

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Chloro-*N*-ethyl-9-isopropyl-9*H*-purin-6-amine

Federico Andrés Giovagnoli,^a Michal Rouchal,^a Peter Bartoš^b and Robert Vícha^a*

^aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín, 762 72, Czech Republic, and ^bDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic

Correspondence e-mail: rvicha@ft.utb.cz

Received 29 June 2012; accepted 15 August 2012

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.025; wR factor = 0.069; data-to-parameter ratio = 13.4.

In the title compound, $C_{10}H_{14}ClN_5$, the purine ring system is essentially planar, with an r.m.s. deviation from the leastsquares plane defined by the nine constituent atoms of 0.0063 (11) Å. In the crystal, molecules are linked by weak $N-H\cdots N$ and $C-H\cdots \pi$ interactions.

Related literature

For the synthesis, see: Fiorini & Abel (1998). For related structures, see: Kubicki & Codding (2001); Rouchal *et al.* (2009*a*,*b*, 2010). For other related literature, see: Legraverend & Grierson (2006).

Experimental

Crystal data

 $\begin{array}{l} C_{10}H_{14}\text{ClN}_5\\ M_r = 239.71\\ \text{Monoclinic, } P2_1/n\\ a = 8.1385 \ (2) \\ \text{A}\\ b = 9.6245 \ (2) \\ \text{A} \end{array}$

/		

c = 14.8388 (3) Å
$\beta = 92.997 \ (2)^{\circ}$
V = 1160.72 (4) Å ³
Z = 4
Mo $K\alpha$ radiation

•	
organic	compounds
o guine	compounds

 $0.40 \times 0.40 \times 0.20 \text{ mm}$

Diffraction, 2009) $T_{\min} = 0.973, T_{\max} = 1.000$ 13543 measured reflections

 $R_{\rm int} = 0.015$

refinement

 $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

2041 independent reflections 1793 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.31 \text{ mm}^{-1}$ T = 120 K

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Sapphire2
(large Be window) detector
Absorption correction: multi-scan
CrysAlis RED (Oxford

Refinement $R[F^2 > 2\sigma(F^2)] = 0.025$

 $wR(F^2) = 0.069$ S = 1.07 2041 reflections

152 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the center of gravity of the pyridine ring (C1/N1/C2-C4/ N2).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overrightarrow{N3-H3\cdots N4^{i}}\\C8-H8\cdots Cg1^{ii}$	0.837 (16) 1.00 (1)	2.205 (17) 2.90 (1)	2.9979 (16) 3.6403 (13)	158.2 (15) 131 (1)
Symmetry codes: (i)	-x, -y + 1, -z	$+1;$ (ii) $-x + \frac{1}{2}, y$	$v + \frac{1}{2}, -z + \frac{1}{2}.$	

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

The financial support of this work by the Tomas Bata Foundation and by the Internal Founding Agency of Tomas Bata University in Zlin (project No. IGA/FT/2012/016) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2254).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fiorini, M. T. & Abel, Ch. (1998). Tetrahedron Lett. 39, 1827-1830.
- Kubicki, M. & Codding, P. W. (2001). Acta Cryst. E57, 0332-0334.
- Legraverend, M. & Grierson, D. S. (2006). Bioorg. Med. Chem. 14, 3987-4006.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood,
- P. A. (2008). J. Appl. Cryst. 41, 466–470. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford
- Diffraction Ltd, Yarnton, England. Rouchal, M., Nečas, M., de Carvalho, F. P. & Vícha, R. (2009*a*). Acta Cryst.
- E65, 0298-0299.
- Rouchal, M., Nečas, M. & Vícha, R. (2009b). Acta Cryst. E65, 01268. Rouchal, M., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, 01016.
- Nouchal, IVI., INCLAS, IVI. & VICHA, K. (2010). Acta Cryst. E00, (Shaldrick G. M. (2008). Asta Cryst. Act. 112, 122
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o2759 [doi:10.1107/S1600536812035933]

2-Chloro-N-ethyl-9-isopropyl-9H-purin-6-amine

Federico Andrés Giovagnoli, Michal Rouchal, Peter Bartoš and Robert Vícha

S1. Comment

The wide range of biological activities of di-, tri-, or tetrasubstituted purines is closely associated with essentially unlimited number of substituents that can be combined in the C2, C6, C8 and N9 positions of the purine ring (Legraverend & Grierson, 2006). The title molecule has been prepared as a part of our ongoing study of novel 2,6,9-tris-ubstituted purine series (Rouchal *et al.*, 2009*a*,*b*, 2010). To the best of our knowledge, the title compound has not been described in the literature so far.

In the title molecule (Fig. 1), the purine unit is essentially planar, with a r.m.s. deviation of 0.0063 (11) Å from the leastsquares plane defined by the nine constituent atoms. Although all pyrimidine atoms lie essentially in plane, the ring is markedly deformed from regular hexagon geometry with N1–C2–N3 angle of 132.0 (11)°. In the crystal structure (Fig. 2), molecules are connected by weak intermolecular N—H···N and C—H··· π interactions (Table 1).

S2. Experimental

The title compound was prepared according to slightly modified literature procedure (Fiorini & Abel, 1998). 2,6-Dichloro-9-isopropyl-9*H*-purine (100 mg, 0.43 mmol) and ethylamine hydrochloride (37 mg, 0.45 mmol) were dissolved in the mixture of DMF (3 cm³) and triethylamine (87 mg, 0.86 mmol). The resulting solution was stirred at 90 °C for 3 h. Subsequently, the mixture was diluted with water and extracted with ethyl acetate (6×10 cm³). Combined organic layers were washed twice with brine, dried over Na₂SO₄ and evaporated in vacuum. Crystallization of the crude product from diethyl ether at room temperature provided desired compound as colorless crystals (67 mg, 65%, mp 390–393 K) suitable for X-ray diffraction analysis.

S3. Refinement

All carbon bound H atoms were placed at calculated positions and were refined as riding with their U_{iso} set to either $1.2U_{eq}$ or $1.5U_{eq}$ (methyl) of the respective carrier atoms. The positions of methyl H atoms were optimized rotationally. Nitrogen bound H atom was located in a difference Fourier map and refined freely.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

A view of the N—H…N (black dotted lines) and C—H… π (red dashed lines) interactions in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. Symmetry codes: (i) -*x*, -*y* + 1, - *z* + 1; (ii) -*x* + 0.5, *y* - 0.5, -*z* + 0.5.

2-chloro-N-ethyl-9-isopropyl-9H-purine-6-amine

Crystal data

C ₁₀ H ₁₄ ClN ₅	F(000) = 504
$M_r = 239.71$	$D_x = 1.372 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 392 K
Hall symbol: -P 2yn	Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$
a = 8.1385 (2) Å	Cell parameters from 9070 reflections
b = 9.6245 (2) Å	$\theta = 2.9-27.2^{\circ}$
c = 14.8388 (3) Å	$\mu = 0.31 \text{ mm}^{-1}$
$\beta = 92.997$ (2)°	T = 120 K
V = 1160.72 (4) Å ³	Block, colourless
Z = 4	$0.40 \times 0.40 \times 0.20 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur	$T_{\min} = 0.973, T_{\max} = 1.000$
diffractometer with a Sapphire2 (large Be	13543 measured reflections
window) detector	2041 independent reflections
Radiation source: Enhance (Mo) X-ray Source	1793 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.015$
Detector resolution: 8.4353 pixels mm ⁻¹	$\theta_{\max} = 25.0^{\circ}, \theta_{\min} = 2.9^{\circ}$
ω scan	$h = -9 \rightarrow 9$
Absorption correction: multi-scan	$k = -10 \rightarrow 11$
<i>CrysAlis RED</i> (Oxford Diffraction, 2009)	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2 H atoms treated by a mixture of independent
and constrained refinement $R[F^2 > 2\sigma(F^2)] = 0.025$ $w = 1/[\sigma^2(F_o^2) + (0.0372P)^2 + 0.3781P]$
where $P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.069$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.07 $(\Delta/\sigma)_{max} = 0.001$ 2041 reflections $\Delta\rho_{max} = 0.21$ e Å⁻³152 parameters $\Delta\rho_{min} = -0.22$ e Å⁻³0 restraints $\Delta\rho_{min} = -0.22$ e Å⁻³

Special details

Experimental. Spectral properties of title compound: 1H NMR (CDCl₃): 1.30 (t, J = 7.3 Hz, 3H, NHCH₂CH₃), 1.57 (d, J = 6.6 Hz, 6H, CH(CH₃)₂), 3.72 (m, 2H, NHCH₂CH₃), 4.80 (septet, J = 6.9 Hz, 1H, CH(CH₃)₂), 5.84 (bs, 1H, NHCH₂CH₃), 7.76 (s, 1H, NC8HN) p.p.m.. 13 C NMR (CDCl₃): 15.1(CH₃), 23.0(CH₃), 36.0(CH₂), 47.1(CH), 119.0(C), 137.6(CH), 154.5(C), 155.5(C) p.p.m.. IR (KBr): 3103(*m*), 2974(*m*), 2933(w), 1726(w), 1605(*s*), 1560(*m*), 1481(w), 1454(w), 1435(w), 1404(*m*), 1362(*m*), 1309(*s*), 1227(*s*), 1188(w), 130(w), 1034(*s*), 941(*m*), 874(*m*), 785(*m*), 657(*m*), 609(w) cm⁻¹. GC—EI—MS (200 °C, 70 eV): 241($M^{+}({}^{37}Cl)$, 30), 240 (13), 239($M^{+}({}^{35}Cl)$, 95), 226 (20), 225 (7), 224 (62), 213 (10), 211 (32), 199 (9), 198 (18), 197 (27), 196 (45), 184 (32), 183 (9), 182 (100), 171 (17), 169 (54), 161 (27), 160 (17), 156 (6), 155 (10), 154 (19), 153 (8), 146 (20), 134 (43), 133 (22), 120 (6), 119 (47), 118 (5), 108 (9), 107 (12), 106 (7), 93 (8), 92 (21), 80 (7), 68 (5), 67 (9), 66 (11), 65 (6), 55 (6), 54 (12), 53 (9), 44 (74), 43 (34), 42 (11), 41 (34), 40 (6) m/z(%). Elemental analysis calc for C₁₀H₁₄ClN₄ (239.70) C 50.11, H 5.89, N 29.22; found C 50.16, H 5.92, N 29.02.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.71286 (4)	0.25662 (4)	0.37828 (2)	0.02326 (12)	
N1	0.46503 (13)	0.39081 (11)	0.30528 (7)	0.0176 (2)	
N2	0.45822 (13)	0.33371 (11)	0.46370 (7)	0.0172 (2)	
N3	0.24124 (14)	0.38987 (12)	0.55160 (7)	0.0195 (3)	
H3	0.147 (2)	0.4230 (17)	0.5565 (11)	0.027 (4)*	
N4	0.08494 (13)	0.52739 (11)	0.38017 (7)	0.0194 (3)	
N5	0.21933 (13)	0.51796 (11)	0.25145 (7)	0.0180 (2)	
C1	0.52134 (15)	0.33857 (13)	0.38306 (8)	0.0169 (3)	
C2	0.31722 (15)	0.45181 (13)	0.31630 (8)	0.0164 (3)	
C3	0.23370 (15)	0.45883 (13)	0.39493 (9)	0.0164 (3)	
C4	0.30943 (15)	0.39438 (13)	0.47204 (8)	0.0166 (3)	
C5	0.31812 (16)	0.31996 (15)	0.63006 (8)	0.0211 (3)	
H5A	0.2794	0.3635	0.6855	0.025*	
H5B	0.4388	0.3329	0.6301	0.025*	
C6	0.27990 (19)	0.16560 (16)	0.63171 (10)	0.0312 (4)	
H6A	0.3327	0.1238	0.6861	0.047*	
H6B	0.3218	0.1212	0.5781	0.047*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H6C	0.1606	0.1521	0.6321	0.047*
C7	0.08323 (16)	0.56029 (14)	0.29428 (9)	0.0199 (3)
H7	-0.0051	0.6094	0.2644	0.024*
C8	0.25198 (17)	0.53989 (14)	0.15553 (9)	0.0210 (3)
H8	0.1594	0.5962	0.1277	0.025*
C9	0.40995 (17)	0.62252 (15)	0.14745 (9)	0.0250 (3)
H9A	0.4035	0.7089	0.1820	0.038*
H9B	0.4244	0.6445	0.0839	0.038*
H9C	0.5037	0.5674	0.1712	0.038*
C10	0.25535 (19)	0.40217 (16)	0.10584 (10)	0.0285 (3)
H10A	0.1506	0.3537	0.1119	0.043*
H10B	0.3455	0.3448	0.1317	0.043*
H10C	0.2722	0.4190	0.0418	0.043*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.01873 (19)	0.0305 (2)	0.02086 (19)	0.00947 (13)	0.00355 (13)	0.00232 (13)
N1	0.0166 (6)	0.0174 (6)	0.0189 (6)	0.0010 (4)	0.0019 (4)	-0.0002 (4)
N2	0.0164 (5)	0.0172 (6)	0.0181 (5)	0.0006 (4)	0.0015 (4)	-0.0013 (4)
N3	0.0169 (6)	0.0237 (6)	0.0181 (6)	0.0048 (5)	0.0037 (4)	0.0010 (4)
N4	0.0170 (6)	0.0193 (6)	0.0220 (6)	0.0021 (4)	0.0018 (4)	0.0002 (5)
N5	0.0164 (6)	0.0199 (6)	0.0179 (5)	0.0021 (4)	0.0012 (4)	0.0019 (5)
C1	0.0148 (6)	0.0156 (7)	0.0203 (6)	0.0007 (5)	0.0019 (5)	-0.0015 (5)
C2	0.0158 (6)	0.0141 (7)	0.0191 (6)	-0.0012 (5)	-0.0004 (5)	-0.0003 (5)
C3	0.0151 (6)	0.0143 (7)	0.0200 (6)	-0.0007(5)	0.0014 (5)	-0.0015 (5)
C4	0.0169 (6)	0.0136 (6)	0.0192 (6)	-0.0023 (5)	0.0010 (5)	-0.0027 (5)
C5	0.0202 (7)	0.0265 (8)	0.0166 (6)	0.0029 (6)	0.0020 (5)	0.0003 (5)
C6	0.0311 (8)	0.0295 (9)	0.0329 (8)	-0.0026 (6)	0.0016 (6)	0.0085 (6)
C7	0.0159 (6)	0.0200 (7)	0.0238 (7)	0.0025 (5)	0.0014 (5)	0.0015 (6)
C8	0.0202 (7)	0.0261 (8)	0.0169 (6)	0.0038 (5)	0.0008 (5)	0.0044 (5)
C9	0.0255 (7)	0.0241 (8)	0.0258 (7)	0.0015 (6)	0.0046 (6)	0.0065 (6)
C10	0.0300 (8)	0.0333 (9)	0.0220 (7)	-0.0012 (6)	-0.0001 (6)	-0.0046 (6)

Geometric parameters (Å, °)

Cl1—C1	1.7516 (13)	C5—H5A	0.9900
N1C1	1.3189 (16)	C5—H5B	0.9900
N1—C2	1.3561 (16)	C6—H6A	0.9800
N2	1.3274 (16)	C6—H6B	0.9800
N2C4	1.3558 (16)	C6—H6C	0.9800
N3—C4	1.3312 (17)	С7—Н7	0.9500
N3—C5	1.4572 (17)	C8—C10	1.518 (2)
N3—H3	0.837 (17)	C8—C9	1.5217 (19)
N4—C7	1.3126 (17)	C8—H8	1.0000
N4—C3	1.3861 (17)	С9—Н9А	0.9800
N5—C7	1.3677 (17)	С9—Н9В	0.9800
N5—C2	1.3733 (16)	С9—Н9С	0.9800

N5—C8	1.4766 (16)	C10—H10A	0.9800
C2—C3	1.3824 (18)	C10—H10B	0.9800
C3—C4	1.4143 (18)	C10—H10C	0.9800
C5—C6	1.518 (2)		
C1—N1—C2	109.23 (11)	С5—С6—Н6А	109.5
C1—N2—C4	117.17 (11)	С5—С6—Н6В	109.5
C4—N3—C5	122.83 (12)	H6A—C6—H6B	109.5
C4—N3—H3	119.4 (11)	С5—С6—Н6С	109.5
C5—N3—H3	117.6 (11)	H6A—C6—H6C	109.5
C7—N4—C3	103.48 (10)	H6B—C6—H6C	109.5
C7—N5—C2	105.47 (10)	N4—C7—N5	114.31 (12)
C7—N5—C8	126.60 (11)	N4—C7—H7	122.8
C2—N5—C8	127.93 (11)	N5—C7—H7	122.8
N1—C1—N2	132.00 (12)	N5-C8-C10	110.62 (11)
N1—C1—C11	113.92 (9)	N5—C8—C9	110.24 (11)
N2-C1-Cl1	114.06 (9)	C10—C8—C9	112.42 (12)
N1—C2—N5	127.02 (11)	N5-C8-H8	107.8
N1—C2—C3	126.96 (12)	C10—C8—H8	107.8
N5—C2—C3	106.02 (11)	С9—С8—Н8	107.8
C2—C3—N4	110.72 (11)	С8—С9—Н9А	109.5
C2—C3—C4	116.66 (12)	С8—С9—Н9В	109.5
N4—C3—C4	132.59 (12)	Н9А—С9—Н9В	109.5
N3—C4—N2	118.86 (12)	С8—С9—Н9С	109.5
N3—C4—C3	123.20 (12)	Н9А—С9—Н9С	109.5
N2—C4—C3	117.94 (11)	Н9В—С9—Н9С	109.5
N3—C5—C6	112.64 (11)	C8—C10—H10A	109.5
N3—C5—H5A	109.1	C8-C10-H10B	109.5
С6—С5—Н5А	109.1	H10A—C10—H10B	109.5
N3—C5—H5B	109.1	C8-C10-H10C	109.5
C6—C5—H5B	109.1	H10A—C10—H10C	109.5
H5A—C5—H5B	107.8	H10B—C10—H10C	109.5
C2—N1—C1—N2	2.0 (2)	C5—N3—C4—N2	-1.24 (19)
C2—N1—C1—Cl1	-179.87 (9)	C5—N3—C4—C3	178.29 (12)
C4—N2—C1—N1	-1.4 (2)	C1—N2—C4—N3	179.07 (11)
C4—N2—C1—Cl1	-179.56 (9)	C1—N2—C4—C3	-0.48 (17)
C1—N1—C2—N5	179.90 (12)	C2—C3—C4—N3	-178.20 (12)
C1—N1—C2—C3	-0.80 (18)	N4—C3—C4—N3	-0.3 (2)
C7—N5—C2—N1	179.21 (12)	C2—C3—C4—N2	1.33 (17)
C8—N5—C2—N1	-0.8 (2)	N4—C3—C4—N2	179.24 (13)
C7—N5—C2—C3	-0.21 (14)	C4—N3—C5—C6	-85.04 (16)
C8—N5—C2—C3	179.74 (12)	C3—N4—C7—N5	0.27 (15)
N1-C2-C3-N4	-179.04 (12)	C2—N5—C7—N4	-0.05 (15)
N5-C2-C3-N4	0.38 (14)	C8—N5—C7—N4	-179.99 (12)
N1—C2—C3—C4	-0.68 (19)	C7—N5—C8—C10	-114.50 (14)
N5—C2—C3—C4	178.74 (11)	C2—N5—C8—C10	65.56 (16)
C7—N4—C3—C2	-0.40 (14)	C7—N5—C8—C9	120.53 (14)

<u>C7—N4—C3—C4</u>	-178.41 (14)	C2—N5—C8—C9	-59.40 (17)		
<i>Hydrogen-bond geometry (Å, ^c</i> <i>Cg</i> ¹ is the center of gravity of the pyric) line ring (C1, N1, C2, C3, C4, N2).				
D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A	
N3—H3···N4 ⁱ C8—H8···C σ 1 ⁱⁱ	0.837 (16)	2.205 (17) 2 90 (1)	2.9979 (16) 3 6403 (13)	158.2 (15) 131 (1)	

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1/2, y+1/2, -z+1/2.