

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,3,6-Trichloro-5-(trichloromethyl)pyridine

Xue-mei Zhu,^a Li-jun Pei,^{a,b} Zhao-sheng Cai,^a* Zhan-gian Song^b and Shi-bin Shang^b

^aCollege of Chemical and Biological Engineering, Yancheng Institute of Technology, Yinbing Road No. 9 Yancheng, Yancheng 224051, People's Republic of China, and ^bInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, Jiangsu Province, People's Republic of China

Correspondence e-mail: jsyc_czs@163.com

Received 31 July 2012; accepted 10 August 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.040; wR factor = 0.123; data-to-parameter ratio = 13.4.

The title compound, C₆HCl₆N, lies on a mirror plane, the asymmetric unit conataining a half-molecule. Weak intramolecular C-H···Cl contacts are observed.

Related literature

For biological background, see: Okorley & Dietsche (1988). For the synthetic procedure, see: Allphin et al. (1993); For a related structure, see: Fun et al. (2011).

Experimental

Crystal data

C ₆ HCl ₆ N
$M_r = 299.78$
Orthorhombic, Pbcm
a = 8.3100 (17) Å
<i>b</i> = 17.018 (3) Å
c = 7.3160 (15) Å

V = 1034.6 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 1.61 \text{ mm}^-$ T = 293 K $0.30 \times 0.20 \times 0.20$ mm

Data collection

Enraf–Nonius CAD-4	1033 independent reflections
diffractometer	779 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.063$
(North et al., 1968)	3 standard reflections every 200
$T_{\min} = 0.644, \ T_{\max} = 0.739$	reflections
1985 measured reflections	intensity decay: 1%
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.040$	77 parameters
$wR(F^2) = 0.123$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
1033 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$C1-H1A\cdots Cl5$	0.93	2.48	2.944 (5)	111

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software: data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We gratefully acknowledged the support of the National Natural Science Foundation of P. R. China (No. 31170543) and the Foundation of the Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (No. AE 201155). We also gratefully acknowledge the support of China Pharmaceutical University and Changzhou University in the analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2577).

References

- Allphin, C. P., DesJardin, M. A. & Harley, A. D. (1993). Patent Int. Appl. No. PCT /EP1993/544267.
- Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands
- Fun, H.-K., Arshad, S., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, 01785.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Okorley, J. A. & Dietsche, T. J. (1988). Patent Int. Appl. No. PCT/US1998/ 4723019
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o2723 [doi:10.1107/S1600536812035404]

2,3,6-Trichloro-5-(trichloromethyl)pyridine

Xue-mei Zhu, Li-jun Pei, Zhao-sheng Cai, Zhan-qian Song and Shi-bin Shang

S1. Comment

Polychloropyridines derivatives are useful as intermediates for production of biological compounds (Okorley & Dietsche, (1988). Herein, we report the crystal structure of the title compound (Fig. 1). The bond distances and angles in the title compound agree very well with the corresponding bond distances and angles reported in a closely related compound (Fun *et al.*, 2011).

S2. Experimental

The title compound was synthesized by the chlorination of 2-chloro-5-chloromethyl pyridine using chlorine gas as a chlorinating agent in the presence of ultraviolet radiation and in the presence of WCl₆ for 6.0 h by following a reported synthetic procedure (Allphin *et al.*, 1993). The crystals of the title compound were obtained from a solution of 1,2-di-chloroethane by evaporating the solvent slowly at room temperature in about 5 d.

S3. Refinement

The only H atom was positioned geometrically and constrained to ride on C1 with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atom ise presented as small spheres of arbitrary radius. [Symmetry code A: x, y, 1/2-z]

Figure 2

A packing diagram for the title compound showing C—H…Cl intra-molecular hydrogen bonds (dashed lines).

2,3,6-Trichloro-5-(trichloromethyl)pyridine

Crystal data

C₆HCl₆N $M_r = 299.78$ Orthorhombic, *Pbcm* Hall symbol: -P 2c 2b a = 8.3100 (17) Å b = 17.018 (3) Å c = 7.3160 (15) Å $V = 1034.6 (4) \text{ Å}^3$ Z = 4

Data collection

Enraf–Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega/2\theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.644, \ T_{\max} = 0.739$
1985 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.123$ S = 1.001033 reflections 77 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 584 $D_x = 1.925 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-13^{\circ}$ $\mu = 1.61 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.30 \times 0.20 \times 0.20 \text{ mm}$

1033 independent reflections 779 reflections with $I > 2\sigma(I)$ $R_{int} = 0.063$ $\theta_{max} = 25.4^\circ, \ \theta_{min} = 2.4^\circ$ $h = -10 \rightarrow 10$ $k = -20 \rightarrow 0$ $l = -8 \rightarrow 0$ 3 standard reflections every 200 reflections intensity decay: 1%

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.078P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.26 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.38 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.077 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N	0.5025 (5)	0.4324 (2)	0.2500	0.0467 (9)	
Cl1	0.8417 (2)	0.26884 (8)	0.2500	0.0806 (6)	

C1	0.8339 (6)	0.4268 (3)	0.2500	0.0478 (11)	
H1A	0.9457	0.4241	0.2500	0.057*	
C12	0.45826 (19)	0.28195 (8)	0.2500	0.0753 (5)	
C2	0.7445 (7)	0.3584 (3)	0.2500	0.0537 (12)	
C13	0.47402 (13)	0.58193 (7)	0.2500	0.0569 (4)	
C3	0.5783 (6)	0.3642 (3)	0.2500	0.0486 (11)	
Cl4	0.81252 (10)	0.63147 (5)	0.05227 (15)	0.0619 (4)	
C4	0.5902 (5)	0.4969 (2)	0.2500	0.0399 (10)	
C15	1.06686 (13)	0.55710 (8)	0.2500	0.0672 (5)	
C5	0.7586 (5)	0.4991 (2)	0.2500	0.0418 (10)	
C6	0.8554 (5)	0.5748 (2)	0.2500	0.0451 (11)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N	0.0472 (18)	0.042 (2)	0.051 (2)	-0.0058 (15)	0.000	0.000
Cl1	0.1128 (13)	0.0423 (7)	0.0867 (11)	0.0263 (7)	0.000	0.000
C1	0.051 (3)	0.042 (2)	0.051 (3)	0.0113 (19)	0.000	0.000
Cl2	0.0977 (11)	0.0433 (7)	0.0849 (10)	-0.0220 (6)	0.000	0.000
C2	0.075 (3)	0.042 (2)	0.044 (2)	0.014 (2)	0.000	0.000
C13	0.0372 (6)	0.0463 (7)	0.0872 (10)	0.0073 (4)	0.000	0.000
C3	0.061 (3)	0.043 (2)	0.042 (2)	-0.009(2)	0.000	0.000
Cl4	0.0572 (5)	0.0552 (6)	0.0734 (7)	0.0006 (3)	0.0064 (5)	0.0182 (4)
C4	0.039 (2)	0.034 (2)	0.046 (2)	0.0056 (17)	0.000	0.000
C15	0.0334 (6)	0.0666 (8)	0.1018 (12)	0.0007 (5)	0.000	0.000
C5	0.041 (2)	0.040 (2)	0.044 (2)	-0.0008 (18)	0.000	0.000
C6	0.036 (2)	0.039 (2)	0.061 (3)	0.0008 (17)	0.000	0.000

Geometric parameters (Å, °)

N—C4	1.318 (6)	C2—C3	1.385 (8)
N—C3	1.321 (6)	Cl3—C4	1.739 (4)
Cl1—C2	1.724 (5)	Cl4—C6	1.774 (3)
C1—C2	1.381 (7)	C4—C5	1.400 (6)
C1—C5	1.381 (6)	C15—C6	1.783 (5)
C1—H1A	0.9300	C5—C6	1.519 (6)
Cl2—C3	1.719 (4)	C6—Cl4 ⁱ	1.774 (3)
C4—N—C3	118.0 (4)	N—C4—Cl3	112.7 (3)
C2—C1—C5	120.5 (4)	C5—C4—C13	122.2 (3)
C2-C1-H1A	119.7	C1—C5—C4	115.4 (4)
C5—C1—H1A	119.7	C1—C5—C6	121.1 (4)
C1—C2—C3	118.4 (4)	C4—C5—C6	123.5 (4)
C1—C2—Cl1	119.6 (4)	C5—C6—Cl4	110.77 (18)
C3—C2—Cl1	122.0 (4)	C5C6Cl4 ⁱ	110.77 (18)
N—C3—C2	122.6 (4)	$Cl4$ — $C6$ — $Cl4^i$	109.2 (2)
N—C3—Cl2	116.0 (4)	C5—C6—C15	112.2 (3)
C2—C3—Cl2	121.4 (4)	Cl4—C6—Cl5	106.84 (17)

supporting information

N—C4—C5	125.1 (4)	Cl4 ⁱ —C6—Cl5	106.84 (17)
C5-C1-C2-C3	0.0	C2-C1-C5-C6	180.0
C4—N—C3—C2	0.0	Cl3—C4—C5—C1	180.0
C4—N—C3—Cl2 C1—C2—C3—N	180.0 0.0	N—C4—C5—C6 C13—C4—C5—C6	180.0 0.0
Cl1—C2—C3—N C1—C2—C3—Cl2	180.0 180.0	C1—C5—C6—Cl4 C4—C5—C6—Cl4	119.32 (19) -60.68 (19)
C11-C2-C3-C12 C3-N-C4-C5	0.0	C1—C5—C6—Cl4 ⁱ C4—C5—C6—Cl4 ⁱ	-119.32 (19)
C3—N—C4—Cl3	180.0	C1-C5-C6-C15	0.0
C2-C1-C5-C4	0.0	C4—C5—C6—Cl5	180.0

Symmetry code: (i) x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H…A
C1—H1A···Cl5	0.93	2.48	2.944 (5)	111