Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Amino-5-methylpyridinium dibromoiodate

Salim F. Haddad, ${ }^{\text {a }}$ Basem F. Ali ${ }^{\text {b* }}$ and Rawhi Al-Far ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, The University of Jordan, Amman 11942, Jordan,
${ }^{\mathbf{b}}$ Department of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, and ${ }^{\text {c }}$ Faculty of Science and IT, AI-Balqa'a Applied University, Salt, Jordan
Correspondence e-mail: bfali@aabu.edu.jo

Received 14 August 2012; accepted 16 August 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; R factor $=0.040 ; w R$ factor $=0.096$; data-to-parameter ratio $=24.2$.

In the title salt, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}_{2} \mathrm{I}^{-}$, the cation is essentially planar (r.m.s. deviation $=0.0062 \AA$ for the non- H atoms) while the anion is almost linear with a $\mathrm{Br}-\mathrm{I}-\mathrm{Br}$ angle of 177.67 (2) ${ }^{\circ}$. The crystal packing shows two anions and two cations connected via $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ and (pyridine) $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen-bonding interactions, forming centrosymmetric tetramers with $R_{4}{ }^{4}(16)$ ring motifs. Very weak offset aromatic $\pi-\pi$ stacking interactions [centroid-centroid separation $=$ 4.038 (4), slippage $=1.773 \AA$] also occur.

Related literature

For background to this study, see: Al-Far et al. (2012); Kochel (2006). For comparison bond lengths and angles, see: Gardberg et al. (2002); Hemamalini \& Fun (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

$$
\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}_{2} \mathrm{I}^{-} \quad M_{r}=395.85
$$

Triclinic, $P \overline{1}$
$a=8.3648$ (13) A
$b=8.4233$ (16) \AA
$c=9.2321(16) \AA$
$\alpha=105.107(16)^{\circ}$
$\beta=115.371(16)^{\circ}$
$\gamma=98.241(15)^{\circ}$
$V=542.7(2) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=10.26 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.54 \times 0.39 \times 0.30 \mathrm{~mm}$

Data collection

Agilent Xcalibur Eos diffractometer Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}=0.011, T_{\text {max }}=0.045$

4283 measured reflections 2465 independent reflections 1777 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

Refinement

$\begin{array}{ll}R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040 & 102 \text { parameters }\end{array}$
$w R\left(F^{2}\right)=0.096$
H -atom parameters constrained
$S=1.01$
$\Delta \rho_{\text {max }}=1.17 \mathrm{e}_{\AA^{-3}}$
2465 reflections

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Br} 2$	0.86	2.73	$3.499(5)$	150
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Br} 1^{\mathrm{i}}$	0.86	2.70	$3.545(6)$	168

Symmetry code: (i) $-x+1,-y,-z+1$.
Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The structure was determined at the Hamdi Mango Center for Scientific Research at the University of Jordan.

Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: PV2581).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Al-Far, R., Ali, B. F. \& Haddad, S. F. (2012). Acta Cryst. E68, o2743.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Gardberg, A. S., Yang, S., Hoffman, B. M. \& Ibers, J. A. (2002). Inorg. Chem. 41, 1778-1781.
Hemamalini, M. \& Fun, H.-K. (2010). Acta Cryst. E66, o2192-o2193.
Kochel, A. (2006). Acta Cryst. E62, o5605-05606.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o2786 [doi:10.1107/S1600536812036136]

2-Amino-5-methylpyridinium dibromoiodate

Salim F. Haddad, Basem F. Ali and Rawhi AI-Far

S1. Comment

Polyhalides display a variety of structures. Various compounds with interesting structures were found when protonated aromatic nitrogen bases were combined with polyhalides (Kochel, 2006). Continuing our research in this area (Al-Far et al., 2012), we now report the crystal structure of the title compound in this article. The cystals of the title compound were found as an unexpected product from a reaction mixture of $\mathrm{CdI}_{2}, \mathrm{HBr}$, 2-amino-5-methylpyridine and Br_{2} upon attempting to synthesize $\left[\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}\right)\right]_{2}\left[\mathrm{CdBr}_{4}\right]$ complex of 2-amino-5-methylpyrinium.
In the title compound (Fig. 1), the cation, 2-amino-5-methylpyridinium, is essentially planar (r.m.s.d = $0.0062 \AA$). The $\mathrm{IBr}_{2}{ }^{-}$anion is symmetrical and almost linear, $\mathrm{Br} 1 — \mathrm{I} — \mathrm{Br} 2$ angle of 177.67 (2) ${ }^{\circ}$, with $\mathrm{I}-\mathrm{Br}$ distances 2.6836 (10) and 2.7119 (10) A. These values are in agreement with the values reported in the literature (Gardberg et al., 2002). The molecular dimensions of the cation are also as expected (Hemamalini \& Fun, 2010).
The crystal structure (Fig. 2), shows stacks of anions separated by layers of cations. The anions and cations are connected via $\mathrm{H}-\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ and pyN-H$\cdots \mathrm{Br}$ hydrogen bonding (Table 1), forming centrosymmetric tetramers (two cation and two anions). These tetramers form sixteen membered rings in graph set motif $R_{4}{ }^{4}(16)$ (Bernstein et al., 1995). The rings are further connected via $\pi \cdots \pi$ interactions between the cations with separation betweeen the ring centroids [$C_{g} \cdots C_{g}$ (2-x, -y, 1-z)] being 4.038 (4) \AA. Both hydrogen bonding and $\pi \cdots \pi$ interactions consolidate a three dimensional network.

S2. Experimental

A solution of $\mathrm{CdI}_{2}(0.37 \mathrm{~g}, 1.0 \mathrm{mmol})$ dissolved in $95 \% \mathrm{EtOH}(10 \mathrm{ml})$ and $60 \% \mathrm{HBr}(1 \mathrm{ml})$ solution was added to a mixture of 2-amino-5-methylpyridine $(0.11 \mathrm{~g}, 1.0 \mathrm{mmol})$ dissolved in $95 \% \mathrm{EtOH}(10 \mathrm{ml}), 60 \% \mathrm{HBr}(1 \mathrm{ml})$ and molecular bromine (2 ml). The resulting mixture was refluxed for 2.5 hr . On slow evaporation at room temperature yellow plates of the title compound were formed in 4 days (yield 85%).

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$, for aryl and methyl H-atoms, respectively. The $U_{\mathrm{iso}}(\mathrm{H})$ were allowed at $1.5 U_{\mathrm{eq}}\left(\mathrm{C}\right.$ methyl) or $1.2 U_{\mathrm{eq}}(\mathrm{N} / \mathrm{C}$ nonmethyl).

Figure 1
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2
A view of the pyN-H $\cdots \mathrm{Br}$ and $\mathrm{H}-\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.

2-Amino-5-methylpyridinium dibromoiodate

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}_{2} \mathrm{I}^{-}$

$M_{r}=395.85$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=8.3648$ (13) \AA
$b=8.4233$ (16) \AA
$c=9.2321(16) \AA$
$\alpha=105.107(16)^{\circ}$
$\beta=115.371(16)^{\circ}$

$$
\begin{aligned}
& \gamma=98.241(15)^{\circ} \\
& V=542.7(2) \AA^{3} \\
& Z=2 \\
& F(000)=364 \\
& D_{\mathrm{x}}=2.422 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1406 \text { reflections } \\
& \theta=3.2-30.0^{\circ} \\
& \mu=10.26 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=293 \mathrm{~K}$
Plate, yellow

Data collection

Agilent Xcalibur Eos
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.0534 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
$T_{\min }=0.011, T_{\text {max }}=0.045$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.096$
$S=1.01$
2465 reflections
102 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$0.54 \times 0.39 \times 0.30 \mathrm{~mm}$

4283 measured reflections
2465 independent reflections
1777 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=29.1^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-11 \rightarrow 10$
$k=-11 \rightarrow 11$
$l=-10 \rightarrow 12$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.035 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=1.17 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.85$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0292 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
N1	$1.0416(7)$	$0.3049(7)$	$0.7106(6)$	$0.0606(15)$
H1A	1.0387	0.3331	0.8057	0.073^{*}
I1	$0.70649(5)$	$-0.04784(5)$	$0.90281(5)$	$0.04214(17)$
Br1	$0.55742(10)$	$-0.38624(9)$	$0.80942(10)$	$0.0661(2)$
N2	$0.7745(7)$	$0.3836(7)$	$0.5894(7)$	$0.0699(17)$
H2A	0.7751	0.4121	0.6862	0.084^{*}
H2B	0.6882	0.3947	0.5021	0.084^{*}
C2	$0.9069(8)$	$0.3223(8)$	$0.5748(8)$	$0.0509(16)$
Br2	$0.85761(10)$	$0.29148(9)$	$0.98508(9)$	$0.0589(2)$
C3	$0.9133(8)$	$0.2686(8)$	$0.4207(8)$	$0.0500(15)$
H3A	0.8224	0.2749	0.3211	0.060^{*}
C4	$1.0533(8)$	$0.2076(9)$	$0.4194(8)$	$0.0551(17)$

H4A	1.0562	0.1728	0.3166	0.066^{*}
C5	$1.1936(8)$	$0.1936(8)$	$0.5625(7)$	$0.0438(14)$
C6	$1.1819(9)$	$0.2455(9)$	$0.7061(9)$	$0.0591(18)$
H6A	1.2732	0.2406	0.8064	0.071^{*}
C7	$1.3488(8)$	$0.1264(9)$	$0.5598(9)$	$0.0647(19)$
H7A	1.4329	0.1335	0.6734	0.097^{*}
H7B	1.4130	0.1938	0.5211	0.097^{*}
H7C	1.2999	0.0087	0.4830	0.097^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.077(4)$	$0.061(4)$	$0.032(3)$	$0.007(3)$	$0.025(3)$	$0.008(3)$
I1	$0.0468(3)$	$0.0479(3)$	$0.0301(2)$	$0.01598(19)$	$0.01656(19)$	$0.01427(19)$
Br 1	$0.0739(5)$	$0.0464(4)$	$0.0580(5)$	$0.0088(4)$	$0.0210(4)$	$0.0132(4)$
N 2	$0.076(4)$	$0.076(5)$	$0.060(4)$	$0.019(3)$	$0.039(3)$	$0.019(4)$
C 2	$0.052(3)$	$0.050(4)$	$0.046(4)$	$0.002(3)$	$0.023(3)$	$0.018(3)$
Br 2	$0.0794(5)$	$0.0461(4)$	$0.0465(4)$	$0.0117(4)$	$0.0284(4)$	$0.0173(4)$
C 3	$0.054(4)$	$0.054(4)$	$0.038(4)$	$0.011(3)$	$0.023(3)$	$0.014(3)$
C 4	$0.062(4)$	$0.058(4)$	$0.041(4)$	$0.008(3)$	$0.026(3)$	$0.014(3)$
C 5	$0.049(3)$	$0.042(4)$	$0.031(3)$	$0.005(3)$	$0.013(3)$	$0.015(3)$
C 6	$0.060(4)$	$0.064(5)$	$0.040(4)$	$0.013(4)$	$0.016(3)$	$0.016(4)$
C 7	$0.063(4)$	$0.069(5)$	$0.057(5)$	$0.022(4)$	$0.023(4)$	$0.025(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

N1-C2	1.340 (7)	C3-H3A	0.9300
N1-C6	1.352 (8)	C4-C5	1.389 (8)
N1-H1A	0.8600	C4-H4A	0.9300
$\mathrm{I} 1-\mathrm{Br} 1$	2.6836 (10)	C5-C6	1.334 (8)
$\mathrm{I} 1-\mathrm{Br} 2$	2.7119 (10)	C5-C7	1.496 (8)
$\mathrm{N} 2-\mathrm{C} 2$	1.330 (7)	C6-H6A	0.9300
N2-H2A	0.8600	C7-H7A	0.9600
N2-H2B	0.8600	C7-H7B	0.9600
C2-C3	1.402 (8)	C7-H7C	0.9600
C3-C4	1.348 (8)		
C2-N1-C6	123.5 (5)	C3-C4-H4A	118.0
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	118.3	C5-C4-H4A	118.0
C6-N1-H1A	118.3	C6-C5-C4	115.2 (6)
$\mathrm{Br} 1-\mathrm{I} 1-\mathrm{Br} 2$	177.67 (2)	C6-C5-C7	121.3 (6)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	120.0	C4-C5-C7	123.5 (5)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0	C5-C6-N1	122.1 (6)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0	C5-C6-H6A	118.9
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1$	120.1 (6)	N1-C6-H6A	118.9
N2-C2-C3	123.6 (6)	C5-C7-H7A	109.5
N1-C2-C3	116.3 (6)	C5-C7-H7B	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	118.9 (6)	H7A-C7-H7B	109.5

$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$123.9(6)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2$	
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$2.4(9)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.7(6)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.4(9)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.3(10)$

$\mathrm{C} 5-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{H} 7 \mathrm{~B}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.0(10)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7$	$-179.7(6)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$1.0(10)$
$\mathrm{C} 7-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$-179.3(6)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$-2.3(10)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{Br} 2$	0.86	2.73	$3.499(5)$	150
$\mathrm{~N} 2 — \mathrm{H} 2 B \cdots \mathrm{Br}^{\mathrm{i}}$	0.86	2.70	$3.545(6)$	168

Symmetry code: (i) $-x+1,-y,-z+1$.

