### organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 2,2'-{[2-(Pyridin-2-yl)-1,3-diazinane-1,3-diyl]bis(methylene)}diphenol

### Adailton J. Bortoluzzi\* and Geovana G. Terra

Depto. de Química, Universidade Federal de Santa Catarina, 88040-900 -Florianópolis, SC, Brazil Correspondence e-mail: adailton.bortoluzzi@uísc.br

Received 25 July 2012; accepted 10 August 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.052; wR factor = 0.146; data-to-parameter ratio = 14.2.

The title compound,  $C_{23}H_{25}N_3O_2$ , was obtained as an intermediary in the preparation of non-symmetric tertiary diamines. The molecular structure presents T-shaped spatial form, in which the pyrimidine ring exhibits a chair conformation. The pyridyl ring is almost perpendicular to the phenyl rings with dihedral angles of 80.17 (8) and 76.03 (2)°. The phenol and amine groups are involved in two strong intramolecular O-H···N interactions. In the crystal, the molecules are stacked along [010]; however, no intermolecular interactions are observed.

### **Related literature**

For the synthetic procedure, see: Hureau *et al.* (2008). For related structures, see: Yokoyama *et al.* (1995); Xia *et al.* (2007). For standard bond lengths and angles, see: Bruno *et al.* (2004).



### **Experimental**

Crystal data  $C_{23}H_{25}N_3O_2$  $M_r = 375.46$ 

Monoclinic,  $P2_1/n$ *a* = 18.7615 (16) Å b = 6.2105 (11) Å c = 19.0407 (12) Å  $\beta = 114.594 (8)^{\circ}$   $V = 2017.3 (4) \text{ Å}^{3}$ Z = 4

### Data collection

Enraf–Nonius CAD-4 diffractometer 3711 measured reflections 3595 independent reflections 2038 reflections with  $I > 2\sigma(I)$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 253 parameters $wR(F^2) = 0.146$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.17$  e Å $^{-3}$ 3595 reflections $\Delta \rho_{min} = -0.22$  e Å $^{-3}$ 

Mo  $K\alpha$  radiation

 $0.50 \times 0.50 \times 0.40$  mm

3 standard reflections every 200

intensity decay: 1%

 $\mu = 0.08 \text{ mm}^-$ 

T = 293 K

 $R_{\rm int} = 0.079$ 

reflections

## Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|--------------|--------------------------------------|
| O10−H10···N1                | 1.02 | 1.69                    | 2.624 (3)    | 150                                  |
| O20−H20···N5                | 1.09 | 1.72                    | 2.705 (3)    | 148                                  |

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *SET4* in *CAD-4 Software*; data reduction: *HELENA* (Spek, 1996); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Financiadora de Estudos e Projetos (FINEP) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2078).

#### References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Hureau, C., Groni, S., Guillot, R., Blondin, G., Duboc, C. & Anxolabehere-Mallart, E. (2008). *Inorg. Chem.* 47, 9238–9247.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (1996). *HELENA*. University of Utrecht, The Netherlands.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Xia, H.-T., Liu, Y.-F., Wang, D.-Q. & Gao, W. (2007). Acta Cryst. E63, 03665.
- Yokoyama, T., Etoh, N. & Zenki, M. (1995). Anal. Sci. 11, 875-876.

## supporting information

Acta Cryst. (2012). E68, o2744 [doi:10.1107/S1600536812035477]

## 2,2'-{[2-(Pyridin-2-yl)-1,3-diazinane-1,3-diyl]bis(methylene)}diphenol

### Adailton J. Bortoluzzi and Geovana G. Terra

### S1. Comment

The molecular structure of the title compound (I) shows T-shaped spatial form (Fig. 1). Pyrimidine ring adopts regular chair conformation with square plane formed by N1/C2/C4/C5 atoms (r.m.s. deviation = 0.0111).

The dihedral angles between the mean planes of the rings C31/C36 and C11/C16 of 80.17 (8)° and C31/36 and C211/C26 of 76.03 (8)° demonstrate that pyridil ring is almost perpendicular to phenol groups.

Two strong intramolecular O—H…N hydrogen bonds between phenol and amine groups (Table 1) form additional sixmembered rings, which contribute for the rigidity of the structure and avoid the crystal supramolecurity.

The molecules are stacked along [010] direction, however no further intermolecular interactions, such as  $\pi$ -stacking, were observed.

All bond lengths and angles found for (I) are in the expected range for organic compounds (Bruno et al., 2004).

### **S2. Experimental**

Compound (I) was synthesized according to the procedure described by Hureau et al. (2008).

A solution containing 6.0 g of *N*,*N'-bis*(2-hydroxybenzyl)-1,3-diamino-propane (21,3 mmol) and 2.39 g (21,3 mmol) of 2-pyridinecarboxaldehyde in 60 ml of MeOH was stirred at temperature of 333,15 K for 1 h. The solvent was evaporated under reduced pressure to afford a white precipitate, which was filtered off and washed with dry diethyl eter. (85% yield = 85%). MP 154.6–154.9 °C, EA for  $C_{23}H_{25}N_3O_2$ : calc C 73,53%; H 7,18%; N 11,27%, found C, 73.57%; H, 6.71%; N, 11.195.

### **S3. Refinement**

H atoms attached to carbon atoms were placed at their idealized positions with distances of 0.98 and 0.97 Å and  $U_{iso}$  fixed at 1.2 times of  $U_{eq}$  of the preceding atom for CH and CH<sub>2</sub>, respectively. H atoms of the hydroxyl groups were found from difference map and treated with riding model and their  $U_{iso}$  were fixed at 1.2 times of  $U_{eq}$  of the parent atom.



### Figure 1

The molecular structure of the title compound. Ellipsoids are shown at the 40% probability level.

### 2,2'-{[2-(Pyridin-2-yl)-1,3-diazinane-1,3-diyl]bis(methylene)}diphenol

| Crystal data                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{23}H_{25}N_{3}O_{2}$ $M_{r} = 375.46$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn<br>a = 18.7615 (16) Å<br>b = 6.2105 (11) Å<br>c = 19.0407 (12) Å<br>$\beta = 114.594$ (8)°<br>V = 2017.3 (4) Å <sup>3</sup><br>Z = 4                        | F(000) = 800<br>$D_x = 1.236 \text{ Mg m}^{-3}$<br>Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 25 reflections<br>$\theta = 5.5-17.4^{\circ}$<br>$\mu = 0.08 \text{ mm}^{-1}$<br>T = 293  K<br>Block, colorless<br>$0.50 \times 0.50 \times 0.40 \text{ mm}$                                                                                           |
| Data collection                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                  |
| Enraf–Nonius CAD-4<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\omega$ –2 $\theta$ scans<br>3711 measured reflections<br>3595 independent reflections<br>2038 reflections with $I > 2\sigma(I)$  | $R_{int} = 0.079$<br>$\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 1.3^{\circ}$<br>$h = -20 \rightarrow 22$<br>$k = -7 \rightarrow 0$<br>$l = -22 \rightarrow 0$<br>3 standard reflections every 200 reflections<br>intensity decay: 1%                                                                                                                                         |
| Refinement                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                  |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.052$<br>$wR(F^2) = 0.146$<br>S = 1.01<br>3595 reflections<br>253 parameters<br>0 restraints<br>Primary atom site location: structure-invariant<br>direct methods | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0711P)^2 + 0.2051P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.17$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.21$ e Å <sup>-3</sup> |

|      | X            | У          | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|------------|---------------|-----------------------------|--|
| N1   | 0.65802 (10) | 0.2353 (3) | -0.10455 (10) | 0.0445 (5)                  |  |
| C2   | 0.57867 (13) | 0.1394 (4) | -0.14032 (13) | 0.0545 (7)                  |  |
| H2A  | 0.5828       | -0.0130    | -0.1492       | 0.065*                      |  |
| H2B  | 0.5488       | 0.2073     | -0.1898       | 0.065*                      |  |
| C3   | 0.53699 (14) | 0.1696 (5) | -0.08857 (14) | 0.0636 (8)                  |  |
| H3A  | 0.5285       | 0.3218     | -0.0835       | 0.076*                      |  |
| H3B  | 0.4863       | 0.0989     | -0.1109       | 0.076*                      |  |
| C4   | 0.58552 (14) | 0.0754 (5) | -0.01042 (14) | 0.0631 (8)                  |  |
| H4A  | 0.5594       | 0.0982     | 0.0235        | 0.076*                      |  |
| H4B  | 0.5914       | -0.0784    | -0.0151       | 0.076*                      |  |
| N5   | 0.66299 (10) | 0.1781 (3) | 0.02244 (11)  | 0.0481 (5)                  |  |
| C10  | 0.69848 (14) | 0.2035 (4) | -0.15583 (14) | 0.0528 (6)                  |  |
| H10A | 0.6964       | 0.0521     | -0.1691       | 0.063*                      |  |
| H10B | 0.7532       | 0.2433     | -0.1283       | 0.063*                      |  |
| C11  | 0.66255 (14) | 0.3345 (4) | -0.22904 (13) | 0.0504 (6)                  |  |
| C12  | 0.63385 (15) | 0.5401 (4) | -0.22823 (15) | 0.0581 (7)                  |  |
| C13  | 0.60453 (16) | 0.6654 (5) | -0.29458 (16) | 0.0697 (8)                  |  |
| H13  | 0.5838       | 0.8009     | -0.2938       | 0.084*                      |  |
| C14  | 0.60633 (17) | 0.5889 (6) | -0.36109 (17) | 0.0781 (9)                  |  |
| H14  | 0.5881       | 0.6747     | -0.4051       | 0.094*                      |  |
| C15  | 0.63473 (17) | 0.3875 (6) | -0.36363 (16) | 0.0741 (9)                  |  |
| H15  | 0.6353       | 0.3361     | -0.4093       | 0.089*                      |  |
| C16  | 0.66272 (15) | 0.2605 (5) | -0.29765 (15) | 0.0635 (7)                  |  |
| H16  | 0.6819       | 0.1235     | -0.2995       | 0.076*                      |  |
| C20  | 0.70860 (14) | 0.0956 (4) | 0.10175 (13)  | 0.0536 (7)                  |  |
| H20A | 0.7614       | 0.1532     | 0.1214        | 0.064*                      |  |
| H20B | 0.7121       | -0.0600    | 0.1000        | 0.064*                      |  |
| C21  | 0.67202 (13) | 0.1560 (4) | 0.15583 (13)  | 0.0479 (6)                  |  |
| C22  | 0.64091 (15) | 0.3595 (5) | 0.15448 (14)  | 0.0564 (7)                  |  |
| C23  | 0.61059 (16) | 0.4140 (5) | 0.20724 (16)  | 0.0689 (8)                  |  |
| H23  | 0.5892       | 0.5500     | 0.2057        | 0.083*                      |  |
| C24  | 0.61217 (17) | 0.2666 (6) | 0.26183 (16)  | 0.0735 (8)                  |  |
| H24  | 0.5921       | 0.3038     | 0.2974        | 0.088*                      |  |
| C25  | 0.64312 (17) | 0.0652 (5) | 0.26416 (15)  | 0.0703 (8)                  |  |
| H25  | 0.6443       | -0.0341    | 0.3012        | 0.084*                      |  |
| C26  | 0.67240 (14) | 0.0119 (4) | 0.21108 (13)  | 0.0568 (7)                  |  |
| H26  | 0.6930       | -0.1250    | 0.2125        | 0.068*                      |  |
| C30  | 0.70474 (12) | 0.1435 (4) | -0.02717 (12) | 0.0443 (6)                  |  |
| H30  | 0.7115       | -0.0114    | -0.0321       | 0.053*                      |  |
| C31  | 0.78452 (13) | 0.2502 (4) | 0.00853 (13)  | 0.0451 (6)                  |  |
| N32  | 0.84615 (11) | 0.1185 (3) | 0.03432 (12)  | 0.0549 (6)                  |  |
| C33  | 0.91701 (15) | 0.2096 (5) | 0.06679 (17)  | 0.0691 (8)                  |  |
| H33  | 0.9605       | 0.1195     | 0.0861        | 0.083*                      |  |
| C34  | 0.92949 (17) | 0.4257 (6) | 0.07337 (17)  | 0.0740 (9)                  |  |
| H34  | 0.9801       | 0.4810     | 0.0955        | 0.089*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C35 | 0.86581 (17) | 0.5606 (5) | 0.04665 (14)  | 0.0638 (8) |  |
|-----|--------------|------------|---------------|------------|--|
| H35 | 0.8723       | 0.7092     | 0.0505        | 0.077*     |  |
| C36 | 0.79262 (15) | 0.4714 (4) | 0.01433 (14)  | 0.0550 (7) |  |
| H36 | 0.7485       | 0.5592     | -0.0037       | 0.066*     |  |
| O10 | 0.63242 (12) | 0.6251 (3) | -0.16299 (11) | 0.0789 (6) |  |
| H10 | 0.6485       | 0.5027     | -0.1240       | 0.095*     |  |
| O20 | 0.63844 (12) | 0.5107 (3) | 0.10137 (11)  | 0.0754 (6) |  |
| H20 | 0.6531       | 0.4237     | 0.0597        | 0.090*     |  |
|     |              |            |               |            |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | <i>U</i> <sup>33</sup> | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|------------------------|--------------|-------------|--------------|
| N1  | 0.0433 (11) | 0.0465 (11) | 0.0424 (10)            | 0.0008 (9)   | 0.0167 (9)  | 0.0002 (9)   |
| C2  | 0.0463 (14) | 0.0617 (17) | 0.0479 (13)            | -0.0021 (13) | 0.0120 (11) | 0.0025 (13)  |
| C3  | 0.0396 (13) | 0.093 (2)   | 0.0531 (15)            | -0.0052 (14) | 0.0141 (12) | 0.0054 (15)  |
| C4  | 0.0490 (15) | 0.084 (2)   | 0.0529 (15)            | -0.0118 (14) | 0.0176 (12) | 0.0097 (15)  |
| N5  | 0.0394 (11) | 0.0558 (13) | 0.0452 (11)            | -0.0027 (10) | 0.0136 (9)  | 0.0079 (10)  |
| C10 | 0.0543 (15) | 0.0494 (15) | 0.0565 (15)            | 0.0046 (12)  | 0.0249 (13) | -0.0022 (12) |
| C11 | 0.0479 (14) | 0.0565 (16) | 0.0476 (14)            | -0.0053 (12) | 0.0206 (11) | -0.0021 (13) |
| C12 | 0.0621 (17) | 0.0532 (16) | 0.0529 (16)            | -0.0021 (14) | 0.0178 (13) | 0.0038 (14)  |
| C13 | 0.0732 (19) | 0.0683 (19) | 0.0600 (17)            | -0.0021 (16) | 0.0202 (15) | 0.0139 (16)  |
| C14 | 0.069 (2)   | 0.100 (3)   | 0.0585 (19)            | -0.0141 (19) | 0.0190 (15) | 0.0212 (19)  |
| C15 | 0.0710 (19) | 0.108 (3)   | 0.0508 (17)            | -0.022 (2)   | 0.0330 (15) | -0.0036 (18) |
| C16 | 0.0602 (16) | 0.078 (2)   | 0.0611 (17)            | -0.0102 (15) | 0.0337 (14) | -0.0119 (16) |
| C20 | 0.0468 (14) | 0.0567 (16) | 0.0479 (14)            | 0.0035 (12)  | 0.0104 (11) | 0.0101 (13)  |
| C21 | 0.0412 (13) | 0.0541 (15) | 0.0392 (13)            | -0.0039 (12) | 0.0076 (10) | 0.0041 (12)  |
| C22 | 0.0530 (15) | 0.0593 (17) | 0.0517 (15)            | 0.0035 (14)  | 0.0167 (12) | 0.0081 (14)  |
| C23 | 0.0653 (18) | 0.073 (2)   | 0.0637 (17)            | 0.0132 (16)  | 0.0224 (15) | 0.0025 (16)  |
| C24 | 0.074 (2)   | 0.094 (2)   | 0.0539 (17)            | 0.0093 (19)  | 0.0283 (15) | 0.0021 (18)  |
| C25 | 0.0755 (19) | 0.085 (2)   | 0.0472 (15)            | 0.0029 (18)  | 0.0225 (14) | 0.0134 (16)  |
| C26 | 0.0556 (15) | 0.0609 (17) | 0.0450 (14)            | 0.0030 (13)  | 0.0121 (12) | 0.0065 (13)  |
| C30 | 0.0408 (13) | 0.0365 (12) | 0.0505 (14)            | 0.0009 (11)  | 0.0140 (11) | 0.0029 (11)  |
| C31 | 0.0461 (14) | 0.0459 (15) | 0.0437 (13)            | 0.0016 (12)  | 0.0191 (11) | 0.0029 (12)  |
| N32 | 0.0421 (12) | 0.0536 (13) | 0.0643 (13)            | 0.0055 (11)  | 0.0176 (10) | 0.0002 (11)  |
| C33 | 0.0424 (16) | 0.077 (2)   | 0.078 (2)              | 0.0063 (15)  | 0.0156 (14) | -0.0024 (17) |
| C34 | 0.0540 (17) | 0.093 (3)   | 0.0694 (19)            | -0.0226 (18) | 0.0199 (15) | -0.0098 (18) |
| C35 | 0.076 (2)   | 0.0546 (17) | 0.0557 (16)            | -0.0227 (16) | 0.0219 (15) | -0.0059 (14) |
| C36 | 0.0592 (17) | 0.0457 (16) | 0.0567 (15)            | 0.0011 (13)  | 0.0207 (13) | 0.0039 (13)  |
| O10 | 0.1205 (17) | 0.0512 (12) | 0.0618 (12)            | 0.0213 (12)  | 0.0346 (12) | 0.0043 (10)  |
| O20 | 0.0978 (15) | 0.0595 (12) | 0.0769 (13)            | 0.0172 (11)  | 0.0444 (11) | 0.0199 (11)  |

Geometric parameters (Å, °)

| N1-C10 | 1.478 (3) | C20—C21  | 1.504 (3) |  |
|--------|-----------|----------|-----------|--|
| N1-C30 | 1.480 (3) | C20—H20A | 0.9700    |  |
| N1—C2  | 1.480 (3) | C20—H20B | 0.9700    |  |
| C2—C3  | 1.503 (3) | C21—C26  | 1.379 (3) |  |
| C2—H2A | 0.9700    | C21—C22  | 1.388 (4) |  |
|        |           |          |           |  |

| C2—H2B                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $C^{22} = O^{20}$                                                                                                                                                                                                                                                                                        | 1 367 (3)                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_3 - C_4$                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 503 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $C^{22}$ $C^{23}$                                                                                                                                                                                                                                                                                        | 1.387(4)                                                                                                                                                                                                                                                                            |
| C3—H3A                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $C^{23}$ $C^{24}$                                                                                                                                                                                                                                                                                        | 1 376 (4)                                                                                                                                                                                                                                                                           |
| C3—H3B                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C23_H23                                                                                                                                                                                                                                                                                                  | 0.9300                                                                                                                                                                                                                                                                              |
| C4—N5                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 468 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $C_{23} = 1123$                                                                                                                                                                                                                                                                                          | 1,372 (4)                                                                                                                                                                                                                                                                           |
| $C_4 = H_4 \Lambda$                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $C_{24} = C_{23}$                                                                                                                                                                                                                                                                                        | 1.372(4)                                                                                                                                                                                                                                                                            |
| $C_4 = H_4 R$                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $C_{24} = 1124$                                                                                                                                                                                                                                                                                          | 1.376(4)                                                                                                                                                                                                                                                                            |
| N5 C20                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $C_{25} = C_{20}$                                                                                                                                                                                                                                                                                        | 1.370(4)                                                                                                                                                                                                                                                                            |
| N5 C20                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.472(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C25—H25                                                                                                                                                                                                                                                                                                  | 0.9300                                                                                                                                                                                                                                                                              |
| $N_{3} = C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.485 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C20—H20                                                                                                                                                                                                                                                                                                  | 0.9300                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.509 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                          | 1.515 (5)                                                                                                                                                                                                                                                                           |
| CIO—HIOA                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C30—H30                                                                                                                                                                                                                                                                                                  | 0.9800                                                                                                                                                                                                                                                                              |
| CI0—HI0B                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C31—N32                                                                                                                                                                                                                                                                                                  | 1.332 (3)                                                                                                                                                                                                                                                                           |
| CII—CI6                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.386 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C31—C36                                                                                                                                                                                                                                                                                                  | 1.382 (3)                                                                                                                                                                                                                                                                           |
| C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.388 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N32—C33                                                                                                                                                                                                                                                                                                  | 1.336 (3)                                                                                                                                                                                                                                                                           |
| C12—O10                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.360 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C33—C34                                                                                                                                                                                                                                                                                                  | 1.359 (4)                                                                                                                                                                                                                                                                           |
| C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.388 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С33—Н33                                                                                                                                                                                                                                                                                                  | 0.9300                                                                                                                                                                                                                                                                              |
| C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.366 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C34—C35                                                                                                                                                                                                                                                                                                  | 1.372 (4)                                                                                                                                                                                                                                                                           |
| С13—Н13                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C34—H34                                                                                                                                                                                                                                                                                                  | 0.9300                                                                                                                                                                                                                                                                              |
| C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.368 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C35—C36                                                                                                                                                                                                                                                                                                  | 1.367 (3)                                                                                                                                                                                                                                                                           |
| C14—H14                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С35—Н35                                                                                                                                                                                                                                                                                                  | 0.9300                                                                                                                                                                                                                                                                              |
| C15—C16                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.388 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С36—Н36                                                                                                                                                                                                                                                                                                  | 0.9300                                                                                                                                                                                                                                                                              |
| C15—H15                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O10—H10                                                                                                                                                                                                                                                                                                  | 1.0163                                                                                                                                                                                                                                                                              |
| C16—H16                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O20—H20                                                                                                                                                                                                                                                                                                  | 1.0857                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |
| C10—N1—C30                                                                                                                                                                                                                                                                                                                                                                                                                        | 110.60 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N5-C20-C21                                                                                                                                                                                                                                                                                               | 112.13 (19)                                                                                                                                                                                                                                                                         |
| C10 N1 C2                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 (0 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |
| C10-N1-C2                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.68 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N5—C20—H20A                                                                                                                                                                                                                                                                                              | 109.2                                                                                                                                                                                                                                                                               |
| C10—N1—C2<br>C30—N1—C2                                                                                                                                                                                                                                                                                                                                                                                                            | 109.68 (18)<br>111.63 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N5—C20—H20A<br>C21—C20—H20A                                                                                                                                                                                                                                                                              | 109.2<br>109.2                                                                                                                                                                                                                                                                      |
| C10—N1—C2<br>C30—N1—C2<br>N1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                | 109.68 (18)<br>111.63 (18)<br>110.3 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N5—C20—H20A<br>C21—C20—H20A<br>N5—C20—H20B                                                                                                                                                                                                                                                               | 109.2<br>109.2<br>109.2                                                                                                                                                                                                                                                             |
| C10—N1—C2<br>C30—N1—C2<br>N1—C2—C3<br>N1—C2—H2A                                                                                                                                                                                                                                                                                                                                                                                   | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N5—C20—H20A<br>C21—C20—H20A<br>N5—C20—H20B<br>C21—C20—H20B                                                                                                                                                                                                                                               | 109.2<br>109.2<br>109.2<br>109.2                                                                                                                                                                                                                                                    |
| C10—N1—C2<br>C30—N1—C2<br>N1—C2—C3<br>N1—C2—H2A<br>C3—C2—H2A                                                                                                                                                                                                                                                                                                                                                                      | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N5—C20—H20A<br>C21—C20—H20A<br>N5—C20—H20B<br>C21—C20—H20B<br>H20A—C20—H20B                                                                                                                                                                                                                              | 109.2<br>109.2<br>109.2<br>109.2<br>109.2<br>107.9                                                                                                                                                                                                                                  |
| C10—N1—C2<br>C30—N1—C2<br>N1—C2—C3<br>N1—C2—H2A<br>C3—C2—H2A<br>N1—C2—H2B                                                                                                                                                                                                                                                                                                                                                         | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N5—C20—H20A<br>C21—C20—H20A<br>N5—C20—H20B<br>C21—C20—H20B<br>H20A—C20—H20B<br>C26—C21—C22                                                                                                                                                                                                               | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)                                                                                                                                                                                                                              |
| C10—N1—C2<br>C30—N1—C2<br>N1—C2—C3<br>N1—C2—H2A<br>C3—C2—H2A<br>N1—C2—H2B<br>C3—C2—H2B                                                                                                                                                                                                                                                                                                                                            | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N5—C20—H20A<br>C21—C20—H20A<br>N5—C20—H20B<br>C21—C20—H20B<br>H20A—C20—H20B<br>C26—C21—C22<br>C26—C21—C22                                                                                                                                                                                                | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)                                                                                                                                                                                                                 |
| C10—N1—C2<br>C30—N1—C2<br>N1—C2—C3<br>N1—C2—H2A<br>C3—C2—H2A<br>N1—C2—H2B<br>C3—C2—H2B<br>H2A—C2—H2B                                                                                                                                                                                                                                                                                                                              | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N5—C20—H20A<br>C21—C20—H20A<br>N5—C20—H20B<br>C21—C20—H20B<br>H20A—C20—H20B<br>C26—C21—C22<br>C26—C21—C22<br>C26—C21—C20<br>C22—C21—C20                                                                                                                                                                  | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)                                                                                                                                                                                                    |
| C10—N1—C2<br>C30—N1—C2<br>N1—C2—C3<br>N1—C2—H2A<br>C3—C2—H2A<br>N1—C2—H2B<br>C3—C2—H2B<br>H2A—C2—H2B<br>C4—C3—C2                                                                                                                                                                                                                                                                                                                  | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>108.1<br>109.6 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N5-C20-H20A<br>C21-C20-H20A<br>N5-C20-H20B<br>C21-C20-H20B<br>H20A-C20-H20B<br>C26-C21-C22<br>C26-C21-C22<br>C26-C21-C20<br>C22-C21-C20<br>O20-C22-C23                                                                                                                                                   | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)<br>118.1 (3)                                                                                                                                                                                       |
| $\begin{array}{c} C10 &N1 &C2 \\ C30 &N1 &C2 \\ N1 &C2 &C3 \\ N1 &C2 &H2A \\ C3 &C2 &H2B \\ C3 &C2 &H2B \\ C4 &C3 &C2 \\ C4 &C3 &H3A \end{array}$                                                                                                                                                                                                                                                                                 | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6 (2)<br>109.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N5-C20-H20A<br>C21-C20-H20A<br>N5-C20-H20B<br>C21-C20-H20B<br>H20A-C20-H20B<br>C26-C21-C22<br>C26-C21-C20<br>C22-C21-C20<br>O20-C22-C23<br>O20-C22-C21                                                                                                                                                   | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)<br>118.1 (3)<br>121.6 (2)                                                                                                                                                                          |
| $\begin{array}{c} C10 &N1 &C2 \\ C30 &N1 &C2 \\ N1 &C2 &C3 \\ N1 &C2 &H2A \\ C3 &C2 &H2B \\ C3 &C2 &H2B \\ C4 &C3 &C2 \\ C4 &C3 &H3A \\ C2 &C3 &H3A \end{array}$                                                                                                                                                                                                                                                                  | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6<br>108.1<br>109.6 (2)<br>109.8<br>109.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N5-C20-H20A<br>C21-C20-H20A<br>N5-C20-H20B<br>C21-C20-H20B<br>H20A-C20-H20B<br>C26-C21-C22<br>C26-C21-C20<br>C22-C21-C20<br>O20-C22-C23<br>O20-C22-C21<br>C23-C22-C21                                                                                                                                    | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)<br>118.1 (3)<br>121.6 (2)<br>120.3 (3)                                                                                                                                                             |
| $\begin{array}{c} C10 &N1 &C2 \\ C30 &N1 &C2 \\ N1 &C2 &C3 \\ N1 &C2 &H2A \\ C3 &C2 &H2B \\ C3 &C2 &H2B \\ C4 &C3 &C2 \\ C4 &C3 &H3A \\ C2 &C3 &H3A \\ C4 &C3 &H3B \end{array}$                                                                                                                                                                                                                                                   | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>108.1<br>109.6 (2)<br>109.8<br>109.8<br>109.8<br>109.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N5—C20—H20A<br>C21—C20—H20A<br>N5—C20—H20B<br>C21—C20—H20B<br>H20A—C20—H20B<br>C26—C21—C22<br>C26—C21—C20<br>C22—C21—C20<br>O20—C22—C23<br>O20—C22—C21<br>C23—C22—C21<br>C24—C23—C22                                                                                                                     | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)<br>118.1 (3)<br>121.6 (2)<br>120.3 (3)<br>119.9 (3)                                                                                                                                                |
| $\begin{array}{c} C10 &N1 &C2 \\ C30 &N1 &C2 \\ N1 &C2 &C3 \\ N1 &C2 &H2A \\ C3 &C2 &H2B \\ C3 &C2 &H2B \\ C4 &C3 &H2B \\ C4 &C3 &H3A \\ C2 &C3 &H3B \\ C2 &C3 &H3B \\ C2 &C3 &H3B \\ C2 &C3 &H3B \\ \end{array}$                                                                                                                                                                                                                 | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6<br>108.1<br>109.6 (2)<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N5-C20-H20A<br>C21-C20-H20A<br>N5-C20-H20B<br>C21-C20-H20B<br>H20A-C20-H20B<br>C26-C21-C22<br>C26-C21-C20<br>C22-C21-C20<br>O20-C22-C23<br>O20-C22-C21<br>C23-C22-C21<br>C24-C23-C22<br>C24-C23-H23                                                                                                      | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)<br>118.1 (3)<br>121.6 (2)<br>120.3 (3)<br>119.9 (3)<br>120.0                                                                                                                                       |
| $\begin{array}{c} C10 &N1 &C2 \\ C30 &N1 &C2 \\ N1 &C2 &C3 \\ N1 &C2 &H2A \\ C3 &C2 &H2B \\ C3 &C2 &H2B \\ C4 &C3 &H2B \\ C4 &C3 &H3A \\ C2 &C3 &H3A \\ C4 &C3 &H3B \\ C3 &C3 &H3B \\ H3A &C3 &H3B \end{array}$                                                                                                                                                                                                                   | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8 | N5—C20—H20A<br>C21—C20—H20A<br>N5—C20—H20B<br>C21—C20—H20B<br>H20A—C20—H20B<br>C26—C21—C22<br>C26—C21—C20<br>C22—C21—C20<br>O20—C22—C23<br>O20—C22—C21<br>C23—C22—C21<br>C24—C23—C22<br>C24—C23—H23<br>C22—C23—H23                                                                                       | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)<br>118.1 (3)<br>121.6 (2)<br>120.3 (3)<br>119.9 (3)<br>120.0                                                                                                                                       |
| C10 $-$ N1 $-$ C2<br>C30 $-$ N1 $-$ C2<br>N1 $-$ C2 $-$ C3<br>N1 $-$ C2 $-$ H2A<br>C3 $-$ C2 $-$ H2A<br>N1 $-$ C2 $-$ H2B<br>C3 $-$ C2 $-$ H2B<br>H2A $-$ C2 $-$ H2B<br>C4 $-$ C3 $-$ C2<br>C4 $-$ C3 $-$ C2<br>C4 $-$ C3 $-$ H3A<br>C2 $-$ C3 $-$ H3A<br>C4 $-$ C3 $-$ H3B<br>H3A $-$ C3 $-$ H3B<br>N5 $-$ C4 $-$ C3                                                                                                             | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N5-C20-H20A<br>C21-C20-H20A<br>N5-C20-H20B<br>C21-C20-H20B<br>H20A-C20-H20B<br>C26-C21-C22<br>C26-C21-C20<br>C22-C21-C20<br>O20-C22-C23<br>O20-C22-C21<br>C23-C22-C21<br>C24-C23-C22<br>C24-C23-H23<br>C22-C23-H23<br>C25-C24-C23                                                                        | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)<br>118.1 (3)<br>121.6 (2)<br>120.3 (3)<br>119.9 (3)<br>120.0<br>120.0<br>120.4 (3)                                                                                                                 |
| $\begin{array}{c} C10 &N1 &C2 \\ C30 &N1 &C2 \\ N1 &C2 &C3 \\ N1 &C2 &H2A \\ C3 &C2 &H2B \\ C3 &C2 &H2B \\ C4 &C3 &C2 \\ C4 &C3 &H3A \\ C4 &C3 &H3B \\ C4 &C3 &H3B \\ H3A &C3 &H3B \\ N5 &C4 &C3 \\ N5 &C4 &C3 \\ \end{array}$                                                                                                                                                                                                    | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6<br>108.1<br>109.6 (2)<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.7 (2)<br>109.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N5-C20-H20A<br>C21-C20-H20A<br>N5-C20-H20B<br>C21-C20-H20B<br>H20A-C20-H20B<br>C26-C21-C22<br>C26-C21-C20<br>C22-C21-C20<br>O20-C22-C23<br>O20-C22-C21<br>C23-C22-C21<br>C24-C23-C22<br>C24-C23-H23<br>C22-C23-H23<br>C25-C24-C23<br>C25-C24-H24                                                         | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)<br>118.1 (3)<br>121.6 (2)<br>120.3 (3)<br>119.9 (3)<br>120.0<br>120.0<br>120.4 (3)                                                                                                                 |
| $\begin{array}{c} C10 &N1 &C2 \\ C30 &N1 &C2 \\ N1 &C2 &C3 \\ N1 &C2 &H2A \\ C3 &C2 &H2B \\ C3 &C2 &H2B \\ C4 &C3 &C2 \\ C4 &C3 &H2B \\ C4 &C3 &H3A \\ C2 &C3 &H3B \\ C2 &C3 &H3B \\ H3A &C3 &H3B \\ N5 &C4 &C3 \\ N5 &C4 &H4A \\ C3 &C4 &H4A \\ C3 &C4 &H4A \\ \end{array}$                                                                                                                                                      | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.7<br>109.7 (2)<br>109.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N5-C20-H20A<br>C21-C20-H20B<br>C21-C20-H20B<br>C20-C20-H20B<br>C26-C21-C22<br>C26-C21-C22<br>C22-C21-C20<br>O20-C22-C23<br>O20-C22-C21<br>C23-C22-C21<br>C24-C23-C22<br>C24-C23-H23<br>C22-C23-H23<br>C25-C24-C23<br>C25-C24-H24<br>C23-C24-H24                                                          | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)<br>118.1 (3)<br>121.6 (2)<br>120.3 (3)<br>119.9 (3)<br>120.0<br>120.0<br>120.4 (3)<br>119.8<br>119.8                                                                                               |
| C10 $-$ N1 $-$ C2<br>C30 $-$ N1 $-$ C2<br>N1 $-$ C2 $-$ C3<br>N1 $-$ C2 $-$ H2A<br>C3 $-$ C2 $-$ H2A<br>N1 $-$ C2 $-$ H2B<br>C3 $-$ C2 $-$ H2B<br>H2A $-$ C2 $-$ H2B<br>C4 $-$ C3 $-$ C2<br>C4 $-$ C3 $-$ H3A<br>C2 $-$ C3 $-$ H3A<br>C2 $-$ C3 $-$ H3B<br>H3A $-$ C3 $-$ H3B<br>H3A $-$ C3 $-$ H3B<br>N5 $-$ C4 $-$ C3<br>N5 $-$ C4 $-$ H4A<br>N5 $-$ C4 $-$ H4A                                                                 | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.7<br>109.7<br>109.7<br>109.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N5-C20-H20A $C21-C20-H20B$ $C21-C20-H20B$ $C20-C20-H20B$ $C26-C21-C22$ $C26-C21-C22$ $C22-C21-C20$ $O20-C22-C23$ $O20-C22-C21$ $C23-C22-C21$ $C24-C23-C22$ $C24-C23-H23$ $C22-C24-L23$ $C25-C24-L24$ $C23-C24-H24$ $C23-C24-H24$ $C23-C25-C24-H24$                                                       | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)<br>118.1 (3)<br>121.6 (2)<br>120.3 (3)<br>119.9 (3)<br>120.0<br>120.0<br>120.4 (3)<br>119.8<br>119.8<br>119.8                                                                                      |
| C10 $-$ N1 $-$ C2<br>C30 $-$ N1 $-$ C2<br>N1 $-$ C2 $-$ C3<br>N1 $-$ C2 $-$ H2A<br>C3 $-$ C2 $-$ H2A<br>N1 $-$ C2 $-$ H2B<br>C3 $-$ C2 $-$ H2B<br>H2A $-$ C2 $-$ H2B<br>C4 $-$ C3 $-$ C2<br>C4 $-$ C3 $-$ C2<br>C4 $-$ C3 $-$ H3A<br>C2 $-$ C3 $-$ H3A<br>C4 $-$ C3 $-$ H3B<br>H3A $-$ C3 $-$ H3B<br>H3A $-$ C3 $-$ H3B<br>N5 $-$ C4 $-$ C3<br>N5 $-$ C4 $-$ C4<br>H4A<br>N5 $-$ C4 $-$ H4B<br>C3 $-$ C4 $-$ H4B                  | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.7<br>109.7 (2)<br>109.7<br>109.7<br>109.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N5-C20-H20A $C21-C20-H20B$ $C21-C20-H20B$ $C20-C20-H20B$ $H20A-C20-H20B$ $C26-C21-C22$ $C26-C21-C20$ $C22-C21-C20$ $O20-C22-C23$ $O20-C22-C21$ $C23-C22-C21$ $C24-C23-C22$ $C24-C23-H23$ $C22-C23-H23$ $C25-C24-H24$ $C23-C24-H24$ $C23-C24-H24$ $C24-C25-C26$ $C24-C25-C26$                             | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)<br>118.1 (3)<br>121.6 (2)<br>120.3 (3)<br>119.9 (3)<br>120.0<br>120.0<br>120.4 (3)<br>119.8<br>119.8<br>119.8<br>119.2 (3)                                                                         |
| C10 $-$ N1 $-$ C2<br>C30 $-$ N1 $-$ C2<br>N1 $-$ C2 $-$ C3<br>N1 $-$ C2 $-$ H2A<br>C3 $-$ C2 $-$ H2A<br>C3 $-$ C2 $-$ H2B<br>C3 $-$ C2 $-$ H2B<br>H2A $-$ C2 $-$ H2B<br>C4 $-$ C3 $-$ C2<br>C4 $-$ C3 $-$ H3B<br>C2 $-$ C3 $-$ H3A<br>C2 $-$ C3 $-$ H3B<br>H3A $-$ C3 $-$ H3B<br>H3A $-$ C3 $-$ H3B<br>N5 $-$ C4 $-$ C3<br>N5 $-$ C4 $-$ C4<br>H4A<br>C3 $-$ C4 $-$ H4A<br>C3 $-$ C4 $-$ H4B<br>C3 $-$ C4 $-$ H4B                 | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N5-C20-H20A $C21-C20-H20B$ $C21-C20-H20B$ $C21-C20-H20B$ $H20A-C20-H20B$ $C26-C21-C22$ $C26-C21-C20$ $C22-C21-C20$ $O20-C22-C23$ $O20-C22-C21$ $C23-C22-C21$ $C24-C23-H23$ $C22-C23-H23$ $C25-C24-H24$ $C23-C24-H24$ $C23-C24-H24$ $C24-C25-C26$ $C24-C25-H25$ $C24-C25-H25$                             | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)<br>118.1 (3)<br>121.6 (2)<br>120.3 (3)<br>119.9 (3)<br>120.0<br>120.0<br>120.4 (3)<br>119.8<br>119.8<br>119.8<br>119.2 (3)<br>120.4                                                                |
| C10 $-$ N1 $-$ C2<br>C30 $-$ N1 $-$ C2<br>N1 $-$ C2 $-$ C3<br>N1 $-$ C2 $-$ H2A<br>C3 $-$ C2 $-$ H2A<br>C3 $-$ C2 $-$ H2B<br>C3 $-$ C2 $-$ H2B<br>H2A $-$ C2 $-$ H2B<br>C4 $-$ C3 $-$ C2<br>C4 $-$ C3 $-$ H3A<br>C2 $-$ C3 $-$ H3A<br>C2 $-$ C3 $-$ H3B<br>C2 $-$ C3 $-$ H3B<br>H3A $-$ C3 $-$ H3B<br>H3A $-$ C3 $-$ H3B<br>N5 $-$ C4 $-$ C3<br>N5 $-$ C4 $-$ H4B<br>C3 $-$ C4 $-$ H4B<br>C3 $-$ C4 $-$ H4B<br>H4A $-$ C4 $-$ H4B | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7 | N5-C20-H20A $C21-C20-H20B$ $C21-C20-H20B$ $C20-C20-H20B$ $C26-C21-C22$ $C26-C21-C22$ $C22-C21-C20$ $O20-C22-C23$ $O20-C22-C21$ $C23-C22-C21$ $C24-C23-C22$ $C24-C23-H23$ $C25-C24-C23$ $C25-C24-H24$ $C23-C24-H24$ $C23-C24-H24$ $C24-C25-C26$ $C24-C25-H25$ $C26-C25-H25$ $C26-C25-H25$                 | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)<br>118.1 (3)<br>121.6 (2)<br>120.3 (3)<br>119.9 (3)<br>120.0<br>120.0<br>120.0<br>120.4 (3)<br>119.8<br>119.8<br>119.8<br>119.2 (3)<br>120.4<br>120.4                                              |
| C10-N1-C2<br>C30-N1-C2<br>N1-C2-C3<br>N1-C2-H2A<br>C3-C2-H2A<br>C3-C2-H2B<br>C3-C2-H2B<br>C4-C3-C2<br>C4-C3-C2<br>C4-C3-H3A<br>C2-C3-H3A<br>C4-C3-H3B<br>H3A-C3-H3B<br>H3A-C3-H3B<br>N5-C4-C3<br>N5-C4-H4A<br>C3-C4-H4A<br>C3-C4-H4B<br>C3-C4-H4B<br>H4A-C4-H4B<br>C4-N5-C30<br>C4-N5-C30                                                                                                                                         | 109.68 (18)<br>111.63 (18)<br>110.3 (2)<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.6<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7<br>109.7 | N5-C20-H20A $C21-C20-H20B$ $C21-C20-H20B$ $C21-C20-H20B$ $H20A-C20-H20B$ $C26-C21-C22$ $C26-C21-C20$ $C22-C21-C20$ $O20-C22-C23$ $O20-C22-C21$ $C23-C22-C21$ $C24-C23-C22$ $C24-C23-H23$ $C25-C24-H24$ $C23-C24-H24$ $C23-C24-H24$ $C24-C25-C26$ $C24-C25-H25$ $C26-C25-H25$ $C25-C26-C21$               | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)<br>118.1 (3)<br>121.6 (2)<br>120.3 (3)<br>119.9 (3)<br>120.0<br>120.0<br>120.0<br>120.4 (3)<br>119.8<br>119.8<br>119.2 (3)<br>120.4<br>120.4<br>120.4<br>120.4<br>120.4                            |
| C10-N1-C2<br>C30-N1-C2<br>N1-C2-C3<br>N1-C2-H2A<br>C3-C2-H2A<br>C3-C2-H2B<br>C3-C2-H2B<br>C4-C3-C2<br>C4-C3-C2<br>C4-C3-H3A<br>C2-C3-H3A<br>C2-C3-H3B<br>H3A-C3-H3B<br>H3A-C3-H3B<br>N5-C4-C3<br>N5-C4-C3<br>N5-C4-H4A<br>C3-C4-H4A<br>N5-C4-H4B<br>C3-C4-H4B<br>C4-C3-C30<br>C4-N5-C30<br>C4-N5-C20                                                                                                                              | 109.68 (18)         111.63 (18)         110.3 (2)         109.6         109.6         109.6         109.6         109.6         109.6         109.6         109.6         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7         109.7 <td< td=""><td>N5-C20-H20A <math display="block">C21-C20-H20B</math> <math display="block">C21-C20-H20B</math> <math display="block">C21-C20-H20B</math> <math display="block">H20A-C20-H20B</math> <math display="block">C26-C21-C22</math> <math display="block">C26-C21-C20</math> <math display="block">C22-C21-C20</math> <math display="block">O20-C22-C23</math> <math display="block">O20-C22-C21</math> <math display="block">C23-C22-C21</math> <math display="block">C24-C23-C22</math> <math display="block">C24-C23-H23</math> <math display="block">C25-C24-H24</math> <math display="block">C23-C24-H24</math> <math display="block">C23-C24-H24</math> <math display="block">C24-C25-L26</math> <math display="block">C24-C25-H25</math> <math display="block">C26-C25-H25</math> <math display="block">C25-C26-C21</math> <math display="block">C25-C26-H26</math></td><td>109.2<br/>109.2<br/>109.2<br/>109.2<br/>107.9<br/>118.3 (2)<br/>120.1 (2)<br/>121.5 (2)<br/>118.1 (3)<br/>121.6 (2)<br/>120.3 (3)<br/>119.9 (3)<br/>120.0<br/>120.0<br/>120.4 (3)<br/>119.8<br/>119.8<br/>119.2 (3)<br/>120.4<br/>120.4<br/>120.4<br/>120.4<br/>120.4<br/>120.4<br/>120.4<br/>120.4<br/>120.4</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N5-C20-H20A $C21-C20-H20B$ $C21-C20-H20B$ $C21-C20-H20B$ $H20A-C20-H20B$ $C26-C21-C22$ $C26-C21-C20$ $C22-C21-C20$ $O20-C22-C23$ $O20-C22-C21$ $C23-C22-C21$ $C24-C23-C22$ $C24-C23-H23$ $C25-C24-H24$ $C23-C24-H24$ $C23-C24-H24$ $C24-C25-L26$ $C24-C25-H25$ $C26-C25-H25$ $C25-C26-C21$ $C25-C26-H26$ | 109.2<br>109.2<br>109.2<br>109.2<br>107.9<br>118.3 (2)<br>120.1 (2)<br>121.5 (2)<br>118.1 (3)<br>121.6 (2)<br>120.3 (3)<br>119.9 (3)<br>120.0<br>120.0<br>120.4 (3)<br>119.8<br>119.8<br>119.2 (3)<br>120.4<br>120.4<br>120.4<br>120.4<br>120.4<br>120.4<br>120.4<br>120.4<br>120.4 |

| N1-C10-C11      | 112.53 (19)  | N5—C30—N1       | 109.26 (17)  |
|-----------------|--------------|-----------------|--------------|
| N1-C10-H10A     | 109.1        | N5-C30-C31      | 109.79 (18)  |
| C11—C10—H10A    | 109.1        | N1-C30-C31      | 110.09 (18)  |
| N1-C10-H10B     | 109.1        | N5-C30-H30      | 109.2        |
| C11—C10—H10B    | 109.1        | N1-C30-H30      | 109.2        |
| H10A—C10—H10B   | 107.8        | С31—С30—Н30     | 109.2        |
| C16—C11—C12     | 117.9 (2)    | N32—C31—C36     | 122.1 (2)    |
| C16—C11—C10     | 121.1 (2)    | N32—C31—C30     | 116.2 (2)    |
| C12—C11—C10     | 120.8 (2)    | C36—C31—C30     | 121.7 (2)    |
| O10—C12—C13     | 117.6 (3)    | C31—N32—C33     | 117.1 (2)    |
| O10-C12-C11     | 121.5 (2)    | N32—C33—C34     | 124.1 (3)    |
| C13—C12—C11     | 120.9 (3)    | N32—C33—H33     | 118.0        |
| C14—C13—C12     | 119.7 (3)    | С34—С33—Н33     | 118.0        |
| C14—C13—H13     | 120.1        | C33—C34—C35     | 118.6 (3)    |
| С12—С13—Н13     | 120.1        | С33—С34—Н34     | 120.7        |
| C13—C14—C15     | 120.7 (3)    | С35—С34—Н34     | 120.7        |
| C13—C14—H14     | 119.6        | C36—C35—C34     | 118.4 (3)    |
| C15—C14—H14     | 119.6        | С36—С35—Н35     | 120.8        |
| C14—C15—C16     | 119.6 (3)    | С34—С35—Н35     | 120.8        |
| C14—C15—H15     | 120.2        | C35—C36—C31     | 119.7 (3)    |
| C16—C15—H15     | 120.2        | С35—С36—Н36     | 120.1        |
| C11—C16—C15     | 121.1 (3)    | С31—С36—Н36     | 120.1        |
| C11—C16—H16     | 119.5        | С12—О10—Н10     | 105.3        |
| C15—C16—H16     | 119.5        | С22—О20—Н20     | 104.9        |
|                 |              |                 |              |
| C10—N1—C2—C3    | 179.7 (2)    | C20—C21—C22—C23 | -177.2 (2)   |
| C30—N1—C2—C3    | 56.7 (3)     | O20—C22—C23—C24 | -179.8 (3)   |
| N1—C2—C3—C4     | -56.0 (3)    | C21—C22—C23—C24 | 0.8 (4)      |
| C2—C3—C4—N5     | 57.8 (3)     | C22—C23—C24—C25 | -0.4 (4)     |
| C3-C4-N5-C30    | -60.3 (3)    | C23—C24—C25—C26 | -0.2 (4)     |
| C3—C4—N5—C20    | 176.1 (2)    | C24—C25—C26—C21 | 0.5 (4)      |
| C30—N1—C10—C11  | -167.62 (19) | C22—C21—C26—C25 | -0.1 (4)     |
| C2-N1-C10-C11   | 68.8 (2)     | C20-C21-C26-C25 | 176.6 (2)    |
| N1—C10—C11—C16  | -148.2 (2)   | C4—N5—C30—N1    | 59.5 (2)     |
| N1-C10-C11-C12  | 36.9 (3)     | C20—N5—C30—N1   | -178.04 (17) |
| C16-C11-C12-O10 | -179.3 (2)   | C4—N5—C30—C31   | -179.67 (19) |
| C10-C11-C12-O10 | -4.3 (4)     | C20—N5—C30—C31  | -57.2 (2)    |
| C16—C11—C12—C13 | 1.5 (4)      | C10—N1—C30—N5   | 179.92 (18)  |
| C10-C11-C12-C13 | 176.6 (2)    | C2—N1—C30—N5    | -57.7 (2)    |
| O10-C12-C13-C14 | 178.5 (2)    | C10—N1—C30—C31  | 59.3 (2)     |
| C11—C12—C13—C14 | -2.3 (4)     | C2—N1—C30—C31   | -178.30 (19) |
| C12—C13—C14—C15 | 1.8 (4)      | N5-C30-C31-N32  | 111.9 (2)    |
| C13—C14—C15—C16 | -0.6 (4)     | N1-C30-C31-N32  | -127.7 (2)   |
| C12—C11—C16—C15 | -0.3 (4)     | N5-C30-C31-C36  | -67.7 (3)    |
| C10-C11-C16-C15 | -175.4 (2)   | N1-C30-C31-C36  | 52.7 (3)     |
| C14-C15-C16-C11 | -0.1 (4)     | C36—C31—N32—C33 | 0.3 (4)      |
| C4—N5—C20—C21   | -64.3 (3)    | C30—C31—N32—C33 | -179.3 (2)   |
| C30—N5—C20—C21  | 172.29 (19)  | C31—N32—C33—C34 | -1.4 (4)     |
|                 |              |                 |              |

| N5-C20-C21-C26  | 141.8 (2)  | N32—C33—C34—C35 | 1.4 (5)    |
|-----------------|------------|-----------------|------------|
| N5-C20-C21-C22  | -41.6 (3)  | C33—C34—C35—C36 | -0.2 (4)   |
| C26—C21—C22—O20 | -179.9 (2) | C34—C35—C36—C31 | -0.7 (4)   |
| C20—C21—C22—O20 | 3.4 (4)    | N32—C31—C36—C35 | 0.7 (4)    |
| C26—C21—C22—C23 | -0.5 (4)   | C30-C31-C36-C35 | -179.7 (2) |

Hydrogen-bond geometry (Å, °)

| <i>D</i> —H··· <i>A</i> | D—H  | H···A | D···A     | <i>D</i> —H··· <i>A</i> |
|-------------------------|------|-------|-----------|-------------------------|
| O10—H10…N1              | 1.02 | 1.69  | 2.624 (3) | 150                     |
| O20—H20…N5              | 1.09 | 1.72  | 2.705 (3) | 148                     |