

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2,6-dimethylpyridinium) dibromoiodate bromide

Rawhi Al-Far,^a‡ Basem F. Ali^{b*} and Salim F. Haddad^c

^aFaculty of Science and IT, Al-Balqa'a Applied University, Salt, Jordan, ^bDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, and ^cDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan Correspondence e-mail: bfali@aabu.edu.jo

Received 7 August 2012; accepted 14 August 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.011 Å; *R* factor = 0.040; *wR* factor = 0.104; data-to-parameter ratio = 19.9.

In the title salt, $2C_7H_{10}N^+ \cdot IBr_2^- \cdot Br^-$, each of the anions, *viz*. $[IBr_2]^-$ and Br^- , lie on a twofold axis. The IBr_2^- anion is almost linear, with a Br-I-Br angle of 178.25 (3)°. The cation is essentially planar (r.m.s. deviation = 0.0067 Å). In the crystal, each Br^- anion links two cations *via* $N-H\cdots Br\cdots H-N$ hydrogen-bonding interactions.

Related literature

For background to this study, see: Kochel (2006). For comparison bond lengths and angles, see: Gardberg *et al.* (2002); Ahmadi *et al.* (2008).

4417 measured reflections

 $R_{\rm int} = 0.034$

1834 independent reflections

1280 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$2C_7H_{10}N^+ \cdot Br_2I^- \cdot Br^-$	$V = 2070.9 (4) \text{ Å}^3$
$M_r = 582.92$	Z = 4
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 13.8627 (16) Å	$\mu = 7.33 \text{ mm}^{-1}$
b = 11.3622 (9) Å	T = 293 K
c = 13.8957 (15) Å	$0.34 \times 0.28 \times 0.15~\text{mm}$
$\beta = 108.885 \ (13)^{\circ}$	

Data collection

Agilent Xcalibur Eos diffractometer Absorption correction: analytical (*CrysAlis PRO*; Agilent, 2011) $T_{min} = 0.578, T_{max} = 0.733$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	92 parameters
$wR(F^2) = 0.104$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$
1834 reflections	$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -Н	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1A···Br2	0.86	2.45	3.315 (5)	179

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The structure was determined at the Hamdi Mango Center for Scientific Research of the University of Jordan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2580).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Ahmadi, R., Dehghan, L., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1237.

Gardberg, A. S., Yang, S., Hoffman, B. M. & Ibers, J. A. (2002). *Inorg. Chem.* **41**, 1778–1781.

Kochel, A. (2006). Acta Cryst. E62, 05605-05606.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

[‡] Cuurrent address: Qassim University, Faculty of Science, Chemistry Department, Qassim, Saudi Arabia.

supporting information

Acta Cryst. (2012). E68, o2743 [doi:10.1107/S1600536812035702]

Bis(2,6-dimethylpyridinium) dibromoiodate bromide

Rawhi Al-Far, Basem F. Ali and Salim F. Haddad

S1. Comment

Polyhalides display a variety of structures. Various compounds with interesting structures were found when protonated aromatic nitrogen bases were combined with polyhalides (Kochel, 2006). Herein, we report the crystal structure of $[(C_7H_{10}N)^+]_2$. [IBr₂]⁻. Br', (I). Few crystals of (I) were found as an unexpected product from reaction mixture of CdI₂, HBr, 2,6-dimethylpyridine and Br₂ upon attempting to formulate $[(C_7H_{10}N)]_2$ [CdBr₄] salt of 2,6-dimethylpyrinium. The title salt is depicted in Fig. 1. The IBr₂⁻ anion is symmetrical and almost linear, Br1—I—Br1ⁱ angle of 178.25 (3) °; (i) –*x* + 1, *y*, -*z* + 1/2], with I—Br1 distance of 2.7117 (9) Å. These values are in agreement with the values reported in the literature (Gardberg *et al.*, 2002). The molecular dimensions of the cation are as expected (Ahmadi *et al.*, 2008).

The cations are arranged as zigzag stacks parallel to the *c*-axis (Fig. 2). Moreover, alternating Br⁻ and IBr₂⁻ anions form stacks that separate the cations. Each bromide anion is hydrogen bonded *via* N1—H1A···Br2 with two cations along the *b*-axis (Table 1). There are no significant Br···Br or aryl···aryl interactions in the crystal structure; the shortest Br···Br separation is just greater than 5.0 Å and the shortest distance between the ring centroids is over 4.8 Å.

S2. Experimental

A solution of CdI_2 (0.37 g, 1 mmol) dissolved in 95% EtOH (10 ml) and 2 ml 60% HBr solution was added to a mixture of 2,6-dimethylpyridine (0.11 g, 1 mmol) dissolved in 95% EtOH (10 ml), 60% HBr (2 ml) and molecular bromine (2 ml). The resulting mixture was refluxed for 2 hr. On cooling few reddish crystals of the title complex were found mixed in the bulk of the precipitate formed which proved to be mainly 2,6-dimethylpyridinium bromide.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.86 Å and C—H = 0.93 and 0.96 Å, for aryl and methyl H-atoms, respectively. The $U_{iso}(H)$ were allowed at $1.5U_{eq}(C \text{ methyl})$ or $1.2U_{eq}(N/C \text{ non-methyl})$.

Figure 1

Molecular configuration and atom naming scheme for **I**. Displacement ellipsoids are drawn at the 30% probability level. A stands for the symmetry operation: -x + 1, y, -z + 1/2

Figure 2

Packing diagram of I, down crystallographic c axis. Interspecies hydrogen bonds are shown as dashed lines.

Bis(2,6-dimethylpyridinium) dibromoiodate bromide

Crystal data	
$2C_7H_{10}N^+ \cdot Br_2I^- \cdot Br^-$	F(000) = 1104
$M_r = 582.92$	$D_{\rm x} = 1.870 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 1414 reflections
a = 13.8627 (16) Å	$\theta = 3.0-29.4^{\circ}$
b = 11.3622 (9) Å	$\mu = 7.33 \text{ mm}^{-1}$
c = 13.8957 (15) Å	T = 293 K
$\beta = 108.885 \ (13)^{\circ}$	Block, orange
$V = 2070.9 (4) \text{ Å}^3$	$0.34 \times 0.28 \times 0.15$ mm
Z = 4	
Data collection	
Agilent Xcalibur Eos	Absorption correction: analytical
diffractometer	(CrysAlis PRO; Agilent, 2011)
Radiation source: Enhance (Mo) X-ray Source	$T_{\min} = 0.578, T_{\max} = 0.733$
Graphite monochromator	4417 measured reflections
Detector resolution: 16.0534 pixels mm ⁻¹	1834 independent reflections
ω scans	1280 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.034$

$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 3.1^\circ$	$k = -12 \rightarrow 13$
$h = -16 \rightarrow 12$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.104$	neighbouring sites
<i>S</i> = 1.05	H-atom parameters constrained
1834 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0423P)^2 + 1.4129P]$
92 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.52 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
II	0.5000	0.56444 (5)	0.2500	0.0633 (2)	
Br1	0.31439 (6)	0.56808 (6)	0.10417 (6)	0.0846 (3)	
Br2	0.0000	0.55587 (7)	0.2500	0.0665 (3)	
N1	0.1116 (3)	0.3483 (4)	0.1556 (3)	0.0529 (11)	
H1A	0.0824	0.4027	0.1793	0.064*	
C6	0.2531 (5)	0.3799 (6)	0.3092 (5)	0.081 (2)	
H6A	0.2058	0.4369	0.3186	0.122*	
H6B	0.3145	0.4188	0.3090	0.122*	
H6C	0.2688	0.3237	0.3637	0.122*	
C1	0.2069 (5)	0.3183 (5)	0.2109 (5)	0.0614 (16)	
C5	0.0574 (5)	0.2992 (5)	0.0649 (5)	0.0654 (17)	
C2	0.2529 (6)	0.2305 (6)	0.1722 (6)	0.085 (2)	
H2A	0.3183	0.2057	0.2091	0.101*	
C7	-0.0487 (5)	0.3421 (7)	0.0149 (5)	0.093 (2)	
H7A	-0.0643	0.4021	0.0563	0.140*	
H7B	-0.0955	0.2778	0.0069	0.140*	
H7C	-0.0544	0.3742	-0.0506	0.140*	
C4	0.1058 (8)	0.2137 (6)	0.0278 (6)	0.090 (2)	
H4A	0.0720	0.1780	-0.0341	0.108*	
C3	0.2038 (8)	0.1805 (6)	0.0814 (7)	0.098 (3)	
H3A	0.2363	0.1235	0.0550	0.117*	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0866 (5)	0.0525 (4)	0.0601 (4)	0.000	0.0366 (3)	0.000
Br1	0.0928 (6)	0.0837 (5)	0.0703 (5)	0.0069 (4)	0.0166 (4)	-0.0037 (4)
Br2	0.0573 (5)	0.0564 (5)	0.0949 (7)	0.000	0.0371 (5)	0.000
N1	0.059 (3)	0.046 (3)	0.059 (3)	0.006 (2)	0.026 (2)	0.005 (2)
C6	0.065 (4)	0.083 (5)	0.082 (5)	0.005 (4)	0.005 (4)	-0.001 (4)
C1	0.058 (4)	0.056 (4)	0.074 (4)	0.010 (3)	0.028 (3)	0.023 (3)
C5	0.088 (5)	0.058 (4)	0.058 (4)	-0.014 (4)	0.034 (4)	-0.002 (3)
C2	0.098 (6)	0.068 (5)	0.107 (6)	0.035 (4)	0.061 (5)	0.032 (4)
C7	0.076 (5)	0.116 (6)	0.078 (5)	-0.017 (5)	0.012 (4)	0.001 (4)
C4	0.152 (8)	0.063 (5)	0.068 (5)	-0.018 (5)	0.054 (5)	-0.014 (4)
C3	0.151 (8)	0.066 (5)	0.101 (6)	0.031 (5)	0.076 (6)	0.011 (5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

I1—Br1	2.7117 (9)	C1—C2	1.383 (9)
I1—Br1 ⁱ	2.7117 (9)	C5—C4	1.372 (9)
Br2—Br2 ⁱⁱ	0.0000	C5—C7	1.490 (9)
Br2—Br2	0.0000	C2—C3	1.350 (10)
N1—C1	1.340 (7)	C2—H2A	0.9300
N1—C5	1.361 (7)	С7—Н7А	0.9600
N1—H1A	0.8600	С7—Н7В	0.9600
C6—C1	1.483 (8)	С7—Н7С	0.9600
C6—H6A	0.9600	C4—C3	1.373 (10)
С6—Н6В	0.9600	C4—H4A	0.9300
С6—Н6С	0.9600	С3—НЗА	0.9300
$Br1_InBr1^i$	178 25 (3)	C4—C5—C7	125 8 (7)
Br^{2i} Br^{2} Br^{2}	0(10)	$C_{3} - C_{2} - C_{1}$	120.3(7)
C1 - N1 - C5	1250(5)	$C_3 = C_2 = H_2 A$	119.6
C1 - N1 - H1A	117.5	C1 - C2 - H2A	119.6
C_{5} N1 H_{1A}	117.5	$C_{2} = C_{2} = C_{2}$	109.5
C1 - C6 - H6A	109 5	C5 - C7 - H7B	109.5
C1—C6—H6B	109.5	H7A—C7—H7B	109.5
H6A—C6—H6B	109.5	C5 - C7 - H7C	109.5
C1—C6—H6C	109.5	H7A - C7 - H7C	109.5
H6A—C6—H6C	109.5	H7B - C7 - H7C	109.5
H6B—C6—H6C	109.5	C5—C4—C3	120.6 (7)
N1—C1—C2	117.0 (6)	С5—С4—Н4А	119.7
N1—C1—C6	117.4 (5)	C3—C4—H4A	119.7
C2—C1—C6	125.6 (6)	C2—C3—C4	120.1 (7)
N1—C5—C4	116.6 (6)	С2—С3—НЗА	119.9
N1—C5—C7	117.6 (6)	С4—С3—Н3А	119.9
C5—N1—C1—C2	-0.2 (9)	C6—C1—C2—C3	-179.9 (7)
C5—N1—C1—C6	-178.7 (5)	N1—C5—C4—C3	0.4 (9)

C1—N1—C5—C4	-0.9 (9)	C7—C5—C4—C3	-179.4 (7)
C1—N1—C5—C7	178.9 (5)	C1—C2—C3—C4	-2.2 (11)
N1—C1—C2—C3	1.8 (9)	C5—C4—C3—C2	1.1 (11)

Symmetry codes: (i) -x+1, y, -z+1/2; (ii) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1A····Br2	0.86	2.45	3.315 (5)	179