.5O3-C11-O2110.2 (3)N2-C9-H9B109.5O3-C11-O2109.9 (2)C10-C9-H9B109.5O3-C11-O4110.6 (2)H9A-C9-H9B109.5O2-C11-O4109.2 (2)C9-C10-H10A109.5O2-C11-O4109.2 (2)C9-C10-H10B109.5O6-C12-O5111.35 (18)H10A-C10-H10B109.5O5-C12-O7109.5 (2)H10B-C10-H10C109.5O5-C12-O7109.5 (2)H10B-C10-H10C109.5O5-C12-O7109.5 (2)C12-C11-S1119.01 (19)08-C12-O7107.2 (2)C12-C11-H11A107.6C2-N1-C3120.5 (3)S1-C11-H11B107.6C2-N1-C3120.5 (3)S1-C11-H11B107.6C2-N1-C3120.5 (3)S1-C11-H11B107.6C2-N2-C7124.9 (3)H11A-C11-H11B107.6C2-N2-C7124.9 (3)H11A-C12-N3122.4 (3)C7-N2-C9114.1 (3)N4-C12-N3122.4 (3)C7-N2-C9114.1 (3)N4-C12-C11116.4 (3)C12-N3-C13119.4 (4)	С7—С8—Н8В	109.5	C19—C20—H20A	109.5
C7-C8-H8C109.5H20A-C20-H20B109.5H8A-C8-H8C109.5C19-C20-H20C109.5H8B-C8-H8C109.5H20A-C20-H20C109.5N2-C9-C10110.8 (3)H20B-C20-H20C109.5N2-C9-H9A109.5O3-C11-O1108.8 (2)C10-C9-H9A109.5O3-C11-O2110.2 (3)N2-C9-H9B109.5O3-C11-O2109.9 (2)C10-C9-H9B109.5O3-C11-O4106.6 (2)H9A-C9-H9B109.5O3-C11-O4108.10 (18)C9-C10-H10A109.5O2-C11-O4109.2 (2)C9-C10-H10B109.5O6-C12-O5111.35 (18)H10A-C10-H10B109.5O5-C12-O8100.0 (2)C9-C10-H10C109.5O5-C12-O7109.5 (2)H10B-C10-H10C109.5O5-C12-O7109.5 (2)C12-C11-S1119.01 (19)O8-C12-O7109.5 (2)C12-C11-H11A107.6C2-N1-C5123.8 (3)S1-C11-H11B107.6C2-N1-C3120.5 (3)C12-C11-H11B107.6C2-N2-C7124.9 (3)H14-C12-N3122.4 (3)C7-N2-C9114.1 (3)N4-C12-N3122.4 (3)C7-N2-C9120.8 (3)N4-C12-C11116.4 (3)C12-N3-C13119.4 (3)	H8A—C8—H8B	109.5	C19—C20—H20B	109.5
H8A—C8—H8C109.5C19—C20—H20C109.5H8B—C8—H8C109.5H20A—C20—H20C109.5N2—C9—C10110.8 (3)H20B—C20—H20C109.5N2—C9—H9A109.5O3—C11—O1108.8 (2)C10—C9—H9A109.5O3—C11—O2110.2 (3)N2—C9—H9B109.5O1—C11—O2109.9 (2)C10—C9—H9B109.5O3—C11—O4106.6 (2)H9A—C9—H9B109.5O3—C11—O4108.10 (18)C9—C10—H10A109.5O2—C11—O4109.2 (2)C9—C10—H10B109.5O6—C12—O5111.35 (18)H10A—C10—H10B109.5O5—C12—O8100.1 (2)C9—C10—H10C109.5O5—C12—O8109.5 (2)H10B—C10—H10C109.5O5—C12—O7109.5 (2)H10B—C10—H10C109.5O5—C12—O7109.5 (2)C12—C11—H11A107.6C2—N1—C5123.8 (3)S1—C11—H11B107.6C2—N1—C3120.5 (3)C12—C11—H11B107.6C2—N2—C7124.9 (3)H11A—C11—H11B107.6C2—N2—C9120.8 (3)N4—C12—N3122.4 (3)C7—N2—C9114.1 (3)N4—C12—C11116.4 (3)C12—N3—C15122.9 (2)N3—C12=C11121.1 (2)C12—N3—C13119.4 (3)	С7—С8—Н8С	109.5	H20A—C20—H20B	109.5
H8B—C8—H8C109.5H20A—C20—H20C109.5N2—C9—C10110.8 (3)H20B—C20—H20C109.5N2—C9—H9A109.5O3—C11—O1108.8 (2)C10—C9—H9A109.5O3—C11—O2110.2 (3)N2—C9—H9B109.5O1—C11—O2109.9 (2)C10—C9—H9B109.5O3—C11—O4110.6 (2)H9A—C9—H9B109.5O3—C11—O4108.10 (18)C9—C10—H10A109.5O2—C11—O4109.2 (2)C9—C10—H10B109.5O6—C12—O5111.35 (18)H10A—C10—H10B109.5O5—C12—O8109.14 (17)H10A—C10—H10C109.5O5—C12—O7109.5 (2)H10B—C10—H10C109.5O5—C12—O7109.5 (2)C12—C11—S1119.01 (19)O8—C12—O7107.2 (2)C12—C11—H11A107.6C2—N1—C3120.5 (3)S1—C11—H11B107.6C2—N1—C3115.5 (3)S1—C11—H11B107.6C2—N2—C7124.9 (3)H11A—C11—H11B107.6C2—N2—C7124.9 (3)H11A—C11—H11B107.6C2—N2—C9108.(3)N4—C12—N3122.4 (3)C7—N2—C9114.1 (3)N4—C12—C11116.4 (3)C12—N3—C13119.4 (3)	H8A—C8—H8C	109.5	C19—C20—H20C	109.5
N2—C9—C10110.8 (3)H20B—C20—H20C109.5N2—C9—H9A109.5O3—C11—O1108.8 (2)C10—C9—H9A109.5O3—C11—O2110.2 (3)N2—C9—H9B109.5O1—C11—O2109.9 (2)C10—C9—H9B109.5O3—C11—O4110.6 (2)H9A—C9—H9B108.1O1—C11—O4108.10 (18)C9—C10—H10A109.5O2—C11—O4109.2 (2)C9—C10—H10B109.5O6—C12—O5111.35 (18)H10A—C10—H10B109.5O5—C12—O8100.14 (17)H10A—C10—H10C109.5O5—C12—O7109.5 (2)H10B—C10—H10C109.5O5—C12—O7109.5 (2)C12—C11—S1119.01 (19)O8—C12—O7107.2 (2)C12—C11—H11A107.6C2—N1—C5123.8 (3)S1—C11—H11B107.6C2—N1—C3115.5 (3)S1—C11—H11B107.6C2—N2—C7124.9 (3)H11A—C11—H11B107.0C2—N2—C9120.8 (3)N4—C12—N3122.4 (3)C7—N2—C9114.1 (3)N4—C12—C11116.4 (3)C12—N3—C15122.9 (2)N3—C12—C11121.1 (2)C12—N3—C13119.4 (3)	H8B—C8—H8C	109.5	H20A—C20—H20C	109.5
N2—C9—H9A109.5O3—C11—O1108.8 (2)C10—C9—H9A109.5O3—C11—O2110.2 (3)N2—C9—H9B109.5O1—C11—O2109.9 (2)C10—C9—H9B109.5O3—C11—O4110.6 (2)H9A—C9—H9B108.1O1—C11—O4108.10 (18)C9—C10—H10A109.5O2—C11—O4109.2 (2)C9—C10—H10B109.5O6—C12—O5111.35 (18)H10A—C10—H10B109.5O6—C12—O8110.0 (2)C9—C10—H10C109.5O5—C12—O8109.14 (17)H10A—C10—H10C109.5O5—C12—O7109.5 (2)H10B—C10—H10C109.5O5—C12—O7109.5 (2)C12—C11—S1119.01 (19)O8—C12—O7107.2 (2)C12—C11—H11A107.6C2—N1—C5123.8 (3)S1—C11—H11B107.6C2—N1—C3115.5 (3)S1—C11—H11B107.6C2—N2—C7124.9 (3)H11A—C11—H11B107.0C2—N2—C9120.8 (3)N4—C12—N3122.4 (3)C7—N2—C9114.1 (3)N4—C12—C11116.4 (3)C12—N3—C13112.9 (2)N3—C12—C11116.4 (3)C12—N3—C13112.9 (2)	N2—C9—C10	110.8 (3)	H20B—C20—H20C	109.5
C10—C9—H9A109.5O3—C11—O2110.2 (3)N2—C9—H9B109.5O1—C11—O2109.9 (2)C10—C9—H9B109.5O3—C11—O4110.6 (2)H9A—C9—H9B108.1O1—C11—O4108.10 (18)C9—C10—H10A109.5O2—C11—O4109.2 (2)C9—C10—H10B109.5O6—C12—O5111.35 (18)H10A—C10—H10B109.5O5—C12—O8100.14 (17)H10A—C10—H10C109.5O5—C12—O7109.5 (2)H10B—C10—H10C109.5O5—C12—O7109.5 (2)C12—C11—S1119.01 (19)O8—C12—O7107.2 (2)C12—C11—H11A107.6C2—N1—C5123.8 (3)S1—C11—H11B107.6C2—N2—C7124.9 (3)H11A—C11—H11B107.0C2—N2—C9124.9 (3)H11A—C12—N3122.4 (3)C7—N2—C9114.1 (3)N4—C12—C11116.4 (3)C12—N3—C13119.4 (3)	N2—C9—H9A	109.5	O3-C11-O1	108.8 (2)
N2—C9—H9B109.5O1—C11—O2109.9 (2)C10—C9—H9B109.5O3—C11—O4110.6 (2)H9A—C9—H9B108.1O1—C11—O4108.10 (18)C9—C10—H10A109.5O2—C11—O4109.2 (2)C9—C10—H10B109.5O6—C12—O5111.35 (18)H10A—C10—H10B109.5O6—C12—O8110.0 (2)C9—C10—H10C109.5O5—C12—O8109.14 (17)H10A—C10—H10C109.5O5—C12—O7109.5 (2)H10B—C10—H10C109.5O5—C12—O7109.5 (2)C12—C11—S1119.01 (19)O8—C12—O7107.2 (2)C12—C11—H11A107.6C2—N1—C5123.8 (3)S1—C11—H11B107.6C2—N2—C7124.9 (3)H11A—C11—H11B107.0C2—N2—C9124.9 (3)H11A—C12—N3122.4 (3)C7—N2—C9114.1 (3)N4—C12—C11116.4 (3)C12—N3—C13119.4 (3)N3—C12—C11121.1 (2)C12—N3—C13119.4 (3)	С10—С9—Н9А	109.5	O3—C11—O2	110.2 (3)
C10—C9—H9B109.5O3—C11—O4110.6 (2)H9A—C9—H9B108.1O1—C11—O4108.10 (18)C9—C10—H10A109.5O2—C11—O4109.2 (2)C9—C10—H10B109.5O6—C12—O5111.35 (18)H10A—C10—H10B109.5O6—C12—O8109.14 (17)H10A—C10—H10C109.5O5—C12—O8109.14 (17)H10A—C10—H10C109.5O5—C12—O7109.5 (2)H10B—C10—H10C109.5O5—C12—O7109.5 (2)C12—C11—S1119.01 (19)O8—C12—O7107.2 (2)C12—C11—H11A107.6C2—N1—C5123.8 (3)S1—C11—H11B107.6C2—N1—C3115.5 (3)S1—C11—H11B107.6C2—N2—C7124.9 (3)H11A—C11—H11B107.0C2—N2—C9120.8 (3)N4—C12—N3122.4 (3)C7—N2—C9114.1 (3)N4—C12—C11116.4 (3)C12—N3—C13119.4 (3)	N2—C9—H9B	109.5	O1—C11—O2	109.9 (2)
H9A—C9—H9B108.1O1—C11—O4108.10 (18)C9—C10—H10A109.5O2—C11—O4109.2 (2)C9—C10—H10B109.5O6—C12—O5111.35 (18)H10A—C10—H10B109.5O6—C12—O8100.14 (17)H10A—C10—H10C109.5O5—C12—O7109.5 (2)H10B—C10—H10C109.5O5—C12—O7109.5 (2)H10B—C10—H10C109.5O5—C12—O7109.5 (2)C12—C11—S1119.01 (19)O8—C12—O7107.2 (2)C12—C11—H11A107.6C2—N1—C5123.8 (3)S1—C11—H11B107.6C2—N2—C7124.9 (3)H11A—C11—H11B107.0C2—N2—C9120.8 (3)N4—C12—N3122.4 (3)C7—N2—C9114.1 (3)N4—C12—C11116.4 (3)C12—N3—C13119.4 (3)	С10—С9—Н9В	109.5	O3—Cl1—O4	110.6 (2)
C9—C10—H10A109.5O2—C11—O4109.2 (2)C9—C10—H10B109.5O6—C12—O5111.35 (18)H10A—C10—H10B109.5O6—C12—O8110.0 (2)C9—C10—H10C109.5O5—C12—O8109.14 (17)H10A—C10—H10C109.5O6—C12—O7109.5 (2)H10B—C10—H10C109.5O5—C12—O7109.5 (2)C12—C11—S1119.01 (19)O8—C12—O7107.2 (2)C12—C11—H11A107.6C2—N1—C5123.8 (3)S1—C11—H11B107.6C2—N1—C3115.5 (3)S1—C11—H11B107.6C2—N2—C7124.9 (3)H11A—C11—H11B107.0C2—N2—C9120.8 (3)N4—C12—N3122.4 (3)C7—N2—C9114.1 (3)N4—C12—C11116.4 (3)C12—N3—C13119.4 (3)	Н9А—С9—Н9В	108.1	O1—Cl1—O4	108.10 (18)
C9—C10—H10B109.5 06 —Cl2—O5111.35 (18)H10A—C10—H10B109.5 06 —Cl2—O8110.0 (2)C9—C10—H10C109.5 05 —Cl2—O8109.14 (17)H10A—C10—H10C109.5 06 —Cl2—O7109.5 (2)H10B—C10—H10C109.5 05 —Cl2—O7109.5 (2)C12—C11—S1119.01 (19) 08 —Cl2—O7107.2 (2)C12—C11—H11A107.6C2—N1—C5123.8 (3)S1—C11—H11B107.6C2—N1—C3115.5 (3)S1—C11—H11B107.6C2—N2—C7124.9 (3)H11A—C11—H11B107.0C2—N2—C9120.8 (3)N4—C12—N3122.4 (3)C7—N2—C9114.1 (3)N4—C12—C11116.4 (3)C12—N3—C15122.9 (2)N3—C12—C11121.1 (2)C12—N3—C13119.4 (3)	С9—С10—Н10А	109.5	O2—C11—O4	109.2 (2)
H10A—C10—H10B109.5 06 —Cl2— 08 110.0 (2)C9—C10—H10C109.5 05 —Cl2— 08 109.14 (17)H10A—C10—H10C109.5 06 —Cl2— 07 109.5 (2)H10B—C10—H10C109.5 05 —Cl2— 07 109.5 (2)C12—C11—S1119.01 (19) 08 —Cl2— 07 107.2 (2)C12—C11—H11A107.6C2— $N1$ —C5123.8 (3)S1—C11—H11B107.6C2— $N1$ —C3115.5 (3)S1—C11—H11B107.6C2— $N2$ —C7124.9 (3)H11A—C11—H11B107.0C2— $N2$ —C9120.8 (3)N4—C12—N3122.4 (3)C7— $N2$ —C9114.1 (3)N4—C12—C11116.4 (3)C12— $N3$ —C13119.4 (3)	C9—C10—H10B	109.5	O6—Cl2—O5	111.35 (18)
C9—C10—H10C109.5O5—Cl2—O8109.14 (17)H10A—C10—H10C109.5O6—Cl2—O7109.5 (2)H10B—C10—H10C109.5O5—Cl2—O7109.5 (2)C12—C11—S1119.01 (19)O8—Cl2—O7107.2 (2)C12—C11—H11A107.6C2—N1—C5123.8 (3)S1—C11—H11B107.6C5—N1—C3115.5 (3)S1—C11—H11B107.6C2—N2—C7124.9 (3)H11A—C11—H11B107.0C2—N2—C9120.8 (3)N4—C12—N3122.4 (3)C7—N2—C9114.1 (3)N4—C12—C11116.4 (3)C12—N3—C13119.4 (3)	H10A—C10—H10B	109.5	O6—Cl2—O8	110.0 (2)
H10A—C10—H10C109.506—C12—O7109.5 (2)H10B—C10—H10C109.505—C12—O7109.5 (2)C12—C11—S1119.01 (19)08—C12—O7107.2 (2)C12—C11—H11A107.6C2—N1—C5123.8 (3)S1—C11—H11B107.6C5—N1—C3115.5 (3)S1—C11—H11B107.6C2—N2—C7124.9 (3)H11A—C11—H11B107.0C2—N2—C9120.8 (3)N4—C12—N3122.4 (3)C7—N2—C9114.1 (3)N4—C12—C11116.4 (3)C12—N3—C13119.4 (3)	С9—С10—Н10С	109.5	O5—Cl2—O8	109.14 (17)
H10BC10H10C109.505C12O7109.5 (2)C12C11S1119.01 (19)08C12O7107.2 (2)C12C11H11A107.6C2N1C5123.8 (3)S1C11H11B107.6C2N1C3120.5 (3)C12C11H11B107.6C5N1C3115.5 (3)S1C11H11B107.6C2N2C7124.9 (3)H11AC11H11B107.0C2N2C9120.8 (3)N4C12N3122.4 (3)C7N2C9114.1 (3)N4C12C11116.4 (3)C12N3C15122.9 (2)N3C12C11121.1 (2)C12N3C13119.4 (3)	H10A—C10—H10C	109.5	O6—Cl2—O7	109.5 (2)
C12—C11—S1119.01 (19)O8—Cl2—O7107.2 (2)C12—C11—H11A107.6C2—N1—C5123.8 (3)S1—C11—H11A107.6C2—N1—C3120.5 (3)C12—C11—H11B107.6C5—N1—C3115.5 (3)S1—C11—H11B107.6C2—N2—C7124.9 (3)H11A—C11—H11B107.0C2—N2—C9120.8 (3)N4—C12—N3122.4 (3)C7—N2—C9114.1 (3)N4—C12—C11116.4 (3)C12—N3—C15122.9 (2)N3—C12—C11121.1 (2)C12—N3—C13119.4 (3)	H10B—C10—H10C	109.5	O5—Cl2—O7	109.5 (2)
C12—C11—H11A107.6C2—N1—C5123.8 (3)S1—C11—H11A107.6C2—N1—C3120.5 (3)C12—C11—H11B107.6C5—N1—C3115.5 (3)S1—C11—H11B107.6C2—N2—C7124.9 (3)H11A—C11—H11B107.0C2—N2—C9120.8 (3)N4—C12—N3122.4 (3)C7—N2—C9114.1 (3)N4—C12—C11116.4 (3)C12—N3—C15122.9 (2)N3—C12—C11121.1 (2)C12—N3—C13119.4 (3)	C12—C11—S1	119.01 (19)	O8—Cl2—O7	107.2 (2)
S1—C11—H11A 107.6 C2—N1—C3 120.5 (3) C12—C11—H11B 107.6 C5—N1—C3 115.5 (3) S1—C11—H11B 107.6 C2—N2—C7 124.9 (3) H11A—C11—H11B 107.0 C2—N2—C9 120.8 (3) N4—C12—N3 122.4 (3) C7—N2—C9 114.1 (3) N4—C12—C11 116.4 (3) C12—N3—C15 122.9 (2)	C12—C11—H11A	107.6	C2—N1—C5	123.8 (3)
C12—C11—H11B 107.6 C5—N1—C3 115.5 (3) S1—C11—H11B 107.6 C2—N2—C7 124.9 (3) H11A—C11—H11B 107.0 C2—N2—C9 120.8 (3) N4—C12—N3 122.4 (3) C7—N2—C9 114.1 (3) N4—C12—C11 116.4 (3) C12—N3—C15 122.9 (2) N3—C12—C11 121.1 (2) C12—N3—C13 119.4 (3)	S1—C11—H11A	107.6	C2—N1—C3	120.5 (3)
S1—C11—H11B 107.6 C2—N2—C7 124.9 (3) H11A—C11—H11B 107.0 C2—N2—C9 120.8 (3) N4—C12—N3 122.4 (3) C7—N2—C9 114.1 (3) N4—C12—C11 116.4 (3) C12—N3—C15 122.9 (2) N3—C12—C11 121.1 (2) C12—N3—C13 119.4 (3)	C12—C11—H11B	107.6	C5—N1—C3	115.5 (3)
H11A—C11—H11B107.0C2—N2—C9120.8 (3)N4—C12—N3122.4 (3)C7—N2—C9114.1 (3)N4—C12—C11116.4 (3)C12—N3—C15122.9 (2)N3—C12—C11121.1 (2)C12—N3—C13119.4 (3)	S1—C11—H11B	107.6	C2—N2—C7	124.9 (3)
N4—C12—N3 122.4 (3) C7—N2—C9 114.1 (3) N4—C12—C11 116.4 (3) C12—N3—C15 122.9 (2) N3—C12—C11 121.1 (2) C12—N3—C13 119.4 (3)	H11A—C11—H11B	107.0	C2—N2—C9	120.8 (3)
N4—C12—C11 116.4 (3) C12—N3—C15 122.9 (2) N3—C12—C11 121.1 (2) C12—N3—C13 119.4 (3)	N4—C12—N3	122.4 (3)	C7—N2—C9	114.1 (3)
N_3 —C12—C11 1211(2) C12—N3—C13 1194(3)	N4—C12—C11	116.4 (3)	C12—N3—C15	122.9 (2)
	N3—C12—C11	121.1 (2)	C12—N3—C13	119.4 (3)

N3—C13—C14	111.1 (3)	C15—N3—C13	117.7 (2)
N3—C13—H13A	109.4	C12—N4—C19	123.9 (3)
C14—C13—H13A	109.4	C12—N4—C17	122.4 (3)
N3—C13—H13B	109.4	C19—N4—C17	113.4 (3)
C14—C13—H13B	109.4	C1—S1—C11	104.50 (14)
S2—C1—C2—N2	-73.0 (3)	C10-C9-N2-C7	72.0 (4)
S1—C1—C2—N2	107.7 (3)	N4—C12—N3—C15	148.3 (3)
S2—C1—C2—N1	108.1 (3)	C11—C12—N3—C15	-27.5 (4)
S1—C1—C2—N1	-71.2 (3)	N4-C12-N3-C13	-33.0 (4)
S1-C11-C12-N4	146.7 (2)	C11—C12—N3—C13	151.1 (3)
S1—C11—C12—N3	-37.2 (4)	C16-C15-N3-C12	-122.3 (3)
N2-C2-N1-C5	-27.7 (5)	C16-C15-N3-C13	59.0 (4)
C1—C2—N1—C5	151.2 (3)	C14—C13—N3—C12	-127.1 (3)
N2-C2-N1-C3	157.5 (3)	C14—C13—N3—C15	51.6 (4)
C1—C2—N1—C3	-23.6 (4)	N3-C12-N4-C19	155.1 (3)
C6-C5-N1-C2	-57.2 (5)	C11—C12—N4—C19	-28.8 (4)
C6—C5—N1—C3	117.8 (4)	N3-C12-N4-C17	-31.9 (4)
C4—C3—N1—C2	-103.8 (4)	C11—C12—N4—C17	144.2 (3)
C4—C3—N1—C5	81.1 (5)	C20-C19-N4-C12	100.6 (4)
N1—C2—N2—C7	-26.8 (5)	C20-C19-N4-C17	-72.9 (4)
C1—C2—N2—C7	154.3 (3)	C18—C17—N4—C12	-51.3 (5)
N1-C2-N2-C9	157.3 (3)	C18-C17-N4-C19	122.4 (4)
C1—C2—N2—C9	-21.6 (4)	C2-C1-S1-C11	-169.24 (19)
C8—C7—N2—C2	-52.6 (4)	S2—C1—S1—C11	11.5 (3)
C8—C7—N2—C9	123.5 (3)	C12—C11—S1—C1	-67.1 (3)
C10—C9—N2—C2	-111.7 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
$C14$ — $H14B$ ···· $S1^{i}$	0.98	2.91	3.893 (4)	177

Symmetry code: (i) x-1, y, z.