Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 Bis(2,6-dimethylpyridinium) dibromoiodate bromide

Rawhi Al-Far, ${ }^{\mathbf{a}} \ddagger$ Basem F. Ali ${ }^{\text {b* }}$ and Salim F. Haddad ${ }^{\text {c }}$

${ }^{\text {a}}$ Faculty of Science and IT, Al-Balqa'a Applied University, Salt, Jordan, ${ }^{\text {b }}$ Department of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, and ${ }^{\text {c }}$ Department of Chemistry, The University of Jordan, Amman 11942, Jordan
Correspondence e-mail: bfali@aabu.edu.jo
Received 7 August 2012; accepted 14 August 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$; R factor $=0.040 ; w R$ factor $=0.104 ;$ data-to-parameter ratio $=19.9$.

In the title salt, $2 \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}^{+} \cdot \mathrm{IBr}_{2}{ }^{-} \cdot \mathrm{Br}^{-}$, each of the anions, viz. [$\left.\mathrm{IBr}_{2}\right]^{-}$and Br^{-}, lie on a twofold axis. The $\mathrm{IBr}_{2}{ }^{-}$anion is almost linear, with a $\mathrm{Br}-\mathrm{I}-\mathrm{Br}$ angle of 178.25 (3). The cation is essentially planar (r.m.s. deviation $=0.0067 \AA$). In the crystal, each Br^{-}anion links two cations via $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Br} \cdots \mathrm{H}-\mathrm{N}$ hydrogen-bonding interactions.

Related literature

For background to this study, see: Kochel (2006). For comparison bond lengths and angles, see: Gardberg et al. (2002); Ahmadi et al. (2008)

[^0]
Experimental

Crystal data
$2 \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}^{+} \cdot \mathrm{Br}_{2} \mathrm{I}^{-} \cdot \mathrm{Br}^{-}$
$V=2070.9(4) \AA^{3}$
$M_{r}=582.92$
$Z=4$
Monoclinic, C2/c
Mo $K \alpha$ radiation
$a=13.8627$ (16) A
$\mu=7.33 \mathrm{~mm}^{-1}$
$b=11.3622$ (9) A
$c=13.8957$ (15) \AA
$T=293 \mathrm{~K}$
$0.34 \times 0.28 \times 0.15 \mathrm{~mm}$
$\beta=108.885(13)^{\circ}$

4417 measured reflections
Agilent Xcalibur Eos diffractometer Absorption correction: analytical (CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}=0.578, T_{\text {max }}=0.733$ 1834 independent reflections 1280 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.034$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040 \quad 92$ parameters
$w R\left(F^{2}\right)=0.104$
H-atom para
H -atom parameters constrained
$S=1.05$
1834 reflections
$\Delta \rho_{\text {max }}=0.52$ e $\AA \rho_{\text {min }}=-0.58 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Br} 2$	0.86	2.45	$3.315(5)$	179

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The structure was determined at the Hamdi Mango Center for Scientific Research of the University of Jordan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2580).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Ahmadi, R., Dehghan, L., Amani, V. \& Khavasi, H. R. (2008). Acta Cryst. E64, m1237.
Gardberg, A. S., Yang, S., Hoffman, B. M. \& Ibers, J. A. (2002). Inorg. Chem. 41, 1778-1781.
Kochel, A. (2006). Acta Cryst. E62, o5605-05606.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o2743 [doi:10.1107/S1600536812035702]

Bis(2,6-dimethylpyridinium) dibromoiodate bromide

Rawhi AI-Far, Basem F. Ali and Salim F. Haddad

S1. Comment

Polyhalides display a variety of structures. Various compounds with interesting structures were found when protonated aromatic nitrogen bases were combined with polyhalides (Kochel, 2006). Herein, we report the crystal structure of $\left[\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}\right)^{+}\right]_{2} .\left[\mathrm{IBr}_{2}\right]^{-}$. $\mathrm{Br}^{-},(\mathbf{I})$. Few crystals of (I) were found as an unexpected product from reaction mixture of CdI_{2}, HBr , 2,6-dimethylpyridine and Br_{2} upon attempting to formulate $\left[\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}\right)\right]_{2}\left[\mathrm{CdBr}_{4}\right]$ salt of 2,6-dimethylpyrinium.
The title salt is depicted in Fig. 1. The $\mathrm{IBr}_{2}{ }^{-}$anion is symmetrical and almost linear, $\mathrm{Br} 1 — \mathrm{I} — \mathrm{Br} 1^{\mathrm{i}}$ angle of 178.25 (3) ${ }^{\circ}$; (i) $-x+1, y,-z+1 / 2]$, with I—Br1 distance of 2.7117 (9) \AA. These values are in agreement with the values reported in the literature (Gardberg et al., 2002). The molecular dimensions of the cation are as expected (Ahmadi et al., 2008).
The cations are arranged as zigzag stacks parallel to the c-axis (Fig. 2). Moreover, alternating Br^{-}and $\mathrm{IBr}_{2}{ }^{-}$anions form stacks that separate the cations. Each bromide anion is hydrogen bonded via $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Br} 2$ with two cations along the b-axis (Table 1). There are no significant $\mathrm{Br} \cdots \mathrm{Br}$ or aryl \cdots aryl interactions in the crystal structure; the shortest $\mathrm{Br} \cdots \mathrm{Br}$ separation is just greater than $5.0 \AA$ and the shortest distance between the ring centroids is over $4.8 \AA$.

S2. Experimental

A solution of $\mathrm{CdI}_{2}(0.37 \mathrm{~g}, 1 \mathrm{mmol})$ dissolved in $95 \% \mathrm{EtOH}(10 \mathrm{ml})$ and $2 \mathrm{ml} 60 \% \mathrm{HBr}$ solution was added to a mixture of 2,6-dimethylpyridine $(0.11 \mathrm{~g}, 1 \mathrm{mmol})$ dissolved in $95 \% \mathrm{EtOH}(10 \mathrm{ml}), 60 \% \mathrm{HBr}(2 \mathrm{ml})$ and molecular bromine (2 ml). The resulting mixture was refluxed for 2 hr . On cooling few reddish crystals of the title complex were found mixed in the bulk of the precipitate formed which proved to be mainly 2,6-dimethylpyridinium bromide.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$, for aryl and methyl H-atoms, respectively. The $U_{\mathrm{iso}}(\mathrm{H})$ were allowed at $1.5 U_{\mathrm{eq}}\left(\mathrm{C}\right.$ methyl) or $1.2 U_{\mathrm{eq}}(\mathrm{N} / \mathrm{C}$ nonmethyl).

Figure 1
Molecular configuration and atom naming scheme for I. Displacement ellipsoids are drawn at the 30% probability level. A stands for the symmetry operation: $-x+1, y,-z+1 / 2$

Figure 2
Packing diagram of \mathbf{I}, down crystallographic c axis. Interspecies hydrogen bonds are shown as dashed lines.

Bis(2,6-dimethylpyridinium) dibromoiodate bromide

Crystal data

$2 \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}^{+} \cdot \mathrm{Br}_{2} \mathrm{I}^{-} \cdot \mathrm{Br}^{-}$
$M_{r}=582.92$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=13.8627$ (16) \AA
$b=11.3622$ (9) \AA
$c=13.8957(15) \AA$
$\beta=108.885(13)^{\circ}$
$V=2070.9(4) \AA^{3}$
$Z=4$

Data collection

Agilent Xcalibur Eos
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.0534 pixels mm^{-1}
ω scans
$F(000)=1104$
$D_{\mathrm{x}}=1.870 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1414 reflections
$\theta=3.0-29.4^{\circ}$
$\mu=7.33 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, orange
$0.34 \times 0.28 \times 0.15 \mathrm{~mm}$

Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}=0.578, T_{\text {max }}=0.733$
4417 measured reflections
1834 independent reflections
1280 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ}, \theta_{\min }=3.1^{\circ} \\
& h=-16 \rightarrow 12
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.104$
$S=1.05$
1834 reflections
92 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& k=-12 \rightarrow 13 \\
& l=-16 \rightarrow 16
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\mathrm{eq}}$
I1	0.5000	$0.56444(5)$	0.2500	$0.0633(2)$
Br1	$0.31439(6)$	$0.56808(6)$	$0.10417(6)$	$0.0846(3)$
Br2	0.0000	$0.55587(7)$	0.2500	$0.0665(3)$
N1	$0.1116(3)$	$0.3483(4)$	$0.1556(3)$	$0.0529(11)$
H1A	0.0824	0.4027	0.1793	0.064^{*}
C6	$0.2531(5)$	$0.3799(6)$	$0.3092(5)$	$0.081(2)$
H6A	0.2058	0.4369	0.3186	0.122^{*}
H6B	0.3145	0.4188	0.3090	0.122^{*}
H6C	0.2688	0.3237	0.3637	0.122^{*}
C1	$0.2069(5)$	$0.3183(5)$	$0.2109(5)$	$0.0614(16)$
C5	$0.0574(5)$	$0.2992(5)$	$0.0649(5)$	$0.0654(17)$
C2	$0.2529(6)$	$0.2305(6)$	$0.1722(6)$	$0.085(2)$
H2A	0.3183	0.2057	0.2091	0.101^{*}
C7	$-0.0487(5)$	$0.3421(7)$	$0.0149(5)$	$0.093(2)$
H7A	-0.0643	0.4021	0.0563	0.140^{*}
H7B	-0.0955	0.2778	0.0069	0.140^{*}
H7C	-0.0544	0.3742	-0.0506	0.140^{*}
C4	$0.1058(8)$	$0.2137(6)$	$0.0278(6)$	$0.090(2)$
H4A	0.0720	0.1780	-0.0341	0.108^{*}
C3	$0.2038(8)$	$0.1805(6)$	$0.0814(7)$	$0.098(3)$
H3A	0.2363	0.1235	0.0550	0.117^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.0866(5)$	$0.0525(4)$	$0.0601(4)$	0.000	$0.0366(3)$	0.000
Br1	$0.0928(6)$	$0.0837(5)$	$0.0703(5)$	$0.0069(4)$	$0.0166(4)$	$-0.0037(4)$
Br2	$0.0573(5)$	$0.0564(5)$	$0.0949(7)$	0.000	$0.0371(5)$	0.000
N1	$0.059(3)$	$0.046(3)$	$0.059(3)$	$0.006(2)$	$0.026(2)$	$0.005(2)$
C6	$0.065(4)$	$0.083(5)$	$0.082(5)$	$0.005(4)$	$0.005(4)$	$-0.001(4)$
C1	$0.058(4)$	$0.056(4)$	$0.074(4)$	$0.010(3)$	$0.028(3)$	$0.023(3)$
C5	$0.088(5)$	$0.058(4)$	$0.058(4)$	$-0.014(4)$	$0.034(4)$	$-0.002(3)$
C2	$0.098(6)$	$0.068(5)$	$0.107(6)$	$0.035(4)$	$0.061(5)$	$0.032(4)$
C7	$0.076(5)$	$0.116(6)$	$0.078(5)$	$-0.017(5)$	$0.012(4)$	$0.001(4)$
C4	$0.152(8)$	$0.063(5)$	$0.068(5)$	$-0.018(5)$	$0.054(5)$	$-0.014(4)$
C3	$0.151(8)$	$0.066(5)$	$0.101(6)$	$0.031(5)$	$0.076(6)$	$0.011(5)$

Geometric parameters ($\left.\AA,{ }^{\circ}{ }^{\circ}\right)$

$\mathrm{I} 1-\mathrm{Br} 1$	2.7117 (9)	C1-C2	1.383 (9)
$\mathrm{I} 1-\mathrm{Br} 1^{\mathrm{i}}$	2.7117 (9)	C5-C4	1.372 (9)
$\mathrm{Br} 2-\mathrm{Br} 2^{\text {ii }}$	0.0000	C5-C7	1.490 (9)
$\mathrm{Br} 2-\mathrm{Br} 2$	0.0000	C2-C3	1.350 (10)
N1-C1	1.340 (7)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
N1-C5	1.361 (7)	C7-H7A	0.9600
N1—H1A	0.8600	C7-H7B	0.9600
C6-C1	1.483 (8)	C7-H7C	0.9600
C6-H6A	0.9600	C4-C3	1.373 (10)
C6-H6B	0.9600	C4-H4A	0.9300
C6-H6C	0.9600	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300
$\mathrm{Br} 1-\mathrm{I} 1-\mathrm{Br} 1^{\text {i }}$	178.25 (3)	C4-C5-C7	125.8 (7)
$\mathrm{Br} 2 \mathrm{ii}-\mathrm{Br} 2-\mathrm{Br} 2$	0 (10)	C3-C2-C1	120.7 (7)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	125.0 (5)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.6
C1-N1-H1A	117.5	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.6
C5-N1-H1A	117.5	C5-C7-H7A	109.5
C1-C6-H6A	109.5	C5-C7-H7B	109.5
C1-C6-H6B	109.5	H7A-C7-H7B	109.5
H6A-C6-H6B	109.5	C5-C7-H7C	109.5
C1-C6-H6C	109.5	H7A-C7-H7C	109.5
H6A-C6-H6C	109.5	H7B-C7-H7C	109.5
H6B-C6-H6C	109.5	C5-C4-C3	120.6 (7)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	117.0 (6)	C5-C4-H4A	119.7
N1-C1-C6	117.4 (5)	C3-C4-H4A	119.7
C2-C1-C6	125.6 (6)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	120.1 (7)
N1-C5-C4	116.6 (6)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.9
N1-C5-C7	117.6 (6)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.9
C5-N1-C1-C2	-0.2 (9)	C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-179.9 (7)
C5-N1-C1-C6	-178.7 (5)	N1-C5-C4-C3	0.4 (9)

supporting information

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-0.9(9)$	$\mathrm{C} 7-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$-179.4(7)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 7$	$178.9(5)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-2.2(11)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.8(9)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$1.1(11)$

Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (ii) $-x, y,-z+1 / 2$.

Hydrogen-bond geometry ($\AA,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{Br} 2$	0.86	2.45	$3.315(5)$	179

[^0]: \ddagger Cuurrent address: Qassim University, Faculty of Science, Chemistry Department, Qassim, Saudi Arabia.

