metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichloridobis(4-fluoroaniline- κN)zinc

Ashokkumar Subashini,^a Kandasamy Ramamurthi^{a*} and Helen Stoeckli-Evans^b*

^aCrystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, and ^bInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland Correspondence e-mail: krmurthin@yahoo.co.in, helen.stoeckli-evans@unine.ch

Received 27 July 2012; accepted 29 July 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.020; wR factor = 0.043; data-to-parameter ratio = 15.2.

In the title compound, $[ZnCl_2(C_6H_6FN)_2]$, the Zn^{II} atom has a slightly distorted tetrahedral geometry, being coordinated by the N atoms of two 4-fluoroaniline molecules and the two Cl⁻ anions. The two benzene rings are almost perpendicular to one another, making a dihedral angle of 89.96 (13)°. In the crystal, molecules are linked via pairs of N-H···Cl hydrogen bonds, forming chains propagating along the *b* axis. These chains are in turn linked *via* a second pair of $N-H \cdot \cdot \cdot Cl$ hydrogen bonds, forming a two-dimensional network parallel to the *ab* plane. The title compound crystallizes in the space group $Pca2_1$ and exhibits weak second harmonic generation (SHG) properties.

Related literature

For the measurement of second harmonic generation (SHG) conversion efficiency, see: Kurtz & Perry (1968). For the crystal structure of dichlorido-bis(p-chloroaniline)zinc, see: Subashini et al. (2012a) and for the crystal structure of dichlorodo-bis(p-bromoaniline)zinc, see: Subashini et al. (2012b); Feng et al. (2003).

Experimental

Crystal data [ZnCl₂(C₆H₆FN)₂] $M_r = 358.51$ Orthorhombic, Pca21 a = 11.6817 (5) Å b = 4.7080 (2) Å c = 25.2056 (15) Å

 $V = 1386.24 (12) \text{ Å}^3$ Z = 4Mo Ka radiation $\mu = 2.17 \text{ mm}^-$ T = 173 K $0.45\,\times\,0.22\,\times\,0.10$ mm

Data collection

Stoe IPDS 2 diffractometer Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009) $T_{\min} = 0.742, T_{\max} = 0.805$

Refinement

H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
1273 Friedel pairs
Flack parameter: 0.013 (10)

7963 measured reflections

 $R_{\rm int} = 0.031$

2613 independent reflections

2465 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1B \cdots Cl2^{i}$	0.92	2.63	3.436 (2)	147
$N2 - H2B \cdot \cdot \cdot Cl1^{i}$	0.92	2.55	3.380 (2)	151
$N1 - H1A \cdots Cl2^{ii}$	0.92	2.59	3.479 (2)	162
$N2-H2A\cdots Cl1^{iii}$	0.92	2.55	3.439 (2)	162

Symmetry codes: (i) x, y + 1, z; (ii) $x + \frac{1}{2}, -y + 2, z$; (iii) $x - \frac{1}{2}, -y + 2, z$.

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010).

AS thanks the University Grants Commission, India, for the award of a Research Fellowship in Sciences for Meritorious Students [File No. 4-1/2008 (BSR)]. HSE thanks the XRD Application Laboratory, CSEM, Neuchâtel, for access to the X-ray diffraction equipment.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5178).

References

- Feng, Y.-L., Lin, J.-J. & Lin, H. (2003). Zhejiang Shifan Daxue Xuebao, Ziran Kexueban (Chin. J. Zhejiang Normal Univ., Nat. Sci.), 26, 39-41.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3813.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
- Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012a). Private communication (deposition number CCDC-894044). CCDC, Cambridge, England.
- Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012b). Private communication (deposition number CCDC-894045). CCDC, Cambridge, England.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, m1152 [doi:10.1107/S1600536812033922]

Dichloridobis(4-fluoroaniline-*kN*)zinc

Ashokkumar Subashini, Kandasamy Ramamurthi and Helen Stoeckli-Evans

S1. Comment

In our search for compounds exhibiting second harmonic generation (SHG) properties we have synthesized a series of $ZnCl_2$ complexes of *p*-halogen substituted anilines. The title compound, the $ZnCl_2$ complex of *p*-fluoroaniline crystallized in the noncentrosymmetric orthorhombic space group Pca2₁, while the *p*-chloroaniline (Subashini *et al.*, 2012*a*) and *p*-bromoaniline (Subashini *et al.*, 2012*b*; Feng *et al.*, 2003) ZnCl₂ complexes crystallized in the centrosymmetric monoclinic space group C2/c and both molecules have crystallographic 2-fold rotation symmetry.

In the title compound (Fig. 1), the zinc atom has a slightly distorted tetrahedral geometry, being coordinated by the atoms N1 and N2 of two *p*-fluoroaniline molecules and the two Cl⁻ anions. The two benzene rings (C1—C6 and C7—C12) are perpendicular to one another with a dihedral angle of 89.96 (13)°. In the *p*-chloroaniline and *p*-bromoaniline ZnCl₂ complexes mentioned above the same angles are 80.65 (16) and 80.0 (3)°, respectively.

In the crystal of the title compound, molecules are linked *via* a pair of N—H···Cl hydrogen bonds forming chains propagating along the *b* axis direction. These chains are in turn linked *via* a second pair of N—H···Cl hydrogen bonds to form a two-dimensional network lying parallel to the *ab* plane (Table 1 and Fig. 2). This contrasts with the packing in the crystals of the *p*-chloroaniline and *p*-bromoaniline $ZnCl_2$ complexes. There molecules are linked by four N—H···halogen bonds to form chains propagating along [010], with no significant interactions between the chains.

As the title compound crystallized in a noncentrosymmetric space group it was decided to measure the second harmonic generation (SHG) properties of all three compounds; dichloro-bis(*p*-fluoroaniline)zinc, dichloro-bis(*p*-chloroaniline)zinc and dichloro-bis(*p*-bromoaniline)zinc. The SHG conversion efficiency was determined by the powder technique developed by (Kurtz & Perry, 1968). The crystals were powdered and the fine powdered samples were inserted in a micro-capillary tube and then subjected to a Q-switched Nd: YAG laser emitting 1064 nm radiation with 3.9 mJ/pulse. The frequency doubling was confirmed by the emission of green radiation of wavelength 532 nm collected by a monochromator after separating the 1064 nm pump beam with an IR-blocking filter. A detector connected to a power meter was used to detect the second harmonic intensity.

The output beam voltage produced by dichloro-bis(*p*-fluoroaniline)zinc, dichloro-bis(*p*-chloroaniline)zinc and dichlorobis(*p*-bromoaniline)zinc derivatives were 15, 3 and 10 mV, respectively. The same quantity of crystalline KDP (potassium dihydrogen phosphate) powder, used as a reference material, produced 140 mV as output beam voltage. Hence the three samples exhibits SHG efficiency of only *ca* 0.11, 0.02 and 0.07 times that of the KDP.

S2. Experimental

The title compound was prepared by the condensation reaction of p-fluoroaniline with ZnCl₂ in a 1:1 molar ratio. The reaction mixture was dissolved in methanol and heated under reflux for 6 h. The resulting solution was filtered and allowed to evaporate. Colourless rod-like crystals of the title compound, suitable for X-ray diffraction analysis, were obtained in a period of *ca* 7 days. The same method was used for the preparation of the *p*-chloroaniline and *p*-bromo-

aniline $ZnCl_2$ complexes.

S3. Refinement

All the H atoms could be located in a difference Fourier map. In the final cycles of refinement they were included in calculated positions and treated as riding atoms: N—H = 0.92 Å and C—H = 0.95 Å with $U_{iso}(H) = 1.2U_{eq}(N \text{ or } C)$.

Figure 1

A view of the molecular structure of the title compound with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view along the c axis of the crystal packing of the title compound. The N—H···Cl hydrogen bonds are shown as dashed cyan lines (see Table 1 for details).

Dichloridobis(4-fluoroaniline-*k*N)zinc

Crystal data	
$[ZnCl_2(C_6H_6FN)_2]$	F(000) = 720
$M_r = 358.51$	$D_{\rm x} = 1.718 {\rm Mg} {\rm m}^{-3}$
Orthorhombic. <i>Pca</i> 2 ₁	Mo Ka radiation. $\lambda = 0.71073$ Å
Hall symbol: P 2c -2ac	Cell parameters from 10039 reflections
a = 11.6817(5) Å	$\theta = 1.6 - 26.1^{\circ}$
b = 4.7080(2) Å	$\mu = 2.17 \text{ mm}^{-1}$
c = 25.2056 (15) Å	T = 173 K
$V = 1386.24 (12) Å^3$	Rod. colourless
Z=4	$0.45 \times 0.22 \times 0.10 \text{ mm}$
Data collection	
Stoe IPDS 2	7963 measured reflections
diffractometer	2613 independent reflections
Radiation source: fine-focus sealed tube	2465 reflections with $I > 2\sigma(I)$
Plane graphite monochromator	$R_{\rm int} = 0.031$
φ and φ scans	$\theta_{max} = 25.6^{\circ}, \ \theta_{min} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 12$
(MULscanABS in <i>PLATON</i> : Spek. 2009)	$k = -5 \rightarrow 5$
$T_{\rm min} = 0.742, T_{\rm max} = 0.805$	$l = -30 \rightarrow 30$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.020$	H-atom parameters constrained
$wR(F^2) = 0.043$	$w = 1/[\sigma^2(F_o^2) + (0.0253P)^2]$
S = 1.02	where $P = (F_o^2 + 2F_c^2)/3$
2613 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
172 parameters	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1273 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.013 (10)

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.11820 (2)	0.94853 (5)	0.29991 (2)	0.0175 (1)
C11	0.24924 (5)	0.67311 (13)	0.25893 (2)	0.0231 (2)
Cl2	-0.01369 (5)	0.66951 (13)	0.33956 (2)	0.0224 (2)
F1	0.24874 (17)	0.4882 (4)	0.53656 (6)	0.0375 (5)
F2	0.00539 (17)	0.6379 (4)	0.05020 (6)	0.0386 (6)
N1	0.19821 (18)	1.1742 (4)	0.35892 (7)	0.0190 (6)
N2	0.03682 (17)	1.1921 (5)	0.24427 (7)	0.0193 (6)
C1	0.2140 (2)	1.0033 (5)	0.40640 (10)	0.0173 (8)
C2	0.3039 (2)	0.8160 (6)	0.40935 (9)	0.0206 (8)
C3	0.3164 (2)	0.6390 (6)	0.45336 (9)	0.0236 (8)
C4	0.2366 (2)	0.6601 (6)	0.49308 (9)	0.0267 (8)
C5	0.1466 (2)	0.8448 (7)	0.49146 (10)	0.0279 (8)
C6	0.1343 (2)	1.0192 (6)	0.44767 (12)	0.0247 (9)
C7	0.0273 (2)	1.0505 (5)	0.19283 (10)	0.0181 (7)
C8	0.1041 (2)	1.1133 (7)	0.15318 (10)	0.0242 (9)
C9	0.0976 (3)	0.9741 (7)	0.10479 (11)	0.0305 (9)
C10	0.0127 (2)	0.7762 (6)	0.09785 (9)	0.0263 (8)
C11	-0.0645 (2)	0.7084 (6)	0.13658 (10)	0.0258 (8)
C12	-0.0570 (2)	0.8484 (6)	0.18522 (9)	0.0236 (8)
H1A	0.26840	1.23560	0.34700	0.0230*
H1B	0.15510	1.33170	0.36710	0.0230*
H2	0.35790	0.80690	0.38120	0.0250*
H2A	-0.03540	1.23620	0.25630	0.0230*
H2B	0.07640	1.35950	0.24000	0.0230*
H3	0.37820	0.50830	0.45570	0.0280*
Н5	0.09330	0.85340	0.51990	0.0340*
H6	0.07220	1.14880	0.44570	0.0300*
H8	0.16170	1.25240	0.15890	0.0290*

supporting information

H9	0.15060	1.01470	0.07720	0.0370*
H11	-0.12190	0.56930	0.13050	0.0310*
H12	-0.10940	0.80520	0.21290	0.0280*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Zn1	0.0174 (1)	0.0186 (1)	0.0167 (1)	-0.0009(1)	-0.0010(1)	-0.0002 (2)
Cl1	0.0180 (3)	0.0236 (3)	0.0277 (3)	0.0019 (3)	0.0033 (2)	-0.0017 (2)
Cl2	0.0187 (3)	0.0224 (3)	0.0261 (3)	-0.0031 (3)	0.0034 (2)	-0.0004 (2)
F1	0.0460 (9)	0.0433 (11)	0.0232 (8)	-0.0064 (9)	-0.0048 (9)	0.0147 (6)
F2	0.0423 (10)	0.0516 (13)	0.0218 (7)	0.0015 (9)	-0.0016 (6)	-0.0145 (7)
N1	0.0200 (10)	0.0179 (11)	0.0191 (9)	-0.0029 (9)	-0.0014 (8)	0.0020 (8)
N2	0.0215 (11)	0.0185 (11)	0.0180 (10)	0.0010 (10)	-0.0011 (8)	-0.0016 (8)
C1	0.0214 (13)	0.0145 (15)	0.0161 (13)	-0.0048 (10)	-0.0028 (10)	-0.0017 (8)
C2	0.0168 (12)	0.0252 (15)	0.0199 (12)	-0.0052 (11)	-0.0001 (9)	-0.0016 (10)
C3	0.0199 (13)	0.0231 (14)	0.0277 (13)	0.0009 (11)	-0.0043 (10)	-0.0005 (10)
C4	0.0335 (15)	0.0261 (14)	0.0204 (12)	-0.0074 (13)	-0.0050 (10)	0.0044 (10)
C5	0.0295 (14)	0.0329 (17)	0.0214 (12)	-0.0033 (14)	0.0073 (11)	0.0003 (12)
C6	0.0221 (15)	0.0241 (17)	0.0279 (15)	0.0057 (13)	0.0006 (11)	-0.0025 (10)
C7	0.0200 (12)	0.0171 (12)	0.0172 (12)	0.0035 (11)	-0.0028 (10)	0.0009 (10)
C8	0.0232 (14)	0.0240 (17)	0.0254 (14)	-0.0010 (13)	0.0010 (10)	-0.0001 (11)
C9	0.0298 (15)	0.040 (2)	0.0216 (13)	-0.0025 (14)	0.0068 (11)	0.0018 (11)
C10	0.0305 (14)	0.0306 (15)	0.0179 (12)	0.0081 (13)	-0.0026 (10)	-0.0057 (11)
C11	0.0213 (12)	0.0277 (16)	0.0284 (14)	-0.0025 (12)	-0.0050 (10)	-0.0069 (11)
C12	0.0241 (13)	0.0254 (14)	0.0212 (13)	0.0008 (12)	0.0021 (10)	0.0005 (10)

Geometric parameters (Å, °)

Zn1—Cl1	2.2565 (7)	C4—C5	1.365 (4)	
Zn1—Cl2	2.2579 (7)	C5—C6	1.383 (4)	
Zn1—N1	2.0530 (19)	C7—C8	1.375 (3)	
Zn1—N2	2.046 (2)	C7—C12	1.383 (3)	
F1—C4	1.370 (3)	C8—C9	1.387 (4)	
F2—C10	1.369 (3)	C9—C10	1.372 (4)	
N1C1	1.454 (3)	C10—C11	1.367 (3)	
N2—C7	1.462 (3)	C11—C12	1.395 (4)	
N1—H1B	0.9200	C2—H2	0.9500	
N1—H1A	0.9200	С3—Н3	0.9500	
N2—H2A	0.9200	С5—Н5	0.9500	
N2—H2B	0.9200	С6—Н6	0.9500	
C1—C6	1.398 (4)	C8—H8	0.9500	
C1—C2	1.373 (3)	С9—Н9	0.9500	
C2—C3	1.395 (4)	C11—H11	0.9500	
C3—C4	1.372 (3)	C12—H12	0.9500	
Cl1—Zn1—Cl2	109.34 (2)	C1—C6—C5	119.5 (2)	
Cl1—Zn1—N1	108.68 (6)	N2-C7-C12	119.4 (2)	

Cl1—Zn1—N2	108.88 (6)	N2—C7—C8	119.8 (2)
Cl2—Zn1—N1	106.92 (6)	C8—C7—C12	120.8 (2)
Cl2—Zn1—N2	108.21 (6)	С7—С8—С9	120.1 (3)
N1—Zn1—N2	114.72 (8)	C8—C9—C10	118.2 (3)
Zn1—N1—C1	111.58 (14)	F2-C10-C11	118.3 (2)
Zn1—N2—C7	112.81 (16)	F2C10C9	118.7 (2)
C1—N1—H1A	109.00	C9—C10—C11	123.0 (2)
C1—N1—H1B	109.00	C10-C11-C12	118.4 (2)
H1A—N1—H1B	108.00	C7—C12—C11	119.5 (2)
Zn1—N1—H1B	109.00	С1—С2—Н2	120.00
Zn1—N1—H1A	109.00	С3—С2—Н2	120.00
Zn1—N2—H2B	109.00	С2—С3—Н3	121.00
Zn1—N2—H2A	109.00	С4—С3—Н3	121.00
H2A—N2—H2B	108.00	С4—С5—Н5	121.00
C7—N2—H2A	109.00	С6—С5—Н5	121.00
C7—N2—H2B	109.00	С1—С6—Н6	120.00
N1—C1—C6	119.9 (2)	С5—С6—Н6	120.00
N1—C1—C2	119.8 (2)	С7—С8—Н8	120.00
C2—C1—C6	120.2 (2)	С9—С8—Н8	120.00
C1—C2—C3	120.4 (2)	С8—С9—Н9	121.00
C2—C3—C4	117.8 (2)	С10—С9—Н9	121.00
C3—C4—C5	123.2 (2)	C10-C11-H11	121.00
F1—C4—C3	118.1 (2)	C12—C11—H11	121.00
F1—C4—C5	118.7 (2)	C7—C12—H12	120.00
C4—C5—C6	118.8 (2)	C11—C12—H12	120.00
			1.50 ((2))
CII—ZnI—NI—CI	-80.53 (15)	C2—C3—C4—F1	-179.6 (2)
Cl2—Zn1—N1—Cl	37.40 (16)	$C_2 - C_3 - C_4 - C_5$	-0.1(4)
N2— $Zn1$ — $N1$ — $C1$	157.37 (14)	F1 - C4 - C5 - C6	179.8 (2)
CII—ZnI—N2—C7	31.74 (16)	C3—C4—C5—C6	0.3 (4)
Cl2—Zn1—N2—C7	-87.00 (15)	C4—C5—C6—C1	-0.2(4)
N1 - Zn1 - N2 - C/	153.74 (15)	N2-C7-C8-C9	1/8.2 (3)
ZnI - NI - CI - C2	80.9 (2)	C12_C/_C8_C9	0.1 (4)
ZnI - NI - CI - C6	-95.7 (2)	N2—C7—C12—C11	-178.5 (2)
Zn1 - N2 - C7 - C8	-98.8 (2)	C8—C7—C12—C11	-0.5(4)
Zn1 - N2 - C7 - C12	79.2 (2)	C/C8C9C10	0.5 (4)
NI-CI-C2-C3	-1/6.3(2)	C8—C9—C10—F2	179.9 (2)
C6—C1—C2—C3	0.3 (4)	C8—C9—C10—C11	-0.8(5)
NI-CI-C6-C5	176.6 (2)	F2-C10-C11-C12	179.8 (2)
$C_2 - C_1 - C_6 - C_5$	-0.1(4)	C9—C10—C11—C12	0.5 (4)
C1—C2—C3—C4	-0.2 (4)	C10—C11—C12—C7	0.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	<i>D</i> —H··· <i>A</i>
N1—H1B····Cl2 ⁱ	0.92	2.63	3.436 (2)	147
N2—H2B····Cl1 ⁱ	0.92	2.55	3.380 (2)	151

			supporting information		
N1—H1A····Cl2 ⁱⁱ	0.92	2.59	3.479 (2)	162	
$\frac{N2-H2A\cdots Cl1^{m}}{2}$	0.92	2.55	3.439 (2)	162	

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*+1/2, -*y*+2, *z*; (iii) *x*-1/2, -*y*+2, *z*.