organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Monoclinic polymorph of 2,5-dideoxy-2,5-epithio-1,3:4,6-bis-O-[(R)-phenylmethylene]-L-iditol¹

Jerrell G. Gibson, Jung Young Cho, Frank R. Fronczek* and Steven F. Watkins

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: ffroncz@lsu.edu

Received 27 July 2012; accepted 2 August 2012

Key indicators: single-crystal X-ray study; T = 100 K, P = 0.0 kPa; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.088; data-to-parameter ratio = 27.4.

The title compound $C_{20}H_{20}O_4S$, is polymorphic. In the tetragonal form, the molecule lies on a crystallographic twofold axis, while the monoclinic form has only approximate C_2 molecular symmetry. The greatest excursion from C_2 symmetry is in the orientation of the two phenyl rings; at 100 K, one of the rings is rotated -37.2 (3)° and the other by $46.9 (3)^{\circ}$ from their symmetric (tetragonal) positions. There are only minor differences in the three-ring nucleus; the best molecular fit of the tetragonal and monoclinic forms, both at 100 K and excluding phenyl rings and H atoms, shows an r.m.s. deviation of 0.066 Å. Both forms have the same absolute configuration.

Related literature

For details of the synthesis, see: Rao et al. (1988). For the structure of the tetragonal form at 295 K (CCDC refcode WAMRAD), see: Rao et al. (1993); and at 100 K (CCDC refcode 851380), see: Gibson et al. (2011). For a preliminary report of the structures of both polymorphs at room temperature, see: Fronczek et al. (2002). For a description of the Cambridge Structural Database, see: Allen (2002). For the determination of the absolute configuration from Bijvoet pairs, see: Hooft et al. (2008); Flack (1983). For details of the molecular mechanics software used, see: Cambridgesoft (2010); Winn & Goodman (2001).

V = 870.6 (3) Å³

Mo $K\alpha$ radiation

 $0.25 \times 0.22 \times 0.10 \text{ mm}$

6225 measured reflections

6225 independent reflections

5648 reflections with $I > 2\sigma(I)$

 $\mu = 0.21 \text{ mm}^{-1}$

T = 100 K

Z = 2

Experimental

Crystal data

 $C_{20}H_{20}O_4S$ $M_r = 356.42$ Monoclinic, P21 a = 6.158 (1) Å b = 9.223 (2) Å c = 15.407 (4) Å $\beta = 95.785 \ (8)^{\circ}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.950, \ T_{\max} = 0.980$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.088$	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.05	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
6225 reflections	Absolute structure: Flack (1983),
227 parameters	2730 Bijvoet pairs
1 restraint	Flack parameter: 0.02 (5)

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and IDEAL (Gould et al., 1988).

Purchase of the diffractometer was made possible by grant No. LEQSF(1999-2000)-ENH-TR-13, administered by the Louisiana Board of Regents. We thank Dr Ronald Voll for providing the sample.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2079).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Cambridgesoft (2010). Chem3DPro. Cambridgesoft Corporation, Cambridge, MA. USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

¹ CAS: 151061-72-2.

Fronczek, F., Xiao, Y., Voll, R. J. & Younathan, E. S. (2002). Acta Cryst. A58 (Suppl.), C125.

- Gibson, J. G., Cho, J. Y., Fronczek, F. R., Watkins, S. F. & Voll, R. (2011). Private communication.
- Gould, R. O., Moulden, N., Taylor, N. & Taylor, P. (1988). *IDEAL*. Department of Chemistry, University of Edinburgh, Scotland.
- Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Rao, A. V. R., Reddy, K. A., Gurjar, M. K. & Kunwar, A. C. (1988). J. Chem. Soc. Chem. Commun. pp. 1273–1274.
- Rao, A. V. R., Reddy, K. A., Srinivas, N. R., Gurjar, M. K., Padmaja, N., Ramakumar, S., Viswamitra, M. A., Swapna, G. V. T., Jagannadh, B. & Kunwar, A. C. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 1255–1259.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Winn, C. L. & Goodman, J. M. (2001). Tetrahedron Lett. 42, 7091–7093.

supporting information

Acta Cryst. (2012). E68, o2668-o2669 [doi:10.1107/S1600536812034514]

Monoclinic polymorph of 2,5-dideoxy-2,5-epithio-1,3:4,6-bis-O-[(*R*)-phenylmethylene]-L-iditol

Jerrell G. Gibson, Jung Young Cho, Frank R. Fronczek and Steven F. Watkins

S1. Comment

The tetragonal form of the title compound (I), $C_{20}H_{20}O_4S$, was determined at 295 K (Rao *et al.*, 1993, hereinafter P4₂₉₅). We re-examined the tetragonal form at 100 K in our laboratory (hereinafter P4₁₀₀) and determined the absolute configuration. These data are deposited at the Cambridge Crystallographic Data Centre (Allen, 2002), CCDC 851380 (Gibson *et al.*, 2011). There is a 2.8% volume decrease upon lowering the temperature from 295 K to 100 K but the molecular symmetry is C₂ at both temperatures and there is no significant change in molecular structure. The best molecular fit (Gould *et al.*, 1988) of all non-H atoms in P4₂₉₅ and P4₁₀₀ yields $\delta_{r.m.s.} = 0.022$ Å, while excluding the phenyl groups yields $\delta_{r.m.s.} = 0.011$ Å.

In the monoclinic form at 100 K (P2₁₀₀) the molecular symmetry is C₁. The molecular volume of P2₁₀₀ (435.2 (3) Å³/molecule) is greater than P4₁₀₀ (433.6 (1) Å³/molecule). The thirteen non-H atoms of the three central rings in P2₁₀₀ and P4₁₀₀ are arranged similarly with best molecular fit $\delta_{r.m.s.} = 0.066$ Å. The most pronounced structural difference between P2₁₀₀ and P4₁₀₀ is in the orientation of the phenyl rings. In P4₁₀₀, two equivalent O—C—C—C torsions of -14.5 (3)° become +32.4 (2)° and -51.7 (2)° in P2₁₀₀. The global minimum conformation of this molecule has been calculated using *MM2* (Winn & Goodman, 2001) and confirmed by us (Cambridgesoft, 2010). Like the tetragonal form, the minimum conformation has C₂ symmetry, but the two equivalent O—C—C torsions representing the orientation of the phenyl rings are -56°.

Based on the Flack parameter x = 0.02 (5) (Flack, 1983) and Hooft parameters y = 0.00 (3) and P2(true) = 1.000 for 2730 Bijvoet pairs (Hooft *et al.*, 2008), the absolute configurations of the tetragonal and monoclinic forms are identical at 100 K, with stereochemical specification (2*R*,4aS,5aS,8*R*,9aS,9bS)-2,8-diphenylhexahydrothieno[3,2 - d:4,5 - d'] bis-([1,3]dioxine).

S2. Experimental

The title compound was prepared by Dr. Ronald Voll according to the scheme reported by Rao *et al.* (1988). A suitable single-crystal was obtained by recrystallization from ethanol.

S3. Refinement

All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95 (aromatic C), 0.99 (CH₂), 1.00 Å, (R_3 CH) and U_{iso} =1.2 U_{eq} , thereafter refined as riding. The absolute configuration, based on 2730 Bijvoet pairs with Flack parameter x = 0.02 (5), Hooft parameter y = 0.00 (3) and Hooft P2(true) = 1.000, is consistent with that of the starting materials.

Figure 1

View of (I) (50% probability displacement ellipsoids).

2,5-dideoxy-2,5-epithio-1,3:4,6-bis-O-[(R)-phenylmethylene]- L-iditol

Crystal data $C_{20}H_{20}O_4S$ $M_r = 356.42$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 6.158 (1) Å b = 9.223 (2) Å c = 15.407 (4) Å $\beta = 95.785 (8)^{\circ}$ $V = 870.6 (3) \text{ Å}^3$ Z = 2

Data collection

Nonius KappaCCD
diffractometer
Radiation source: sealed tube
Horizonally mounted graphite crystal
monochromator
Detector resolution: 9 pixels mm ⁻¹
ω and φ scans
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.088$ S = 1.056225 reflections 227 parameters 1 restraint 0 constraints Primary atom site location: structure-invariant direct methods F(000) = 376 $D_x = 1.36 \text{ Mg m}^{-3}$ Melting point: 481.5(5) K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3254 reflections $\theta = 2.5-33.1^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 100 KLath, colorless $0.25 \times 0.22 \times 0.10 \text{ mm}$

 $T_{\min} = 0.950, T_{\max} = 0.980$ 6225 measured reflections 6225 independent reflections 5648 reflections with $I > 2\sigma(I)$ $R_{int} = 0$ $\theta_{max} = 33.1^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -9 \rightarrow 9$ $k = -14 \rightarrow 13$ $l = 0 \rightarrow 23$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0366P)^2 + 0.1562P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.29$ e Å⁻³ $\Delta\rho_{min} = -0.23$ e Å⁻³

Absolute structure: Flack (1983), 2730 Bijvoet pairs

Absolute structure parameter: 0.02 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.7808 (2)	0.62050 (15)	0.17832 (8)	0.0169 (2)
H1	0.7275	0.5554	0.1288	0.02*
C2	0.6502 (2)	0.76146 (15)	0.17125 (8)	0.0163 (2)
H2	0.4915	0.7418	0.1554	0.02*
C3	0.7424 (2)	0.85423 (15)	0.10263 (8)	0.0161 (2)
Н3	0.681	0.9546	0.1024	0.019*
C4	0.9911 (2)	0.85639 (15)	0.12534 (8)	0.0168 (2)
H4	1.0276	0.9279	0.1734	0.02*
C5	1.1053 (2)	0.90189 (16)	0.04642 (9)	0.0212 (3)
H5A	1.086	1.0075	0.0369	0.025*
H5B	1.2636	0.8822	0.058	0.025*
C6	0.7929 (2)	0.84807 (15)	-0.04585 (8)	0.0167 (2)
H6	0.7622	0.9546	-0.0476	0.02*
C7	0.7107 (2)	0.78161 (14)	-0.13235 (8)	0.0172 (2)
C8	0.4961 (2)	0.73435 (15)	-0.14903 (9)	0.0198 (2)
H8	0.3999	0.7395	-0.1047	0.024*
C9	0.4225 (2)	0.67920 (18)	-0.23124 (8)	0.0229 (2)
Н9	0.2771	0.6445	-0.2422	0.027*
C10	0.5608 (2)	0.67481 (19)	-0.29699 (8)	0.0259 (3)
H10	0.509	0.6391	-0.3531	0.031*
C11	0.7744 (3)	0.72253 (17)	-0.28063 (9)	0.0279 (3)
H11	0.8695	0.7192	-0.3255	0.033*
C12	0.8496 (2)	0.77535 (16)	-0.19836 (9)	0.0232 (3)
H12	0.9964	0.8073	-0.1872	0.028*
C13	0.7489 (2)	0.54497 (15)	0.26421 (8)	0.0197 (2)
H13A	0.5992	0.5049	0.2613	0.024*
H13B	0.853	0.4633	0.2733	0.024*
C14	0.6415 (2)	0.76351 (14)	0.32492 (8)	0.0161 (2)
H14	0.4857	0.7313	0.3201	0.019*
C15	0.6900 (2)	0.85965 (15)	0.40299 (8)	0.0168 (2)
C16	0.5382 (2)	0.87628 (16)	0.46339 (9)	0.0204 (3)
H16	0.4012	0.8282	0.4547	0.025*
C17	0.5876 (3)	0.96367 (17)	0.53664 (9)	0.0252 (3)
H17	0.4838	0.9756	0.5777	0.03*
C18	0.7877 (3)	1.03315 (17)	0.54964 (9)	0.0255 (3)
H18	0.8216	1.0916	0.5999	0.031*
C19	0.9390 (2)	1.01740 (18)	0.48917 (9)	0.0263 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H19	1.0756	1.0658	0.4979	0.032*	
C20	0.8902 (2)	0.93077 (17)	0.41595 (9)	0.0225 (3)	
H20	0.9937	0.92	0.3746	0.027*	
01	1.02017 (15)	0.82585 (11)	-0.03065 (6)	0.01980 (19)	
O2	0.68339 (15)	0.78354 (10)	0.02114 (5)	0.01686 (18)	
03	0.68371 (15)	0.84402 (11)	0.24980 (6)	0.01752 (18)	
O4	0.78222 (15)	0.64292 (10)	0.33617 (6)	0.01824 (19)	
S1	1.06220 (5)	0.67372 (4)	0.16652 (2)	0.01900 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0184 (6)	0.0173 (6)	0.0159 (5)	-0.0023 (4)	0.0049 (4)	-0.0009 (4)
C2	0.0156 (6)	0.0206 (6)	0.0127 (5)	0.0006 (4)	0.0016 (4)	-0.0001 (4)
C3	0.0186 (5)	0.0169 (6)	0.0130 (5)	0.0019 (5)	0.0022 (4)	0.0002 (4)
C4	0.0191 (5)	0.0158 (6)	0.0153 (5)	-0.0015 (5)	0.0009 (4)	0.0016 (4)
C5	0.0204 (6)	0.0236 (7)	0.0196 (6)	-0.0057 (5)	0.0024 (5)	0.0012 (5)
C6	0.0190 (5)	0.0181 (6)	0.0135 (5)	-0.0011 (5)	0.0035 (4)	0.0022 (4)
C7	0.0232 (6)	0.0146 (6)	0.0139 (5)	-0.0006 (5)	0.0029 (4)	0.0016 (4)
C8	0.0241 (6)	0.0181 (6)	0.0176 (5)	-0.0016 (5)	0.0036 (5)	0.0002 (5)
C9	0.0290 (6)	0.0186 (6)	0.0203 (5)	-0.0035 (6)	-0.0009 (5)	-0.0014 (5)
C10	0.0401 (7)	0.0211 (6)	0.0165 (5)	-0.0059 (7)	0.0020 (5)	-0.0034 (6)
C11	0.0402 (8)	0.0282 (8)	0.0168 (6)	-0.0065 (6)	0.0107 (5)	-0.0039 (5)
C12	0.0278 (7)	0.0255 (7)	0.0175 (6)	-0.0051 (5)	0.0073 (5)	-0.0010 (5)
C13	0.0287 (7)	0.0148 (6)	0.0164 (5)	-0.0010 (5)	0.0070 (5)	-0.0002 (4)
C14	0.0169 (5)	0.0195 (6)	0.0123 (5)	0.0018 (4)	0.0037 (4)	-0.0004 (4)
C15	0.0203 (6)	0.0174 (6)	0.0127 (5)	0.0036 (5)	0.0009 (4)	0.0010 (4)
C16	0.0218 (6)	0.0214 (7)	0.0187 (6)	0.0012 (5)	0.0048 (5)	-0.0010 (5)
C17	0.0307 (7)	0.0272 (8)	0.0184 (6)	0.0033 (6)	0.0067 (5)	-0.0028 (5)
C18	0.0309 (7)	0.0258 (7)	0.0190 (6)	0.0045 (6)	-0.0013 (5)	-0.0060 (5)
C19	0.0222 (7)	0.0315 (8)	0.0244 (7)	-0.0006 (6)	-0.0018 (5)	-0.0061 (6)
C20	0.0200 (6)	0.0290 (7)	0.0189 (6)	0.0003 (5)	0.0032 (5)	-0.0045 (5)
01	0.0184 (4)	0.0243 (5)	0.0173 (4)	-0.0027 (4)	0.0045 (3)	-0.0002 (3)
O2	0.0193 (4)	0.0209 (5)	0.0107 (4)	-0.0027 (3)	0.0031 (3)	0.0004 (3)
O3	0.0244 (5)	0.0167 (4)	0.0119 (4)	0.0027 (4)	0.0038 (3)	0.0003 (3)
O4	0.0243 (4)	0.0164 (5)	0.0139 (4)	0.0029 (3)	0.0017 (3)	-0.0001 (3)
S 1	0.01709 (13)	0.01938 (15)	0.02103 (13)	0.00212 (12)	0.00436 (10)	0.00274 (12)

Geometric parameters (Å, °)

C1—C13	1.5256 (18)	С9—Н9	0.95
C1—C2	1.5266 (19)	C10-C11	1.386 (2)
C1—S1	1.8279 (13)	C10—H10	0.95
С1—Н1	1	C11—C12	1.3928 (19)
C2—O3	1.4271 (15)	C11—H11	0.95
C2—C3	1.5144 (18)	C12—H12	0.95
С2—Н2	1	C13—O4	1.4287 (16)
C3—O2	1.4288 (15)	C13—H13A	0.99

C3—C4	1.5360 (18)	C13—H13B	0.99
С3—Н3	1	C14—O4	1.4100 (15)
C4—C5	1.5236 (19)	C14—O3	1.4211 (15)
C4—S1	1.8376 (14)	C14—C15	1.5000 (17)
C4—H4	1	C14—H14	1
C5—O1	1.4322 (16)	C15—C16	1.3925 (18)
C5—H5A	0.99	C15—C20	1.3928 (19)
С5—Н5В	0.99	C16—C17	1.3952 (19)
C6-01	1.4103 (16)	C16—H16	0.95
C6—O2	1.4195 (15)	C17—C18	1.386 (2)
C6—C7	1.5073 (18)	C17—H17	0.95
С6—Н6	1	C18—C19	1.390 (2)
C7—C8	1 3907 (19)	C18—H18	0.95
C7—C12	1 3945 (19)	C19-C20	1 390 (2)
C8 - C9	1 3974 (18)	C19—H19	0.95
C8—H8	0.95	C20—H20	0.95
C9-C10	1 3879 (19)	620 1120	0.95
09-010	1.5679 (19)		
C13—C1—C2	109.75 (11)	C11—C10—C9	119.92 (12)
C13—C1—S1	114.52 (9)	C11—C10—H10	120
C2—C1—S1	105.18 (9)	C9—C10—H10	120
C13—C1—H1	109.1	C10—C11—C12	119.93 (13)
C2—C1—H1	109.1	C10-C11-H11	120
S1—C1—H1	109.1	C12—C11—H11	120
03—C2—C3	104.97 (10)	C11—C12—C7	120.40 (14)
03—C2—C1	111.34 (10)	C11—C12—H12	119.8
C_{3} C_{2} C_{1}	107 41 (11)	C7-C12-H12	119.8
03—C2—H2	111	04-C13-C1	111 31 (11)
C_{3} C_{2} H_{2}	111	04-C13-H13A	109.4
$C_1 - C_2 - H_2$	111	C1 - C13 - H13A	109.1
$0^{2}-0^{3}-0^{2}$	105 99 (10)	O4-C13-H13B	109.1
02 - C3 - C4	103.99(10) 111.45(10)	C1-C13-H13B	109.1
$C_2 = C_3 = C_4$	106.47(10)	$H_{13}A = C_{13} = H_{13}B$	109.4
02_C3_H3	110.9	04-C14-03	110 58 (10)
C2—C3—H3	110.9	04 - C14 - C15	107.30(10)
C4—C3—H3	110.9	03 - C14 - C15	107.83(11)
$C_{5} - C_{4} - C_{3}$	110.57 (10)	O4-C14-H14	110.4
$C_{5} - C_{4} - S_{1}$	110.57(10) 114 52 (10)	O3-C14-H14	110.1
$C_3 - C_4 - S_1$	105.32(10)	C_{15} C_{14} H_{14}	110.1
C5-C4-H4	108.8	C_{16} C_{15} C_{20}	119.77 (12)
$C_3 - C_4 - H_4$	108.8	C16-C15-C14	120.53(12)
S1—C4—H4	108.8	$C_{10} = C_{15} = C_{14}$	120.55(12) 119.69(12)
01 - C5 - C4	111 54 (11)	C_{15} C_{16} C_{17}	119.85 (12)
01—C5—H5A	109 3	C_{15} $-C_{16}$ $-H_{16}$	120.1
C4—C5—H5A	109.3	C17-C16-H16	120.1
01—C5—H5B	109.3	C_{18} $-C_{17}$ $-C_{16}$	120.16 (14)
C4—C5—H5B	109.3	C_{18} $-C_{17}$ $-H_{17}$	119.9
H5A—C5—H5B	109.0	C16—C17—H17	119.9

01 - C6 - 02	110 77 (10)	C17 - C18 - C19	120.07(13)
01 - C6 - C7	100.08(11)	C17 - C18 - H18	120.07 (13)
$0^{2}-C^{6}-C^{7}$	109.30 (11)	C19-C18-H18	120
01_C6_H6	109.30 (11)	C_{18} C_{19} C_{20}	120 119.97 (14)
$O_2 C_6 H_6$	109.2	$C_{18} = C_{19} = C_{20}$	119.97 (14)
C7 C6 H6	109.2	$\begin{array}{ccc} C10 & C10 & H10 \\ \end{array}$	120
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	109.2 110 57 (12)	$C_{20} = C_{19} = M_{19}$	120 120.17(13)
$C_{0} = C_{1} = C_{12}$	119.37(12) 121.27(12)	$C_{19} = C_{20} = C_{13}$	120.17 (13)
$C_{0} = C_{1} = C_{0}$	121.27(12) 110.06(12)	$C_{15} = C_{20} = H_{20}$	119.9
$C_{12} - C_{12} - C$	119.00(12) 110.70(12)	$C_{13} = C_{20} = 1120$	119.9
$C_7 C_8 H_8$	119.79 (12)	$C_{0} = 01 = C_{3}$	109.91(10) 110.40(10)
$C = C = H \delta$	120.1	$C_0 = 0_2 = C_3$	110.49(10)
$C_{2} = C_{2} = C_{2}$	120.1	C14 - 03 - C2	112.91 (10)
C10 - C9 - C8	120.30 (13)	C1 = C1 = C1	111.41(9)
$C_{10} C_{9} H_{9}$	119.8	C1 = S1 = C4	94.89 (6)
С8—С9—Н9	119.8		
C13—C1—C2—O3	47.28 (14)	O3—C14—C15—C16	129.50 (12)
S1—C1—C2—O3	-76.39 (11)	O4—C14—C15—C20	67.48 (15)
C13—C1—C2—C3	161.68 (10)	O3—C14—C15—C20	-51.66 (15)
S1—C1—C2—C3	38.02 (11)	C20—C15—C16—C17	-0.2 (2)
O3—C2—C3—O2	-172.01 (9)	C14—C15—C16—C17	178.65 (12)
C1—C2—C3—O2	69.39 (12)	C15—C16—C17—C18	-0.4(2)
O3—C2—C3—C4	69.21 (12)	C16—C17—C18—C19	0.8 (2)
C1—C2—C3—C4	-49.39 (13)	C17—C18—C19—C20	-0.6(2)
O2—C3—C4—C5	45.85 (15)	C18—C19—C20—C15	0.0 (2)
C2-C3-C4-C5	160.99 (11)	C16—C15—C20—C19	0.4 (2)
O2—C3—C4—S1	-78.37 (11)	C14—C15—C20—C19	-178.47 (13)
C2—C3—C4—S1	36.77 (11)	O2—C6—O1—C5	-66.02 (13)
C3—C4—C5—O1	-46.70 (16)	C7—C6—O1—C5	173.64 (10)
\$1—C4—C5—O1	72.07 (13)	C4—C5—O1—C6	56.52 (14)
01-C6-C7-C8	153.67 (12)	Q1—C6—Q2—C3	65.43 (13)
02-C6-C7-C8	32.42 (17)	C7—C6—O2—C3	-174.35(10)
O1—C6—C7—C12	-30.07 (16)	C2—C3—O2—C6	-170.15 (10)
O2-C6-C7-C12	-151.31(12)	C4-C3-O2-C6	-54.71 (13)
C12—C7—C8—C9	0.9 (2)	04—C14—O3—C2	60.93 (13)
C6-C7-C8-C9	177.15 (13)	C15-C14-O3-C2	177.96 (10)
C7—C8—C9—C10	-1.7(2)	C3-C2-O3-C14	-169.74(10)
C8-C9-C10-C11	1.4 (3)	C1-C2-O3-C14	-53.83 (13)
C9-C10-C11-C12	-0.3(2)	03-C14-04-C13	-62.23(13)
C10-C11-C12-C7	-0.5(2)	C_{15} C_{14} O_{4} C_{13}	-179.58(10)
C8—C7—C12—C11	0.2 (2)	C1-C13-O4-C14	57.33 (14)
C6—C7—C12—C11	-176.16(13)	C_{13} C_{1} S_{1} C_{4}	-134.53(10)
C2-C1-C13-O4	-49.24 (15)	C2-C1-S1-C4	-13.96 (9)
S1-C1-C13-04	68.77 (13)	$C_{5}-C_{4}-S_{1}-C_{1}$	-134.60(10)
04-C14-C15-C16	-111.36 (13)	$C_3 - C_4 - S_1 - C_1$	-12.90(9)
	111.50 (15)		12.70 (7)