Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 Tetrabromido(di-2-pyridylamine$\kappa^{2} N^{2}, N^{2^{\prime}}$)platinum(IV)

Kwang Ha

School of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea Correspondence e-mail: hakwang@chonnam.ac.kr

Received 23 July 2012; accepted 27 July 2012

Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; R factor $=0.028 ; w R$ factor $=0.075$; data-to-parameter ratio $=15.9$.

The $\mathrm{Pt}^{\text {IV }}$ ion in the title complex, $\left[\mathrm{PtBr}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right]$, is sixcoordinated in a slightly distorted octahedral environment by two pyridine N atoms from a chelating di-2-pyridylamine (dpa) ligand and four Br^{-}anions. The complex molecule has mirror symmetry, with the $\mathrm{Pt}^{\mathrm{IV}}$ atom, two Br atoms and the central N atom of the dpa ligand lying on the mirror plane. The dpa ligand is not planar, showing a dihedral angle of 34.7 (2) ${ }^{\circ}$ between the pyridine rings. The complex molecules are connected by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds, forming chains along [001]. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds and $\pi-\pi$ interactions between the pyridine rings [centroid-centroid distance $=3.667(4) \AA$] are also observed.

Related literature

For the structures of the related complexes $\left[\mathrm{PtCl}_{4}(\mathrm{dpa})\right]$ and $\left[\mathrm{PtBr}_{2}(\mathrm{dpa})\right]$, see: Ha $(2011,2012)$.

Experimental

Crystal data

$\left[\mathrm{PtBr}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right]$

$$
M_{r}=685.93
$$

Monoclinic, $P 2_{1} / m$
$a=6.7876$ (7) A
$b=14.2860(14) \AA$
$c=7.8893$ (8) A
$\beta=113.562$ (2) ${ }^{\circ}$
$V=701.23(12) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=21.39 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
$0.28 \times 0.14 \times 0.13 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.459, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028 \quad 88$ parameters
$w R\left(F^{2}\right)=0.075$
$S=1.04$
1400 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.89 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-1.62 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{Hr}^{2} 2^{\mathrm{i}}$	0.92	2.79	$3.665(8)$	161
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Br}^{\mathrm{ii}}$	0.95	2.90	$3.689(7)$	141

Symmetry codes: (i) $x, y, z-1$; (ii) $-x, y-\frac{1}{2},-z+1$.
Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0030747).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2577).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ha, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 633-634.
Ha, K. (2012). Acta Cryst. E68, m453.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, m1141 [doi:10.1107/S160053681203379X]

Tetrabromido(di-2-pyridylamine- $\kappa^{2} N^{2}, N^{2}$) platinum(IV)

Kwang Ha

S1. Comment

The title complex, $\left[\mathrm{PtBr}_{4}(\mathrm{dpa})\right]\left(\mathrm{dpa}=\mathrm{di}-2-\right.$ pyridylamine, $\left.\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)$, is a structural isomer of the previously reported chlorido $\mathrm{Pt}^{\text {IV }}$ complex $\left[\mathrm{PtCl}_{4}(\mathrm{dpa})\right](\mathrm{Ha}, 2011)$.
The $\mathrm{Pt}^{\mathrm{IV}}$ ion is six-coordinated in a slightly distorted octahedral environment defined by two pyridine N atoms from a chelating dpa ligand and four Br^{-}anions (Fig. 1). The complex is disposed about a mirror plane, passing through the Pt1, $\mathrm{Br} 1, \mathrm{Br} 2$ and N 2 atoms. The $\mathrm{Pt}-\mathrm{N}$ and $\mathrm{Pt}-\mathrm{Br}$ bond distances are comparable to those observed in the related $\mathrm{Pt}^{\mathrm{II}}$ complex $\left[\mathrm{PtBr}_{2}(\mathrm{dpa})\right]$ (Ha, 2012). In the crystal, the dpa ligand is not planar. The dihedral angle between the least-squares planes of the pyridine rings is $34.7(2)^{\circ}$. The complex molecules are stacked in columns along the a axis and connected by intermolecular $\mathrm{N}-\mathrm{H} \cdots$ Br hydrogen bonds, forming chains along the c axis (Fig. 2, Table 1). Intermolecular $\pi-\pi$ interactions between the pyridine rings are present, with a centroid-centroid distance of 3.667 (4) Å. Intermolecular C$\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds are also observed (Table 1).

S2. Experimental

To a solution of $\mathrm{K}_{2} \mathrm{PtCl}_{6}(0.240 \mathrm{~g}, 0.49 \mathrm{mmol})$ and $\mathrm{KBr}(0.745 \mathrm{~g}, 6.26 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ was added di-2-pyridylamine $(0.086 \mathrm{~g}, 0.50 \mathrm{mmol})$, and the mixture was stirred for 24 h at room temperature. The formed precipitate was separated by filtration, washed with $\mathrm{H}_{2} \mathrm{O}$ and acetone, and recrystallized from a mixture of N, N-dimethylformamide and ether to give a red powder $(0.144 \mathrm{~g})$. Crystals suitable for X-ray analysis were obtained by slow evaporation from a $\mathrm{CH}_{3} \mathrm{CN}$ solution at room temperature.

S3. Refinement

C -bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with $\mathrm{C}-\mathrm{H}=0.95$ \AA and with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. N -bound H atom was located from a difference Fourier map and then allowed to ride on its parent atom in the final cycles of refinement, with $\mathrm{N}-\mathrm{H}=0.92 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. The highest peak $(1.89 \mathrm{e}$ \AA^{-3}) and the deepest hole $\left(-1.62 \mathrm{e}_{\AA^{-3}}\right.$) in the difference Fourier map are located $0.85 \AA$ and $0.67 \AA$ from atoms Pt 1 and Br 1 , respectively.

Figure 1
The molecular structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) $x, 1 / 2-y, z$.]

Figure 2
A view of the crystal packing of the title complex. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds are shown as dashed lines.

Tetrabromido(di-2-pyridylamine- $\kappa^{2} N^{2}, N^{2}$) platinum(IV)

Crystal data

$\left[\mathrm{PtBr}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right]$
$M_{r}=685.93$
Monoclinic, $P 2_{1} / m$
Hall symbol: -P 2 yb
$a=6.7876$ (7) Å
$b=14.2860(14) \AA$
$c=7.8893$ (8) \AA
$\beta=113.562(2)^{\circ}$
$V=701.23(12) \AA^{3}$
$Z=2$

Data collection

Bruker SMART 1000 CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min }=0.459, T_{\text {max }}=1.000$

$$
\begin{aligned}
& F(000)=616 \\
& D_{\mathrm{x}}=3.249 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2726 \text { reflections } \\
& \theta=2.8-26.0^{\circ} \\
& \mu=21.39 \mathrm{~mm}^{-1} \\
& T=200 \mathrm{~K} \\
& \text { Block, red } \\
& 0.28 \times 0.14 \times 0.13 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& 4257 \text { measured reflections } \\
& 1400 \text { independent reflections } \\
& 1176 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.034 \\
& \theta_{\max }=26.0^{\circ}, \theta_{\min }=2.8^{\circ} \\
& h=-8 \rightarrow 8 \\
& k=-17 \rightarrow 15 \\
& l=-9 \rightarrow 9
\end{aligned}
$$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.075$
$S=1.04$
1400 reflections
88 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0388 P)^{2}+0.9524 P\right]$
> where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\text {max }}<0.001$
> $\Delta \rho_{\text {max }}=1.89 \mathrm{e}_{\AA^{-3}}$
> $\Delta \rho_{\text {min }}=-1.61 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Pt1	$0.02241(6)$	0.2500	$0.81398(5)$	$0.01565(14)$
Br1	$-0.30563(16)$	0.2500	$0.52614(15)$	$0.0260(3)$
Br2	$0.34926(18)$	0.2500	$1.10292(15)$	$0.0298(3)$
Br3	$-0.14760(13)$	$0.13183(5)$	$0.93509(11)$	$0.0306(2)$

N1	$0.1651(8)$	$0.1500(3)$	$0.7074(8)$	$0.0145(11)$
N2	$0.1284(13)$	0.2500	$0.4576(11)$	$0.0193(17)$
H2N	0.1473	0.2500	0.3485	0.023^{*}
C1	$0.2280(12)$	$0.0668(5)$	$0.7949(11)$	$0.0251(16)$
H1	0.2303	0.0591	0.9153	0.030^{*}
C2	$0.2881(12)$	$-0.0059(4)$	$0.7148(11)$	$0.0250(16)$
H2	0.3358	-0.0632	0.7797	0.030^{*}
C3	$0.2786(11)$	$0.0046(5)$	$0.5396(11)$	$0.0257(17)$
H3	0.3095	-0.0471	0.4784	0.031^{*}
C4	$0.2249(11)$	$0.0890(5)$	$0.4520(10)$	$0.0224(15)$
H4	0.2227	0.0972	0.3318	0.027^{*}
C5	$0.1730(11)$	$0.1634(4)$	$0.5426(10)$	$0.0193(15)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt 1	$0.0193(2)$	$0.0115(2)$	$0.0184(2)$	0.000	$0.00991(17)$	0.000
Br 1	$0.0226(6)$	$0.0189(5)$	$0.0313(6)$	0.000	$0.0053(5)$	0.000
Br 2	$0.0315(6)$	$0.0315(6)$	$0.0222(6)$	0.000	$0.0063(5)$	0.000
Br 3	$0.0381(5)$	$0.0239(4)$	$0.0393(5)$	$-0.0026(3)$	$0.0254(4)$	$0.0072(3)$
N 1	$0.014(3)$	$0.012(2)$	$0.017(3)$	$-0.002(2)$	$0.005(2)$	$0.003(2)$
N 2	$0.023(5)$	$0.017(4)$	$0.019(4)$	0.000	$0.010(4)$	0.000
C 1	$0.029(4)$	$0.019(3)$	$0.030(4)$	$0.002(3)$	$0.014(3)$	$0.007(3)$
C 2	$0.023(4)$	$0.012(3)$	$0.042(5)$	$0.001(3)$	$0.015(4)$	$0.006(3)$
C 3	$0.022(4)$	$0.018(4)$	$0.041(5)$	$-0.002(3)$	$0.017(4)$	$-0.008(3)$
C 4	$0.023(4)$	$0.019(3)$	$0.028(4)$	$0.001(3)$	$0.014(3)$	$-0.005(3)$
C 5	$0.018(4)$	$0.011(3)$	$0.031(4)$	$0.000(3)$	$0.012(3)$	$0.001(3)$

Geometric parameters $\left(A,{ }^{\circ}\right)$

Pt1-N1	2.082 (5)	C1-C2	1.360 (10)
$\mathrm{Pt} 1-\mathrm{Br} 3$	2.4446 (7)	C1-H1	0.9500
$\mathrm{Pt} 1-\mathrm{Br} 1$	2.4642 (12)	C2-C3	1.366 (11)
$\mathrm{Pt} 1-\mathrm{Br} 2$	2.4647 (12)	C2-H2	0.9500
N1-C5	1.337 (9)	C3-C4	1.366 (10)
N1-C1	1.356 (8)	C3-H3	0.9500
$\mathrm{N} 2-\mathrm{C} 5^{\text {i }}$	1.382 (7)	C4-C5	1.401 (9)
N2-C5	1.382 (7)	C4-H4	0.9500
N2-H2N	0.9200		
N1 ${ }^{\text {i }}$ - $\mathrm{Pt} 1-\mathrm{N} 1$	86.6 (3)	C5 ${ }^{\text {i }}$ - $\mathrm{N} 2-\mathrm{C} 5$	127.1 (8)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{Br} 3{ }^{\mathrm{i}}$	93.02 (13)	C5i-N2-H2N	111.6
$\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{Br} 3{ }^{\text {i }}$	179.26 (15)	C5-N2-H2N	111.6
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{Br} 3$	179.26 (15)	N1-C1-C2	121.7 (7)
N1—Pt1-Br3	93.02 (13)	N1-C1-H1	119.1
Br 3 i $-\mathrm{Pt} 1-\mathrm{Br} 3$	87.35 (4)	C2-C1-H1	119.1
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Pt} 1-\mathrm{Br} 1$	91.29 (16)	C1-C2-C3	118.9 (7)
N1—Pt1-Br1	91.29 (16)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.5

$\mathrm{Br} 3{ }^{\text {i }}$ - $\mathrm{Pt} 1-\mathrm{Br} 1$	88.07 (3)
$\mathrm{Br} 3-\mathrm{Pt} 1-\mathrm{Br} 1$	88.07 (3)
$\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{Br} 2$	88.95 (15)
N1—Pt1-Br2	88.95 (16)
Br 3 - $\mathrm{Pt} 1-\mathrm{Br} 2$	91.69 (3)
$\mathrm{Br} 3-\mathrm{Pt} 1-\mathrm{Br} 2$	91.69 (3)
$\mathrm{Br} 1-\mathrm{Pt} 1-\mathrm{Br} 2$	179.67 (3)
C5-N1-C1	119.6 (6)
C5-N1-Pt1	120.1 (4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Pt} 1$	119.9 (4)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 5$	-39.4 (6)
$\mathrm{Br} 3-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 5$	139.9 (5)
$\mathrm{Br} 1-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 5$	51.8 (5)
$\mathrm{Br} 2-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 5$	-128.4 (5)
$\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1$	148.0 (4)
$\mathrm{Br} 3-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1$	-32.6 (5)
$\mathrm{Br} 1-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1$	-120.7 (5)
$\mathrm{Br} 2-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1$	59.0 (5)
C5-N1-C1-C2	-3.8 (10)
$\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	168.8 (6)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-1.9 (11)

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.3(6)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.9
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.9
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.8(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.6
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.6
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{N} 2$	$120.9(6)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$120.3(6)$
$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$	$118.9(6)$

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4 \quad 4.8$ (11)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5 \quad-2.1(10)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 2 \quad-174.2(7)$
$\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 2 \quad 13.3$ (9)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4 \quad 6.5$ (10)
Pt1—N1—C5—C4 -166.1 (5)
C5i-N2-C5—N1 34.0 (13)
C 5 - $\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4 \quad-146.7$ (7)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1 \quad-3.6(10)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2 \quad 177.0$ (7)

Symmetry code: (i) $x,-y+1 / 2, z$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 N \cdots \mathrm{Br}^{\mathrm{ii}}$	0.92	2.79	$3.665(8)$	161
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{Br}^{\mathrm{iii}}$	0.95	2.90	$3.689(7)$	141

Symmetry codes: (ii) $x, y, z-1$; (iii) $-x, y-1 / 2,-z+1$.

