

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[aqua- μ -bromido-(μ_2 -5-methylpyrazine-2-carboxylato- $\kappa^4 N^1, O^2: O^2, O^{2'})$ lead(II)]

Pan Yang, Yan Liu, Hua Yun Li and Bin Ding*

Tianjin Key Laboratory of Structure and Performance of Functional Molecules, Tianjin Normal University, Tianjin 300071, People's Republic of China Correspondence e-mail: qsdingbin@yahoo.com.cn

Received 22 July 2012; accepted 27 July 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.010 Å; R factor = 0.033; wR factor = 0.091; data-to-parameter ratio = 15.9.

In the title coordination polymer, $[PbBr(C_6H_5N_2O_2)(H_2O)]_n$, the Pb^{II} atom is coordinated by one pyrazine N atom, two bridging Br atoms, a water molecule and three carboxylate O atoms. Bridging by the two anions generates a layer structure parallel to (001); the layers are linked by $O-H \cdots N$ and O-H...Br hydrogen bonds, forming a three-dimensional network. The lone pair is stereochemically active, resulting in a Ψ -dodecahedral coordination environment for Pb^{II}.

Related literature

For background, see: Ding et al. (2009).

 $M_r = 442.24$

Experimental

Crystal data $[PbBr(C_6H_5N_2O_2)(H_2O)]$

Monoclinic, $P2_1/c$ a = 7.5493 (10) Åb = 6.6775 (9) Å c = 19.335 (3) Å $\beta = 92.884 \ (2)^{\circ}$ V = 973.5 (2) Å³

Data collection

5123 measured reflections
1904 independent reflections
1747 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.039$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	120 parameters
$wR(F^2) = 0.091$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 2.26 \text{ e} \text{ Å}^{-3}$
1904 reflections	$\Delta \rho_{\rm min} = -2.20 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3-H3A\cdots N2^{i}$	0.85	1.97	2.816 (9)	173
$O3-H3B\cdots Br1^{ii}$	0.85	2.56	3.378 (6)	161

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) x, y - 1, z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

This present work was supported by the Tianjin Educational Committee (20090504) and Tianjin Normal University (1E0402B).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5284).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ding, B., Liu, Y. Y., Zhao, X. J., Yang, E. C. & Wang, X. G. (2009). Cryst. Growth Des. 9, 4176-4180.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Mo $K\alpha$ radiation

 $0.15 \times 0.14 \times 0.13 \text{ mm}$

 $\mu = 21.41 \text{ mm}^-$

T = 296 K

Z = 4

supporting information

Acta Cryst. (2012). E68, m1139 [doi:10.1107/S1600536812033776]

Poly[aqua- μ -bromido-(μ_2 -5-methylpyrazine-2-carboxylato- $\kappa^4 N^1, O^2: O^2, O^{2'}$)lead(II)]

Pan Yang, Yan Liu, Hua Yun Li and Bin Ding

S1. Experimental

Lead(II) bromide (73.4 mg, 0.2 mmol), 5-pyrazine-2-carboxylic acid (27.6 mg, 0.2 mmol) and water (15 ml) were sealed in a 25 ml Teflon-lined steel vessel. The mixture was heated heated to 393 K for 5 days . The autoclave was cooled to room temperature at a rate of 10 K h^{-1} . Yellow block-shaped crystals were obtained in 60% yield based on Pb.

S2. Refinement

H atoms were placed in calculated positions as riding atoms attached to non-riding atoms with O—H es of 0.85 Å and C–H 0.93 to 0.96 Å, and with $U_{iso}(H) = 1.2$ to $1.5U_{eq}(O,C)$. The final difference Fourier map had a peak in the vicinity of Pb and a hole in the vicinity of the same atom.

ORTEP plot of a portion of the polymeric structure drawn at 30% probability displacement ellipsoids. Symmetry codes: i: -x + 1, y - 1/2, -z + 3/2; ii: -x, y - 1/2, -z + 3/2.

Layer structures.

Three-dimensional supramolecular structure. Dashed lines represent O—H…N and weak O—H…Br hydrogen bonds.

 Ψ -Dodecahedral geometry of lead(II).

Poly[aqua- μ -bromido-(μ_2 -5-methylpyrazine-2-carboxylato- $\kappa^4 N^1$, O^2 : O^2 , O^2)lead(II)]

Crystal data	
$[PbBr(C_6H_5N_2O_2)(H_2O)]$	F(000) = 792
$M_r = 442.24$	$D_{\rm x} = 3.018 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3510 reflections
a = 7.5493 (10) Å	$\theta = 3.3 - 28.2^{\circ}$
b = 6.6775 (9) Å	$\mu = 21.41 \text{ mm}^{-1}$
c = 19.335 (3) Å	T = 296 K
$\beta = 92.884 \ (2)^{\circ}$	Block, colourless
$V = 973.5 (2) Å^3$	$0.15 \times 0.14 \times 0.13 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART APEX CCD area-detector	5123 measured reflections
diffractometer	1904 independent reflections
Radiation source: fine-focus sealed tube	1747 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.039$
phi and ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
Absorption correction: multi-scan	$h = -9 \longrightarrow 5$
(SADABS; Sheldrick, 1996)	$k = -8 \rightarrow 8$
$T_{\min} = 0.142, \ T_{\max} = 0.167$	$l = -23 \rightarrow 22$

Refinement

Refinement on F^2	0 restraints
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.033$	$w = 1/[\sigma^2(F_o^2) + (0.0596P)^2]$
$wR(F^2) = 0.091$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.032$
1904 reflections	$\Delta \rho_{\rm max} = 2.26 \text{ e} \text{ Å}^{-3}$
120 parameters	$\Delta \rho_{\rm min} = -2.20 \text{ e } \text{\AA}^{-3}$
Special details	

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	<i>x</i>	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pb1	0.29327 (3)	-0.20899 (3)	0.782606 (12)	0.02328 (17)	
Br1	0.00888 (10)	0.08548 (11)	0.80760 (4)	0.0386 (2)	
01	0.5113 (7)	0.0867 (8)	0.7933 (3)	0.0351 (12)	
O2	0.4664 (8)	-0.0254 (8)	0.8984 (3)	0.0427 (13)	
03	0.2211 (10)	-0.5006 (9)	0.8682 (3)	0.067 (2)	
H3A	0.2481	-0.4963	0.9114	0.100*	
H3B	0.1828	-0.6189	0.8608	0.100*	
N1	0.6818 (7)	0.4165 (8)	0.8455 (3)	0.0274 (12)	
N2	0.7181 (8)	0.4728 (9)	0.9872 (3)	0.0322 (13)	
C1	0.6189 (9)	0.2822 (9)	0.8890 (4)	0.0245 (15)	
C2	0.6373 (10)	0.3105 (10)	0.9598 (4)	0.0302 (16)	
H2	0.5925	0.2146	0.9891	0.036*	
C3	0.7783 (9)	0.6113 (9)	0.9431 (4)	0.0298 (15)	
C4	0.7588 (9)	0.5805 (9)	0.8721 (4)	0.0285 (15)	
H4	0.8006	0.6771	0.8423	0.034*	
C5	0.5250 (9)	0.0994 (10)	0.8587 (4)	0.0280 (15)	
C6	0.8627 (14)	0.7958 (11)	0.9749 (6)	0.049 (2)	
H6A	0.7859	0.8517	1.0079	0.073*	
H6B	0.8818	0.8924	0.9392	0.073*	
H6C	0.9743	0.7609	0.9977	0.073*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb1	0.0230 (2)	0.0234 (2)	0.0233 (2)	-0.00092 (7)	0.00028 (12)	0.00041 (8)
Br1	0.0362 (4)	0.0338 (4)	0.0451 (5)	0.0095 (3)	-0.0054 (3)	0.0001 (3)
01	0.036 (3)	0.042 (3)	0.027 (3)	-0.017 (2)	-0.005 (2)	-0.004 (2)
O2	0.056 (4)	0.038 (3)	0.034 (3)	-0.015 (2)	-0.002 (2)	0.009 (2)

supporting information

03	0.119 (7)	0.049 (4)	0.031 (3)	-0.039 (4)	-0.019 (3)	0.008 (3)
N1	0.028 (3)	0.026 (3)	0.028 (3)	-0.001 (2)	-0.001(2)	-0.002(2)
N2	0.040 (4)	0.030 (3)	0.026 (3)	-0.004 (2)	-0.001 (2)	-0.005 (2)
C1	0.021 (3)	0.026 (4)	0.027 (4)	0.000 (2)	-0.002 (3)	0.000 (3)
C2	0.031 (4)	0.031 (4)	0.029 (4)	-0.001 (3)	0.003 (3)	0.001 (3)
C3	0.030 (4)	0.024 (3)	0.035 (4)	0.000 (3)	-0.003 (3)	-0.003 (3)
C4	0.031 (4)	0.023 (3)	0.031 (4)	-0.002 (3)	0.001 (3)	-0.001 (3)
C5	0.025 (3)	0.030 (3)	0.029 (4)	-0.006 (3)	0.003 (3)	-0.003 (3)
C6	0.059 (6)	0.033 (5)	0.055 (6)	-0.011 (3)	0.004 (5)	-0.008 (4)

Geometric parameters (Å, °)

Pb1—O1 ⁱ	2.531 (5)	N1—C1	1.334 (8)
Pb1—O1	2.572 (5)	N1—Pb1 ^{iv}	2.631 (5)
Pb1—N1 ⁱ	2.631 (6)	N2—C2	1.340 (9)
Pb1—O3	2.631 (6)	N2—C3	1.353 (9)
Pb1—Br1	2.9688 (8)	C1—C2	1.381 (11)
Pb1—Br1 ⁱⁱ	3.1190 (9)	C1—C5	1.514 (9)
Br1—Pb1 ⁱⁱⁱ	3.1190 (9)	C2—H2	0.9300
01—C5	1.268 (8)	C3—C4	1.388 (10)
O1—Pb1 ^{iv}	2.531 (5)	C3—C6	1.504 (10)
O2—C5	1.230 (8)	C4—H4	0.9300
O3—H3A	0.8501	C6—H6A	0.9600
O3—H3B	0.8510	C6—H6B	0.9600
N1C4	1.331 (9)	С6—Н6С	0.9600
01 ⁱ —Pb1—O1	94.06 (8)	$C1$ — $N1$ — $Pb1^{iv}$	115.1 (4)
O1 ⁱ —Pb1—N1 ⁱ	63.56 (16)	C2—N2—C3	117.6 (6)
O1—Pb1—N1 ⁱ	75.81 (17)	N1—C1—C2	120.8 (6)
O1 ⁱ —Pb1—O3	96.4 (2)	N1—C1—C5	118.2 (6)
O1—Pb1—O3	132.06 (18)	C2—C1—C5	121.0 (6)
N1 ⁱ —Pb1—O3	148.79 (18)	N2—C2—C1	121.6 (6)
O1 ⁱ —Pb1—Br1	153.98 (12)	N2—C2—H2	119.2
O1—Pb1—Br1	86.76 (12)	C1—C2—H2	119.2
N1 ⁱ —Pb1—Br1	91.65 (12)	N2—C3—C4	120.0 (6)
O3—Pb1—Br1	102.33 (18)	N2—C3—C6	116.8 (7)
O1 ⁱ —Pb1—Br1 ⁱⁱ	82.54 (13)	C4—C3—C6	123.2 (7)
O1—Pb1—Br1 ⁱⁱ	146.05 (12)	N1—C4—C3	121.8 (6)
N1 ⁱ —Pb1—Br1 ⁱⁱ	72.46 (13)	N1—C4—H4	119.1
O3—Pb1—Br1 ⁱⁱ	81.80 (15)	C3—C4—H4	119.1
Br1—Pb1—Br1 ⁱⁱ	82.410 (17)	O2—C5—O1	124.3 (6)
Pb1—Br1—Pb1 ⁱⁱⁱ	135.64 (3)	O2—C5—C1	118.7 (6)
C5-01-Pb1 ^{iv}	121.4 (4)	O1—C5—C1	117.0 (5)
C5-01-Pb1	98.7 (4)	С3—С6—Н6А	109.5
Pb1 ^{iv} —O1—Pb1	139.2 (2)	C3—C6—H6B	109.5
Pb1—O3—H3A	123.1	H6A—C6—H6B	109.5
Pb1—O3—H3B	131.3	C3—C6—H6C	109.5
НЗА—ОЗ—НЗВ	105.1	H6A—C6—H6C	109.5

C4—N1—C1 C4—N1—Pb1 ^{iv}	118.2 (6) 125.1 (4)	H6B—C6—H6C	109.5
$\begin{array}{l} O1^{i} - Pb1 - Br1 - Pb1^{iii} \\ O1 - Pb1 - Br1 - Pb1^{iii} \\ N1^{i} - Pb1 - Br1 - Pb1^{iii} \\ O3 - Pb1 - Br1 - Pb1^{iii} \\ Br1^{ii} - Pb1 - Br1 - Pb1^{iii} \\ O1^{i} - Pb1 - O1 - C5 \\ N1^{i} - Pb1 - O1 - C5 \\ Br1 - Pb1 - O1 - C5 \\ Br1^{ii} - Pb1 - O1 - C5 \\ Br1^{ii} - Pb1 - O1 - C5 \\ O1^{i} - Pb1 - O1 - Pb1^{iv} \\ N1^{i} - Pb1 - O1 - Pb1^{iv} \\ N1^{i} - Pb1 - O1 - Pb1^{iv} \\ Br1 - Pb1 - O1 - Pb1^{iv} \\ Br1^{ii} - Pb1 - O1 - Pb1^{iv} \\ Br1 - Pb1 - O1 - Pb1^{iv} \\ Br1^{ii} - Pb1 - O1 - Pb1^{iv} \\ Br1^{ii} - Pb1 - O1 - Pb1^{iv} \\ C4 - N1 - C1 - C2 \\ \end{array}$	13.5 (3) 106.16 (12) 30.47 (13) -121.43 (15) -41.59 (4) -126.3 (4) 172.3 (4) -23.9 (5) 79.8 (4) 151.1 (3) 43.5 (3) -17.9 (3) 145.9 (4) -110.4 (3) -39.1 (5) -1.5 (9)	$\begin{array}{l} Pb1^{iv} - N1 - C1 - C5 \\ C3 - N2 - C2 - C1 \\ N1 - C1 - C2 - N2 \\ C5 - C1 - C2 - N2 \\ C2 - N2 - C3 - C4 \\ C2 - N2 - C3 - C4 \\ C2 - N2 - C3 - C6 \\ C1 - N1 - C4 - C3 \\ Pb1^{iv} - N1 - C4 - C3 \\ N2 - C3 - C4 - N1 \\ C6 - C3 - C4 - N1 \\ Pb1^{iv} - O1 - C5 - O2 \\ Pb1 - O1 - C5 - O2 \\ Pb1 - O1 - C5 - C1 \\ Pb1 - O1 - C5 - C1 \\ N1 - C1 - C5 - O2 \\ C2 - C1 - C5 - O2 \\ C2 - C1 - C5 - O2 \end{array}$	$\begin{array}{c} -15.9 \ (7) \\ 1.4 \ (10) \\ 0.1 \ (11) \\ -179.1 \ (6) \\ -1.4 \ (10) \\ 177.8 \ (7) \\ 1.6 \ (10) \\ -163.3 \ (5) \\ -0.1 \ (10) \\ -179.3 \ (7) \\ -162.2 \ (6) \\ 10.0 \ (8) \\ 18.3 \ (8) \\ -169.5 \ (5) \\ -179.9 \ (6) \\ -0.7 \ (10) \end{array}$
Pb1 ^{iv} —N1—C1—C2 C4—N1—C1—C5	164.8 (5) 177.7 (6)	N1—C1—C5—O1 C2—C1—C5—O1	-0.4 (9) 178.8 (6)

Symmetry codes: (i) -x+1, y-1/2, -z+3/2; (ii) -x, y-1/2, -z+3/2; (iii) -x, y+1/2, -z+3/2; (iv) -x+1, y+1/2, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
$O3$ — $H3A$ ··· $N2^{v}$	0.85	1.97	2.816 (9)	173
O3—H3 <i>B</i> ···Br1 ^{vi}	0.85	2.56	3.378 (6)	161

Symmetry codes: (v) –*x*+1, –*y*, –*z*+2; (vi) *x*, *y*–1, *z*.