organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[5-(4-Formylphenoxy)pentoxy]benzaldehyde

Tomislav Balić,* Berislav Marković and Ivana Balić

Department of Chemistry, J. J. Strossmayer University, Osijek, Franje Kuhača 20, HR-31000 Osijek, Croatia

Correspondence e-mail: tombalic@kemija.unios.hr

Received 5 July 2012; accepted 1 August 2012

Key indicators: single-crystal X-ray study; T = 190 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.098; data-to-parameter ratio = 15.1.

In the title compound, $C_{20}H_{19}O_4$, the benzene rings, linked *via* five methylene C atoms, form a dihedral angle of 77.28 (6)°. In the crystal, molecules are linked *via* pairs of weak C-H···O interactions [graph set $R_2^2(6)$] into dimers that are further connected by additional weak C-H···O interactions [graph sets $R_2^2(14)$, $R_2^2(26)$ and $R_2^2(6)$].

Related literature

For related structures and the synthesis of similar compounds, see: Ali *et al.* (2010); Dehno Khalaji *et al.* (2011); Han & Zhen (2005); Narasimha Moorthy *et al.* (2005). For the synthesis of Schiff bases and Schiff base complexes, see: Ma & Cao (2011); Ilhan *et al.* (2007); Keypour *et al.* (2008). For graph-set analysis, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{l} C_{19}H_{20}O_4\\ M_r = 312.35\\ \text{Monoclinic, } C2/c\\ a = 22.3018 \ (8) \ \text{\AA}\\ b = 4.6829 \ (16) \ \text{\AA}\\ c = 31.6082 \ (12) \ \text{\AA}\\ \beta = 103.752 \ (4)^\circ \end{array}$

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{min} = 0.975, T_{max} = 1.000$ 9589 measured reflections 3136 independent reflections 2560 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$

 $V = 3206.5 (11) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.51 \times 0.37 \times 0.18 \text{ mm}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 190 K

Z = 8

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.098$ S = 1.063136 reflections 208 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.19\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.18\ e\ \text{\AA}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1\cdots O4^{i}$	0.95	2.53	3.3401 (18)	144
$C8-H8B\cdots O4^{ii}$	0.99	2.58	3.4815 (18)	152
C6−H6···O2 ⁱⁱⁱ	0.95	2.53	3.4487 (16)	163
$C12 - H12B \cdots O1^{iv}$	0.99	2.50	3.4360 (18)	157
$C14-H14\cdots O3^{v}$	0.95	2.63	3.4977 (15)	151
$C19-H19\cdots O1^{vi}$	0.95	2.63	3.3698 (19)	135
Summation and an	(i) 1	15 - 1.	(;;)	- 13. (:::)

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iv) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (v) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (vi) $x + \frac{1}{2}, -y + \frac{5}{2}, z + \frac{1}{2}$.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999), *PARST97* (Nardelli, 1995) and *Mercury* (Macrae *et al.*, 2006).

This work was supported by the Ministry of Science, Education and Sports of the Republic of Croatia (grant No. 119–1193079-1084). The authors wish to thank Prof. Dubravka Matković-Čalogović for all the help during data collection and structure refinement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2286).

References

- Ali, Q., Raza Shah, M. & Ng, S. W. (2010). Acta Cryst. E66, 01620.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Dehno Khalaji, A., Hafez Ghoran, S., Gotoh, K. & Ishida, H. (2011). Acta Cryst. E67, o2484.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Han, J.-R. & Zhen, X.-L. (2005). Acta Cryst. E61, 04358-04359.
- Ilhan, S., Temel, H., Yilmaz, I. & Kilic, A. (2007). Transition Met. Chem. 32, 344–349.
- Keypour, H., Azadbakht, R., Salehzadeh, S., Khanmohammadi, H., Khavasi, H. & Adams, H. (2008). Polyhedron, 27, 1631–1638.

Ma, Z. & Cao, Y. (2011). Acta Cryst. E67, o1503.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457.
- Narasimha Moorthy, J., Natarajan, R. & Venugopalan, P. (2005). J. Mol. Struct. 741, 107–114.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o2664 [doi:10.1107/S1600536812034241]

4-[5-(4-Formylphenoxy)pentoxy]benzaldehyde

Tomislav Balić, Berislav Marković and Ivana Balić

S1. Comment

The aldehydes represent important class of organic compounds that are used for the condensation reaction with amines to form Schiff bases. Therefore, we have decided to explore the capability of novel dialdehydes, namely 4-[5-(4-formyl-phenoxy)pentoxy]benzaldehyde, as starting material for the synthesis of some novel Schiff bases. Dialdehydes have recently been investigated as valuble precursors for condensation reactions with amines (Ilhan *et al.* 2007; Ma & Cao 2011; Dehno Khalaji *et al.* 2011). Such condensation reactions can lead to the formation of macrocyclic ligands or complex compounds, by methods of template synthesis (Ilhan *et al.* 2007; Keypour *et al.* 2008; Ma & Cao 2011).

In the title molecule two formylphenoxy groups are linked by five methylene C atoms and the dihedral angle between benzen ring is 77.28° (Figure 1.). In the crystal, the molecules are linked into dimers *via* weak C—H···O hydrogen bonding into a staircase-like motif (Figure 2.). A similar motif in dialdehydes was observed by Narasimha Moorthy *et al.* (2005). Additional stabilization of the crystal structure is accomplished by a number of weak C— H···O hydrogen bonding interactions [graph set: $R_2^2(14)$, $R_2^2(26)$, $R_2^2(6)$] (Bernstein *et al.* 1995). O1 and O4 are involved in the formation of two different motifs: dimer formation [graph set $R_2^2(6)$] and ring formation [graph set $R_2^2(26)$]; specifically: O1···(C12 — H12B, C19— H19) and O4···(C8— H8B, C1— H1) and thus making them bifurcated (Table 1).

S2. Experimental

p-hydroxybenzaldehyde (50 mmol) and K₂CO₃ (50 mmol) were mixed in 50 ml DMF and the mixture was brought to brisk reflux. 25 mmol of pentane-1,5-dibrom dissolved in 10 ml of DMF were added and the reaction mixture was refluxed for 4 h and stired at room temperature for additional 2 h. After the reaction was completed, 300 ml of demineralized water were added and the resulting percipitate was filtered and washed with plenty water. Single crystals suitable for X-ray diffraction were grown *via* liquid diffusion of water into 1,4-dioxane solution of title compound.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 - 0.97 Å and with $U_{iso}(H)$ = 1.2 times $U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing of title compound viewed down the b axis with dashed lines representing weak C—H···O intermolecular interactions.

F(000) = 1328

 $\theta = 4.3 - 28.4^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colourless

 $0.51 \times 0.37 \times 0.18 \text{ mm}$

T = 190 K

 $D_{\rm x} = 1.294 {\rm Mg} {\rm m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4466 reflections

4-[5-(4-Formylphenoxy)pentoxy]benzaldehyde

Crystal data

C₁₉H₂₀O₄ $M_r = 312.35$ Monoclinic, C2/c Hall symbol: -C 2yc a = 22.3018 (8) Å b = 4.6829 (16) Å c = 31.6082 (12) Å $\beta = 103.752$ (4)° V = 3206.5 (11) Å³ Z = 8

Data collection

9589 measured reflections
3136 independent reflections
2560 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.020$
$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 4.3^{\circ}$
$h = -24 \rightarrow 27$
$k = -5 \rightarrow 5$
$l = -38 \rightarrow 37$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
S = 1.06	H-atom parameters constrained
3136 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0389P)^2 + 1.7845P]$
208 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.19$ e Å ⁻³
direct methods	$\Delta ho_{\min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.08040 (5)	1.1018 (3)	0.38389 (4)	0.0547 (3)
O2	0.18750 (4)	0.2636 (2)	0.54219 (3)	0.0319 (2)
O3	0.32553 (4)	0.2744 (2)	0.72116 (3)	0.0285 (2)
O4	0.42945 (5)	1.1213 (2)	0.87886 (3)	0.0477 (3)
C1	0.06143 (7)	1.0219 (3)	0.41477 (5)	0.0405 (4)
H1	0.0226	1.0931	0.4173	0.049*
C2	0.09356 (6)	0.8247 (3)	0.44835 (4)	0.0304 (3)
C3	0.06566 (6)	0.7310 (3)	0.48055 (5)	0.0338 (3)
Н3	0.0254	0.7972	0.4806	0.041*
C4	0.09498 (6)	0.5429 (3)	0.51280 (4)	0.0312 (3)
H4	0.0752	0.4815	0.5347	0.037*
C5	0.15385 (6)	0.4457 (3)	0.51250 (4)	0.0268 (3)
C6	0.18249 (6)	0.5389 (3)	0.48024 (4)	0.0330 (3)
H6	0.2227	0.4723	0.4800	0.040*
C7	0.15283 (6)	0.7264 (3)	0.44882 (4)	0.0341 (3)
H7	0.1728	0.7901	0.4272	0.041*
C8	0.16073 (6)	0.1576 (3)	0.57633 (4)	0.0299 (3)
H8A	0.1226	0.0486	0.5637	0.036*
H8B	0.1500	0.3185	0.5934	0.036*
C9	0.20774 (6)	-0.0332 (3)	0.60517 (4)	0.0298 (3)
H9A	0.2207	-0.1820	0.5869	0.036*
H9B	0.1880	-0.1306	0.6262	0.036*
C10	0.26483 (6)	0.1251 (3)	0.63036 (4)	0.0283 (3)
H10A	0.2517	0.2899	0.6456	0.034*
H10B	0.2878	0.2004	0.6095	0.034*

C11	0.30789 (6)	-0.0631 (3)	0.66370 (4)	0.0301 (3)	
H11A	0.2830	-0.1720	0.6803	0.036*	
H11B	0.3282	-0.2025	0.6481	0.036*	
C12	0.35692 (6)	0.1019 (3)	0.69529 (4)	0.0285 (3)	
H12A	0.3861	-0.0305	0.7141	0.034*	
H12B	0.3803	0.2246	0.6794	0.034*	
C13	0.35974 (6)	0.4398 (3)	0.75307 (4)	0.0247 (3)	
C14	0.32629 (6)	0.6109 (3)	0.77544 (4)	0.0280 (3)	
H14	0.2825	0.6047	0.7680	0.034*	
C15	0.35664 (6)	0.7880 (3)	0.80814 (4)	0.0300 (3)	
H15	0.3336	0.9049	0.8231	0.036*	
C16	0.42127 (6)	0.7984 (3)	0.81970 (4)	0.0301 (3)	
C17	0.45393 (6)	0.6280 (3)	0.79728 (4)	0.0320 (3)	
H17	0.4978	0.6341	0.8048	0.038*	
C18	0.42406 (6)	0.4486 (3)	0.76408 (4)	0.0296 (3)	
H18	0.4471	0.3330	0.7490	0.036*	
C19	0.45393 (7)	0.9823 (3)	0.85514 (5)	0.0378 (4)	
H19	0.4976	0.9940	0.8600	0.045*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
01	0.0500 (7)	0.0681 (8)	0.0458 (7)	0.0129 (6)	0.0108 (5)	0.0243 (6)
O2	0.0310 (5)	0.0398 (6)	0.0251 (5)	0.0092 (4)	0.0069 (4)	0.0049 (4)
O3	0.0253 (5)	0.0331 (5)	0.0267 (5)	-0.0014 (4)	0.0056 (4)	-0.0033 (4)
O4	0.0512 (6)	0.0523 (7)	0.0426 (6)	-0.0169 (6)	0.0171 (5)	-0.0155 (5)
C1	0.0343 (8)	0.0446 (9)	0.0405 (8)	0.0074 (7)	0.0045 (7)	0.0073 (7)
C2	0.0290 (7)	0.0312 (7)	0.0286 (7)	0.0024 (6)	0.0024 (5)	-0.0014 (6)
C3	0.0246 (7)	0.0385 (8)	0.0370 (8)	0.0056 (6)	0.0045 (6)	-0.0006 (6)
C4	0.0275 (7)	0.0363 (8)	0.0303 (7)	0.0016 (6)	0.0080 (6)	0.0005 (6)
C5	0.0279 (6)	0.0285 (7)	0.0219 (6)	0.0029 (6)	0.0016 (5)	-0.0030 (5)
C6	0.0284 (7)	0.0407 (8)	0.0305 (7)	0.0088 (6)	0.0080 (6)	0.0011 (6)
C7	0.0335 (7)	0.0411 (8)	0.0285 (7)	0.0047 (6)	0.0090 (6)	0.0030 (6)
C8	0.0301 (7)	0.0325 (7)	0.0270 (7)	-0.0021 (6)	0.0065 (6)	-0.0006 (6)
C9	0.0334 (7)	0.0266 (7)	0.0278 (7)	-0.0009 (6)	0.0042 (6)	0.0005 (5)
C10	0.0331 (7)	0.0256 (7)	0.0251 (7)	-0.0005 (6)	0.0048 (6)	0.0008 (5)
C11	0.0362 (7)	0.0268 (7)	0.0255 (7)	0.0010 (6)	0.0035 (6)	0.0004 (5)
C12	0.0294 (7)	0.0298 (7)	0.0267 (7)	0.0035 (6)	0.0074 (5)	0.0015 (6)
C13	0.0262 (6)	0.0257 (7)	0.0216 (6)	-0.0024 (5)	0.0043 (5)	0.0043 (5)
C14	0.0241 (6)	0.0325 (7)	0.0277 (7)	-0.0011 (6)	0.0065 (5)	0.0031 (6)
C15	0.0333 (7)	0.0303 (7)	0.0283 (7)	-0.0002 (6)	0.0113 (6)	0.0006 (6)
C16	0.0332 (7)	0.0299 (7)	0.0271 (7)	-0.0055 (6)	0.0069 (6)	0.0023 (6)
C17	0.0255 (7)	0.0356 (8)	0.0332 (7)	-0.0039 (6)	0.0038 (6)	0.0013 (6)
C18	0.0266 (6)	0.0319 (7)	0.0306 (7)	0.0003 (6)	0.0076 (6)	0.0007 (6)
C19	0.0370 (8)	0.0405 (8)	0.0360 (8)	-0.0114 (7)	0.0092 (7)	-0.0035 (7)

Geometric parameters (Å, °)

01—C1	1.2118 (18)	С9—Н9А	0.9900
O2—C5	1.3552 (15)	С9—Н9В	0.9900
O2—C8	1.4401 (15)	C10—C11	1.5261 (17)
O3—C13	1.3541 (15)	C10—H10A	0.9900
O3—C12	1.4436 (15)	C10—H10B	0.9900
O4—C19	1.2160 (18)	C11—C12	1.5069 (18)
C1—C2	1.4596 (19)	C11—H11A	0.9900
C1—H1	0.9500	C11—H11B	0.9900
C2—C3	1.3847 (19)	C12—H12A	0.9900
C2—C7	1.3963 (19)	C12—H12B	0.9900
C3—C4	1.3876 (19)	C13—C18	1.3938 (17)
С3—Н3	0.9500	C13—C14	1.3962 (18)
C4—C5	1.3915 (18)	C14—C15	1.3717 (18)
C4—H4	0.9500	C14—H14	0.9500
C5—C6	1.3957 (19)	C15—C16	1.4009 (18)
C6—C7	1.3719 (19)	С15—Н15	0.9500
С6—Н6	0.9500	C16—C17	1.3838 (19)
С7—Н7	0.9500	C16—C19	1.4626 (19)
C8—C9	1.5081 (18)	C17—C18	1.3850 (19)
C8—H8A	0.9900	C17—H17	0.9500
C8—H8B	0.9900	C18—H18	0.9500
C9—C10	1.5241 (18)	С19—Н19	0.9500
C5—O2—C8	118.40 (10)	C11—C10—H10A	109.0
C13—O3—C12	118.60 (10)	C9—C10—H10B	109.0
O1—C1—C2	125.17 (14)	C11-C10-H10B	109.0
01—C1—H1	117.4	H10A—C10—H10B	107.8
C2—C1—H1	117.4	C12—C11—C10	113.55 (11)
C3—C2—C7	118.51 (13)	C12—C11—H11A	108.9
C3—C2—C1	120.40 (12)	C10—C11—H11A	108.9
C7—C2—C1	121.08 (13)	C12—C11—H11B	108.9
C2—C3—C4	121.69 (12)	C10—C11—H11B	108.9
С2—С3—Н3	119.2	H11A—C11—H11B	107.7
C4—C3—H3	119.2	O3—C12—C11	106.81 (10)
C3—C4—C5	118.91 (13)	O3—C12—H12A	110.4
C3—C4—H4	120.5	C11—C12—H12A	110.4
C5—C4—H4	120.5	O3—C12—H12B	110.4
O2—C5—C4	124.71 (12)	C11—C12—H12B	110.4
O2—C5—C6	115.36 (11)	H12A—C12—H12B	108.6
C4—C5—C6	119.92 (12)	O3—C13—C18	124.55 (12)
C7—C6—C5	120.23 (12)	O3—C13—C14	115.54 (11)
С7—С6—Н6	119.9	C18—C13—C14	119.91 (12)
С5—С6—Н6	119.9	C15—C14—C13	120.08 (12)
C6—C7—C2	120.73 (13)	C15—C14—H14	120.0
С6—С7—Н7	119.6	C13—C14—H14	120.0
С2—С7—Н7	119.6	C14—C15—C16	120.69 (13)

O2—C8—C9	107.74 (10)	C14—C15—H15	119.7
O2—C8—H8A	110.2	C16—C15—H15	119.7
С9—С8—Н8А	110.2	C17—C16—C15	118.72 (12)
O2—C8—H8B	110.2	C17—C16—C19	120.32 (12)
С9—С8—Н8В	110.2	C15—C16—C19	120.96 (13)
H8A—C8—H8B	108.5	C16—C17—C18	121.38 (12)
C8—C9—C10	113.70 (11)	C16—C17—H17	119.3
С8—С9—Н9А	108.8	C18—C17—H17	119.3
С10—С9—Н9А	108.8	C17—C18—C13	119.22 (12)
С8—С9—Н9В	108.8	C17—C18—H18	120.4
С10—С9—Н9В	108.8	C13—C18—H18	120.4
Н9А—С9—Н9В	107.7	O4—C19—C16	124.93 (14)
C9—C10—C11	112.96 (11)	O4—C19—H19	117.5
С9—С10—Н10А	109.0	С16—С19—Н19	117.5
O1—C1—C2—C3	-175.26 (16)	C9—C10—C11—C12	-167.57 (11)
O1—C1—C2—C7	4.8 (2)	C13—O3—C12—C11	178.44 (10)
C7—C2—C3—C4	-0.2 (2)	C10-C11-C12-O3	65.94 (14)
C1—C2—C3—C4	179.78 (13)	C12-O3-C13-C18	-2.50 (17)
C2—C3—C4—C5	-0.3 (2)	C12—O3—C13—C14	177.13 (11)
C8—O2—C5—C4	0.99 (19)	O3—C13—C14—C15	-179.49 (11)
C8—O2—C5—C6	-179.73 (11)	C18—C13—C14—C15	0.16 (19)
C3—C4—C5—O2	179.59 (12)	C13-C14-C15-C16	-0.43 (19)
C3—C4—C5—C6	0.3 (2)	C14—C15—C16—C17	0.5 (2)
O2—C5—C6—C7	-179.25 (12)	C14—C15—C16—C19	-178.70 (13)
C4—C5—C6—C7	0.1 (2)	C15—C16—C17—C18	-0.2 (2)
C5—C6—C7—C2	-0.6 (2)	C19—C16—C17—C18	178.94 (13)
C3—C2—C7—C6	0.7 (2)	C16—C17—C18—C13	0.0 (2)
C1—C2—C7—C6	-179.35 (14)	O3—C13—C18—C17	179.69 (12)
C5—O2—C8—C9	-178.73 (11)	C14—C13—C18—C17	0.07 (19)
O2—C8—C9—C10	66.89 (14)	C17—C16—C19—O4	-173.80 (14)
C8—C9—C10—C11	172.47 (11)	C15—C16—C19—O4	5.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
C1—H1···O4 ⁱ	0.95	2.53	3.3401 (18)	144
C8—H8 <i>B</i> ···O4 ⁱⁱ	0.99	2.58	3.4815 (18)	152
C6—H6····O2 ⁱⁱⁱ	0.95	2.53	3.4487 (16)	163
C12—H12 <i>B</i> ···O1 ^{iv}	0.99	2.50	3.4360 (18)	157
C14—H14···O3 ^v	0.95	2.63	3.4977 (15)	151
C19—H19…O1 ^{vi}	0.95	2.63	3.3698 (19)	135

Symmetry codes: (i) *x*-1/2, -*y*+5/2, *z*-1/2; (ii) -*x*+1/2, *y*-1/2, -*z*+3/2; (iii) -*x*+1/2, -*y*+1/2, -*z*+1; (iv) -*x*+1/2, -*y*+3/2, -*z*+1; (v) -*x*+1/2, *y*+1/2, -*z*+3/2; (vi) *x*+1/2, -*y*+5/2, *z*+1/2.