metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetrakis[*u*-1,3-bis(4,5-dihydro-1,3oxazol-2-vl)benzene- $\kappa^2 N: N'$ ltrisilver(I) tris(hexafluoridophosphate)

Chun-Wei Yeh,^a Yuh-Wen Ho,^b Hsun-Tsing Lee,^c Ju-Chun Wang^d and Maw-Cherng Suen^{b*}

^aDepartment of Chemistry, Chung-Yuan Christian University, Jhongli 32023, Taiwan, ^bDepartment of Creative Fashion Design, Taoyuan Innovation Institute of Technology, Jhongli 32091, Taiwan, ^cDepartment of Materials Science and Engineering, Vanung University, Jhongli 32061, Taiwan, and ^dDepartment of Chemistry, Soochow University, Taipei, Taiwan

Correspondence e-mail: sun@tiit.edu.tw

Received 16 July 2012; accepted 5 August 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; disorder in solvent or counterion; R factor = 0.050; wR factor = 0.137; data-toparameter ratio = 11.7.

In the title compound, $[Ag_3(C_{12}H_{12}N_2O_2)_4](PF_6)_3$, one Ag^I ion, lying on a twofold rotation axis, is coordinated by four N atoms from four 1,3-bis(4,5-dihydro-1,3-oxazol-2-yl)benzene (L) ligands in a distorted tetrahedral geometry and the other Ag^{I} ion is coordinated by two N atoms from two L ligands in a bent arrangement $[N-Ag-N = 169.03 (17)^{\circ}]$. Two L ligands adopt a syn conformation, while the other two adopt an anti conformation. They bridge adjacent Ag^I ions, forming a trinuclear complex. One of the PF₆⁻ anions is half-occupied, with the P atom located on a twofold rotation axis. The PF₆⁻ anions link the complex molecules via Ag. F interactions [2.80 (2) and 2.85 (2) Å] into a polymeric chain along [100].

Related literature

For related structures incorporating the 1,4-bis(4,5-dihydro-2oxazolyl)benzene ligand, see: Suen et al. (2011); Wang et al. (2008, 2011a,b); Yeh et al. (2011).

 $0.40 \times 0.30 \text{ mm}$

4976 independent reflections

 $R_{\rm int}=0.020$

reflections

3885 reflections with $I > 2\sigma(I)$

3 standard reflections every 297

intensity decay: 2.0%

Experimental

Crystal data

$[Ag_3(C_{12}H_{12}N_2O_2)_4](PF_6)_3$	$V = 5651.0 (11) \text{ Å}^3$
$M_r = 1623.46$	Z = 4
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 22.7473 (16) Å	$\mu = 1.23 \text{ mm}^{-1}$
b = 11.4521 (19) Å	$T = 298 { m K}$
c = 24.1382 (15) Å	$0.60 \times 0.40 \times 0.30$
$\beta = 116.014 \ (7)^{\circ}$	

Data collection

Siemens P4 four-circle
diffractometer
Absorption correction: ψ scan
(XSCANS; Siemens, 1995)
$T_{\min} = 0.634, T_{\max} = 0.964$
5107 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	425 parameters
$wR(F^2) = 0.137$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 1.02 \text{ e } \text{\AA}^{-3}$
4976 reflections	$\Delta \rho_{\rm min} = -0.81 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Ag1-N11	2.331 (4)	Ag2-N31	2.104 (5)
Ag1-N41	2.418 (5)	Ag2-N61	2.106 (4)

Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We are grateful to the National Science Council of the Republic of China and the Taoyuan Innovation Institute of Technology for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2575).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122

- Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Suen, M.-C., Yeh, C.-W., Lin, S.-C. & Hsu, Y.-F. (2011). Acta Cryst. E67, m1099.
- Wang, Y.-H., Lee, H.-T. & Suen, M.-C. (2008). Polyhedron, 27, 1177-1184.
- Wang, P.-N., Yeh, C.-W., Lee, H.-T. & Suen, M.-C. (2011a). Acta Cryst. E67, m1083.
- Wang, P.-N., Yeh, C.-W., Tsai, H.-A., Wang, J.-C. & Suen, M.-C. (2011b). Acta Cryst. E67. m881.
- Yeh, C.-W., Huang, F.-C., Jong, A. & Suen, M.-C. (2011). Acta Cryst. E67, m1080-m1081.

supporting information

Acta Cryst. (2012). E68, m1170 [doi:10.1107/S1600536812034721]

Tetrakis[μ -1,3-bis(4,5-dihydro-1,3-oxazol-2-yl)benzene- $\kappa^2 N:N'$]trisilver(I) tris-(hexafluoridophosphate)

Chun-Wei Yeh, Yuh-Wen Ho, Hsun-Tsing Lee, Ju-Chun Wang and Maw-Cherng Suen

S1. Comment

Several Ag(I), Cd(II) and Cu(II) complexes containing 1,4-bis(4,5-dihydro-2-oxazolyl)benzene ligands have been reported, which show various dimensional structures (Suen *et al.*, 2011; Wang *et al.*, 2008, 2011*a*,b; Yeh *et al.*, 2011). In the title trinuclear complex, one Ag^I ion, lying on a twofold axis, is coordinated by four N atoms from four 1,3-bis(4,5-di-hydro-2-oxazolyl)benzene (*L*) ligands in a distorted tetrahedral geometry and the other two are each coordinated by two N atoms from two *L* ligands in a bent linear arrangement (Fig. 1, Table 1). The Ag^{...}Ag separation in the trimer is 7.473 (1) Å. The *L* ligands show both *syn* and *anti* conformations. The PF₆⁻ anions link the trinuclear cationic complexes *via* Ag^{...}F interactions [2.80 (2) and 2.85 (2) Å], forming one-dimensional beaded polymeric chains along [100] (Fig. 2).

S2. Experimental

An aqueous solution (5.0 ml) of $AgPF_6$ (3.0 mmol) was layered carefully over a methanolic solution (5.0 ml) of 1,3-bis-(4,5-dihydro-2-oxazolyl)benzene (4.0 mmol) in a tube and kept it in dark. Colourless crystals were obtained after several weeks. These were washed with methanol and collected in 75.8% yield.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (phenyl) and 0.97 (methylene) Å and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 1-x, y, 1/2-z.]

Figure 2

The packing diagram of the title compound, showing the one-dimensional beaded chain formed by Ag…F interactions.

Tetrakis[μ -1,3-bis(4,5-dihydro-1,3-oxazol-2-yl)benzene- $\kappa^2 N:N'$]trisilver(I) tris(hexafluoridophosphate)

Crystal data	
$[Ag_{3}(C_{12}H_{12}N_{2}O_{2})_{4}](PF_{6})_{3}$ $M_{r} = 1623.46$ Monoclinic, C2/c Hall symbol: -C 2yc a = 22.7473 (16) Å b = 11.4521 (19) Å c = 24.1382 (15) Å $\beta = 116.014$ (7)° V = 5651.0 (11) Å ³ Z = 4	F(000) = 3216 $D_x = 1.908 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 36 reflections $\theta = 4.8-12.5^{\circ}$ $\mu = 1.23 \text{ mm}^{-1}$ T = 298 K Plate, colourless $0.60 \times 0.40 \times 0.30 \text{ mm}$
Data collection	
Siemens P4 four-circle diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans	Absorption correction: ψ scan (XSCANS; Siemens, 1995) $T_{\min} = 0.634$, $T_{\max} = 0.964$ 5107 measured reflections 4976 independent reflections 3885 reflections with $I > 2\sigma(I)$

 $R_{int} = 0.020$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = 0 \rightarrow 26$ $k = 0 \rightarrow 13$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.050$ Hydrogen site location: inferred from $wR(F^2) = 0.137$ neighbouring sites S = 1.01H-atom parameters constrained 4976 reflections $w = 1/[\sigma^2(F_o^2) + (0.0628P)^2 + 34.3783P]$ where $P = (F_0^2 + 2F_c^2)/3$ 425 parameters 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 1.02 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.81 \text{ e} \text{ Å}^{-3}$ direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $l = -28 \rightarrow 25$

intensity decay: 2.0%

3 standard reflections every 297 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ag1	0.5000	0.06276 (6)	0.2500	0.0564 (2)	
Ag2	0.18074 (2)	0.04964 (5)	0.26872 (2)	0.05790 (18)	
011	0.31412 (19)	-0.1417 (4)	0.19947 (19)	0.0637 (11)	
O31	0.3068 (2)	-0.0441 (4)	0.45572 (19)	0.0675 (12)	
O41	0.3592 (2)	0.2537 (5)	0.08323 (18)	0.0694 (13)	
O61	0.14979 (18)	0.1693 (4)	0.09064 (16)	0.0532 (9)	
N11	0.4086 (2)	-0.0591 (4)	0.2133 (2)	0.0488 (11)	
N31	0.2312 (2)	0.0070 (4)	0.3628 (2)	0.0507 (11)	
N41	0.4514 (2)	0.1949 (5)	0.1635 (2)	0.0558 (12)	
N61	0.1478 (2)	0.1039 (4)	0.1765 (2)	0.0491 (11)	
C11	0.3711 (2)	-0.0898 (5)	0.2366 (3)	0.0458 (12)	
C12	0.3785 (3)	-0.0977 (6)	0.1487 (3)	0.0580 (15)	
H12A	0.4034	-0.1606	0.1423	0.070*	
H12B	0.3753	-0.0337	0.1212	0.070*	
C13	0.3111 (3)	-0.1394 (7)	0.1382 (3)	0.0712 (19)	
H13A	0.2774	-0.0860	0.1116	0.085*	
H13B	0.3021	-0.2166	0.1198	0.085*	
C21	0.3827 (3)	-0.0752 (5)	0.3012 (3)	0.0465 (12)	
C22	0.3315 (3)	-0.0577 (5)	0.3166 (2)	0.0457 (12)	
H22A	0.2888	-0.0556	0.2856	0.055*	
C23	0.3426 (3)	-0.0434 (5)	0.3773 (2)	0.0469 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C24	0.4070 (3)	-0.0470 (6)	0.4234 (3)	0.0657 (17)	
H24A	0.4155	-0.0356	0.4644	0.079*	
C25	0.4578 (3)	-0.0674 (6)	0.4080 (3)	0.0710 (19)	
H25A	0.5003	-0.0719	0.4390	0.085*	
C26	0.4465 (3)	-0.0810 (6)	0.3481 (3)	0.0639 (17)	
H26A	0.4813	-0.0942	0.3384	0.077*	
C31	0.2900 (3)	-0.0254(5)	0.3960 (2)	0.0506 (13)	
C32	0.1977 (3)	0.0162 (6)	0.4034 (3)	0.0629 (16)	
H32A	0.1619	-0.0390	0.3911	0.075*	
H32B	0.1809	0.0944	0.4023	0.075*	
C33	0.2505 (4)	-0.0123(8)	0.4664 (3)	0.080(2)	
H33A	0.2603	0.0549	0.4936	0.096*	
H33B	0.2374	-0.0768	0.4846	0.096*	
C41	0.3914 (3)	0.2206 (5)	0.1427(2)	0.0464(12)	
C42	0.4700 (3)	0.2166 (8)	0.1130(3)	0.081(2)	
H42.A	0.4845	0.1450	0.1013	0.098*	
H42B	0 5049	0.2738	0.1252	0.098*	
C43	0.4086(3)	0.2623 (8)	0.0603 (3)	0.090	
H43A	0.4142	0.3426	0.0508	0.096*	
H43B	0.3968	0.2150	0.0237	0.096*	
C51	0.3500	0.2183(5)	0.0237 0.1772(2)	0.090	
C52	0.3310(2) 0.2861(2)	0.1886(5)	0.1772(2) 0.1481(2)	0.0430(12)	
Н52А	0.2663	0.1709	0.1062	0.052*	
C53	0.2005	0.1709 0.1855 (4)	0.1002 0.1822 (2)	0.032	
C54	0.2793(2)	0.1000(4) 0.2170(5)	0.1022(2) 0.2441(2)	0.0469(11)	
Н54А	0.2550	0.2170 (5)	0.2441 (2)	0.056*	
C55	0.2330 0.3442(3)	0.2492(5)	0.2007 0.2721 (3)	0.050	
Н55А	0.3635	0.2492(5) 0.2712	0.2721 (5)	0.062*	
C56	0.3809 (3)	0.2712 0.2492 (5)	0.3194 0.2392 (3)	0.002 0.0495 (13)	
Н56А	0.4249	0.2492 (5)	0.2592 (5)	0.059*	
C61	0.4249 0.1804 (2)	0.2097 0.1498 (5)	0.2504 0.1510(2)	0.037	
C62	0.1304(2) 0.0795(3)	0.1498(5) 0.0830(7)	0.1310(2) 0.1278(3)	0.0427(12) 0.0641(18)	
С02 Н62 Л	0.0795 (3)	0.0839(7)	0.1278 (5)	0.0041 (18)	
1102A 1162B	0.0479	0.1207	0.1308	0.077*	
C63	0.0034	0.1300 (6)	0.1238	0.077	
С05 Н63 Л	0.0821 (3)	0.1300 (0)	0.0701 (3)	0.0555 (14)	
1105A 1162D	0.0713	0.1043	0.0595	0.007	
D1	0.0318	0.1943 0.4226(2)	0.0527	0.007	
	0.3000	0.4230(2) 0.3242(15)	0.7300	0.0019(0)	0.50
F1 F2	0.3310(14) 0.4658(10)	0.3242(13) 0.5162(10)	0.7277(12) 0.7741(0)	0.130(9) 0.102(4)	0.50
F2 F2	0.4038(10)	0.5102(10)	0.7741(9) 0.7726(12)	0.102(4) 0.172(0)	0.50
Г 3 Е 4	0.3024(8)	0.303(2)	0.7720(12)	0.172(9)	0.50
Г4 Г5	0.4740(10) 0.5275(10)	0.490(2)	0.0691(7)	0.131(0) 0.125(5)	0.50
F6	0.3273(10) 0.4254(0)	0.3013(19) 0.3566(10)	0.0141(/) 0.7211(12)	0.133(3)	0.50
го го	0.4334 (9)	0.3300 (19)	0.7311(13) 0.52246(10)	0.130(6) 0.0722(5)	0.30
г∠ Е7	0.12182(9) 0.0724(4)	0.19994 (18)	0.32240(10)	0.0733(3)	
Г / Е0	0.0734(4)	0.1210(9)	0.4/38(4)	0.231(3)	
Гð ГО	0.0936 (4)	0.2993 (9)	0.4800(5)	0.241(0)	
гу	0.1540 (4)	0.1000(7)	0.3033 (6)	0.266 (7)	

supporting information

F10	0.0687 (4)	0.2167 (15)	0.5419 (5)	0.290 (8)
F11	0.1701 (3)	0.2775 (6)	0.5752 (3)	0.156 (3)
F12	0.1760 (4)	0.1934 (12)	0.5037 (4)	0.248 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.0330(3)	0.0662 (4)	0.0635 (4)	0.000	0.0150(3)	0.000
Ag2	0.0457 (3)	0.0879 (4)	0.0438 (3)	0.0038 (2)	0.0231 (2)	0.0128 (2)
O11	0.045 (2)	0.090 (3)	0.059 (2)	-0.027 (2)	0.0255 (19)	-0.016 (2)
O31	0.082 (3)	0.080 (3)	0.041 (2)	0.009 (2)	0.028 (2)	0.010 (2)
O41	0.056 (2)	0.114 (4)	0.048 (2)	0.017 (3)	0.031 (2)	0.018 (2)
O61	0.042 (2)	0.075 (3)	0.042 (2)	0.0003 (19)	0.0179 (16)	0.0088 (19)
N11	0.035 (2)	0.057 (3)	0.057 (3)	-0.008(2)	0.023 (2)	-0.003 (2)
N31	0.054 (3)	0.059 (3)	0.042 (2)	-0.003 (2)	0.024 (2)	0.004 (2)
N41	0.039 (3)	0.080 (4)	0.056 (3)	0.005 (2)	0.029 (2)	0.011 (2)
N61	0.035 (2)	0.074 (3)	0.043 (2)	0.004 (2)	0.0216 (19)	0.007 (2)
C11	0.036 (3)	0.043 (3)	0.056 (3)	0.000 (2)	0.017 (2)	0.000 (2)
C12	0.048 (3)	0.067 (4)	0.063 (4)	-0.009 (3)	0.029 (3)	-0.009 (3)
C13	0.063 (4)	0.096 (5)	0.057 (4)	-0.026 (4)	0.029 (3)	-0.019 (4)
C21	0.039 (3)	0.046 (3)	0.053 (3)	-0.006(2)	0.018 (2)	0.001 (2)
C22	0.040 (3)	0.045 (3)	0.044 (3)	-0.003 (2)	0.011 (2)	0.003 (2)
C23	0.043 (3)	0.046 (3)	0.045 (3)	-0.003 (2)	0.013 (2)	0.005 (2)
C24	0.066 (4)	0.074 (4)	0.041 (3)	-0.009 (3)	0.008 (3)	0.005 (3)
C25	0.045 (3)	0.087 (5)	0.059 (4)	-0.003 (3)	0.001 (3)	0.011 (3)
C26	0.037 (3)	0.075 (4)	0.069 (4)	-0.003 (3)	0.014 (3)	0.008 (3)
C31	0.065 (4)	0.047 (3)	0.038 (3)	-0.005 (3)	0.021 (3)	0.002 (2)
C32	0.076 (4)	0.064 (4)	0.064 (4)	0.001 (3)	0.045 (3)	0.005 (3)
C33	0.087 (5)	0.112 (6)	0.050 (4)	-0.007 (5)	0.039 (4)	-0.001 (4)
C41	0.047 (3)	0.051 (3)	0.046 (3)	0.000 (2)	0.024 (2)	0.001 (2)
C42	0.065 (4)	0.126 (7)	0.074 (4)	0.016 (4)	0.050 (4)	0.027 (4)
C43	0.069 (4)	0.128 (7)	0.061 (4)	0.005 (4)	0.046 (4)	0.011 (4)
C51	0.039 (3)	0.048 (3)	0.045 (3)	0.007 (2)	0.021 (2)	0.005 (2)
C52	0.042 (3)	0.050 (3)	0.041 (3)	0.006 (2)	0.021 (2)	0.004 (2)
C53	0.035 (3)	0.045 (3)	0.044 (3)	0.007 (2)	0.019 (2)	0.004 (2)
C54	0.045 (3)	0.059 (3)	0.045 (3)	0.010 (3)	0.027 (2)	0.005 (2)
C55	0.049 (3)	0.065 (4)	0.044 (3)	-0.001 (3)	0.023 (3)	-0.006 (3)
C56	0.039 (3)	0.060 (4)	0.050 (3)	0.003 (3)	0.020 (2)	0.000 (3)
C61	0.040 (3)	0.047 (3)	0.043 (3)	0.008 (2)	0.021 (2)	0.004 (2)
C62	0.035 (3)	0.109 (5)	0.047 (3)	-0.011 (3)	0.017 (2)	0.005 (3)
C63	0.041 (3)	0.071 (4)	0.049 (3)	0.004 (3)	0.015 (2)	0.006 (3)
P1	0.0493 (12)	0.0745 (16)	0.0784 (16)	0.000	0.0431 (12)	0.000
F1	0.21 (3)	0.091 (9)	0.20 (2)	0.038 (14)	0.18 (2)	0.011 (13)
F2	0.124 (13)	0.075 (6)	0.157 (12)	0.029 (8)	0.108 (11)	0.014 (8)
F3	0.071 (9)	0.21 (2)	0.23 (2)	-0.047 (10)	0.064 (13)	-0.034 (19)
F4	0.142 (13)	0.225 (18)	0.118 (11)	0.074 (14)	0.086 (11)	0.076 (12)
F5	0.157 (13)	0.161 (15)	0.105 (9)	0.074 (12)	0.074 (9)	0.066 (10)
F6	0.101 (11)	0.142 (19)	0.25 (3)	-0.054 (11)	0.101 (15)	-0.039 (16)

supporting information

P2	0.0472 (9)	0.0794 (13)	0.0804 (12)	0.0067 (9)	0.0161 (9)	-0.0022 (10)
F7	0.147 (7)	0.200 (9)	0.208 (9)	-0.008 (6)	-0.048 (6)	-0.083 (7)
F8	0.140 (6)	0.246 (11)	0.283 (12)	0.054 (7)	0.043 (7)	0.168 (10)
F9	0.118 (6)	0.153 (7)	0.368 (14)	-0.043 (5)	-0.041 (7)	0.137 (8)
F10	0.091 (5)	0.61 (2)	0.194 (8)	0.005 (9)	0.086 (6)	-0.080 (12)
F11	0.110 (5)	0.137 (5)	0.166 (6)	-0.005 (4)	0.010 (4)	-0.052 (5)
F12	0.139 (6)	0.457 (18)	0.165 (7)	0.096 (9)	0.082 (6)	-0.042 (9)

Geometric parameters (Å, °)

Ag1—N11	2.331 (4)	C32—H32A	0.9700
Ag1—N41	2.418 (5)	C32—H32B	0.9700
Ag2—N31	2.104 (5)	С33—Н33А	0.9700
Ag2—N61	2.106 (4)	С33—Н33В	0.9700
O11—C11	1.348 (6)	C41—C51	1.472 (7)
O11—C13	1.450 (7)	C42—C43	1.511 (10)
O31—C31	1.335 (7)	C42—H42A	0.9700
O31—C33	1.460 (8)	C42—H42B	0.9700
O41—C41	1.348 (7)	C43—H43A	0.9700
O41—C43	1.457 (7)	C43—H43B	0.9700
O61—C61	1.329 (6)	C51—C52	1.387 (7)
O61—C63	1.467 (7)	C51—C56	1.391 (7)
N11—C11	1.260 (7)	C52—C53	1.396 (7)
N11—C12	1.469 (7)	C52—H52A	0.9300
N31—C31	1.276 (8)	C53—C54	1.391 (7)
N31—C32	1.485 (7)	C53—C61	1.479 (7)
N41—C41	1.264 (7)	C54—C55	1.378 (8)
N41—C42	1.478 (7)	C54—H54A	0.9300
N61—C61	1.269 (7)	C55—C56	1.382 (7)
N61—C62	1.498 (7)	С55—Н55А	0.9300
C11—C21	1.474 (8)	С56—Н56А	0.9300
C12—C13	1.517 (8)	C62—C63	1.515 (8)
C12—H12A	0.9700	С62—Н62А	0.9700
C12—H12B	0.9700	С62—Н62В	0.9700
C13—H13A	0.9700	С63—Н63А	0.9700
C13—H13B	0.9700	С63—Н63В	0.9700
C21—C22	1.384 (8)	P1—F4	1.527 (12)
C21—C26	1.396 (8)	P1—F6	1.539 (16)
C22—C23	1.383 (8)	P1—F1	1.562 (13)
C22—H22A	0.9300	P1—F5	1.564 (11)
C23—C24	1.398 (8)	P1—F3	1.566 (16)
C23—C31	1.469 (8)	P1—F2	1.570 (11)
C24—C25	1.380 (10)	P2—F8	1.476 (8)
C24—H24A	0.9300	P2—F9	1.481 (7)
C25—C26	1.363 (10)	P2—F12	1.488 (8)
C25—H25A	0.9300	P2—F10	1.490 (7)
C26—H26A	0.9300	P2—F7	1.509 (7)
C32—C33	1.504 (10)	P2—F11	1.546 (6)

N11—Ag1—N11 ⁱ	106.5 (2)	O61—C63—C62	104.7 (4)
N11—Ag1—N41 ⁱ	134.17 (16)	O61—C63—H63A	110.8
N11 ⁱ —Ag1—N41 ⁱ	93.01 (17)	С62—С63—Н63А	110.8
N11—Ag1—N41	93.01 (17)	O61—C63—H63B	110.8
N11 ⁱ —Ag1—N41	134.17 (16)	С62—С63—Н63В	110.8
N41 ⁱ —Ag1—N41	102.5 (3)	H63A—C63—H63B	108.9
N31—Ag2—N61	169.03 (17)	F4 ⁱⁱ —P1—F4	120 (2)
C11—O11—C13	105.7 (4)	F4 ⁱⁱ —P1—F6	116.9 (11)
C31—O31—C33	107.0 (5)	F4—P1—F6	92.7 (16)
C41—O41—C43	105.9 (5)	$F4^{ii}$ — $P1$ — $F6^{ii}$	92.7 (16)
C61—O61—C63	106.7 (4)	F4—P1—F6 ⁱⁱ	116.9 (11)
C11—N11—C12	107.2 (4)	F6—P1—F6 ⁱⁱ	120.2 (18)
C11—N11—Ag1	131.5 (4)	$F4^{ii}$ — $P1$ — $F1^{ii}$	94.4 (10)
C12—N11—Ag1	120.5 (3)	$F6^{ii}$ — $P1$ — $F1^{ii}$	93.3 (12)
C31—N31—C32	107.7 (5)	$F4^{ii}$ — $P1$ — $F1$	130.8 (17)
C31—N31—Ag2	132.2 (4)	F4—P1—F1	94.4 (10)
C32—N31—Ag2	120.1 (4)	F6—P1—F1	93.3 (12)
C41—N41—C42	106.4 (5)	$F1^{ii}$ — $P1$ — $F1$	86.4 (13)
C41—N41—Ag1	119.6 (4)	F4 ⁱⁱ —P1—F5 ⁱⁱ	177.0 (16)
C42—N41—Ag1	129.0 (4)	F4—P1—F5 ⁱⁱ	57.1 (9)
C61—N61—C62	107.9 (4)	F6—P1—F5 ⁱⁱ	64.2 (9)
C61—N61—Ag2	128.5 (4)	F6 ⁱⁱ —P1—F5 ⁱⁱ	89.0 (10)
C62—N61—Ag2	123.4 (3)	F1 ⁱⁱ —P1—F5 ⁱⁱ	88.0 (11)
N11-C11-011	118.0 (5)	F1—P1—F5 ⁱⁱ	51.1 (9)
N11—C11—C21	126.8 (5)	F4 ⁱⁱ —P1—F5	57.1 (9)
O11—C11—C21	115.2 (5)	F4—P1—F5	177.0 (17)
N11—C12—C13	103.9 (5)	F6—P1—F5	89.0 (10)
N11—C12—H12A	111.0	F6 ⁱⁱ —P1—F5	64.2 (9)
C13—C12—H12A	111.0	F1 ⁱⁱ —P1—F5	51.1 (9)
N11—C12—H12B	111.0	F1—P1—F5	88.0 (11)
C13—C12—H12B	111.0	F5 ⁱⁱ —P1—F5	125.9 (18)
H12A—C12—H12B	109.0	F4 ⁱⁱ —P1—F3	57.7 (9)
O11—C13—C12	104.0 (5)	F4—P1—F3	87.4 (11)
O11—C13—H13A	111.0	F6—P1—F3	173.3 (12)
С12—С13—Н13А	111.0	F6 ⁱⁱ —P1—F3	65.4 (11)
O11—C13—H13B	111.0	F1 ⁱⁱ —P1—F3	141.7 (17)
С12—С13—Н13В	111.0	F1—P1—F3	93.3 (12)
H13A—C13—H13B	109.0	F5 ⁱⁱ —P1—F3	121.0 (10)
C22—C21—C26	119.2 (6)	F5—P1—F3	90.6 (16)
C22—C21—C11	121.3 (5)	$F4^{ii}$ — $P1$ — $F3^{ii}$	87.4 (11)
C26—C21—C11	119.5 (5)	F4—P1—F3 ⁱⁱ	57.7 (9)
C23—C22—C21	121.1 (5)	F6—P1—F3 ⁱⁱ	65.4 (11)
C23—C22—H22A	119.4	$F6^{ii}$ — $P1$ — $F3^{ii}$	173.3 (12)
C21—C22—H22A	119.4	$F1^{ii}$ — $P1$ — $F3^{ii}$	93.3 (12)
C22—C23—C24	118.8 (6)	F1—P1—F3 ⁱⁱ	141.7 (17)
C22—C23—C31	123.2 (5)	F5 ⁱⁱ —P1—F3 ⁱⁱ	90.6 (16)
C24—C23—C31	118.0 (5)	F5—P1—F3 ⁱⁱ	121.0 (10)

C25—C24—C23	119.9 (6)	F3—P1—F3 ⁱⁱ	109.4 (18)
C25—C24—H24A	120.0	F4 ⁱⁱ —P1—F2	49.6 (8)
C23—C24—H24A	120.0	F4—P1—F2	88.4 (9)
C26—C25—C24	121.0 (6)	F6—P1—F2	83.2 (11)
C26—C25—H25A	119.5	F6 ⁱⁱ —P1—F2	142.3 (15)
C24—C25—H25A	119.5	F1 ⁱⁱ —P1—F2	89.3 (8)
C25—C26—C21	119.9 (6)	F1—P1—F2	175.7 (8)
C25—C26—H26A	120.0	F5 ⁱⁱ —P1—F2	128.7 (14)
C21—C26—H26A	120.0	F5—P1—F2	89.3 (8)
N31—C31—O31	116.8 (5)	F3—P1—F2	90.1 (9)
N31—C31—C23	128.2 (5)	$F4^{ii}$ — $P1$ — $F2^{ii}$	88.4 (9)
O31—C31—C23	115.0 (5)	F4—P1—F2 ⁱⁱ	49.6 (8)
N31—C32—C33	103.9 (5)	F6—P1—F2 ⁱⁱ	142.3 (15)
N31—C32—H32A	111.0	F6 ⁱⁱ —P1—F2 ⁱⁱ	83.2 (11)
С33—С32—Н32А	111.0	$F1^{ii}$ — $P1$ — $F2^{ii}$	175.7 (8)
N31—C32—H32B	111.0	F1—P1—F2 ⁱⁱ	89.3 (8)
С33—С32—Н32В	111.0	F5 ⁱⁱ —P1—F2 ⁱⁱ	89.3 (8)
H32A—C32—H32B	109.0	F5—P1—F2 ⁱⁱ	128.7 (14)
O31—C33—C32	104.3 (5)	F3 ⁱⁱ —P1—F2 ⁱⁱ	90.1 (9)
O31—C33—H33A	110.9	F2—P1—F2 ⁱⁱ	95.1 (9)
С32—С33—Н33А	110.9	F6 ⁱⁱ —F1—F5 ⁱⁱ	133 (2)
O31—C33—H33B	110.9	F6 ⁱⁱ —F1—P1	69.6 (14)
С32—С33—Н33В	110.9	F5 ⁱⁱ —F1—P1	64.5 (9)
H33A—C33—H33B	108.9	F3 ⁱⁱ —F2—F4 ⁱⁱ	132.4 (16)
N41—C41—O41	118.5 (5)	F3 ⁱⁱ —F2—P1	70.6 (13)
N41—C41—C51	126.3 (5)	F4 ⁱⁱ —F2—P1	63.5 (8)
O41—C41—C51	115.2 (5)	F2 ⁱⁱ —F3—F4 ⁱⁱ	116.2 (18)
N41—C42—C43	105.0 (5)	F2 ⁱⁱ —F3—P1	70.9 (11)
N41—C42—H42A	110.8	F4 ⁱⁱ —F3—P1	59.8 (8)
C43—C42—H42A	110.8	F2 ⁱⁱ —F3—F6 ⁱⁱ	96 (2)
N41—C42—H42B	110.8	F4 ⁱⁱ —F3—F6 ⁱⁱ	89 (2)
C43—C42—H42B	110.8	P1—F3—F6 ⁱⁱ	56.5 (9)
H42A—C42—H42B	108.8	F2 ⁱⁱ —F4—F5 ⁱⁱ	104.8 (12)
O41—C43—C42	103.9 (5)	F2 ⁱⁱ —F4—F3 ⁱⁱ	105.1 (17)
O41—C43—H43A	111.0	F5 ⁱⁱ —F4—F3 ⁱⁱ	97.0 (18)
C42—C43—H43A	111.0	F2 ⁱⁱ —F4—P1	66.9 (8)
O41—C43—H43B	111.0	F5 ⁱⁱ —F4—P1	62.7 (7)
С42—С43—Н43В	111.0	F3 ⁱⁱ —F4—P1	62.5 (8)
H43A—C43—H43B	109.0	F1 ⁱⁱ —F5—F4 ⁱⁱ	106.5 (13)
C52—C51—C56	120.5 (5)	F1 ⁱⁱ —F5—P1	64.4 (8)
C52—C51—C41	120.6 (5)	F4 ⁱⁱ —F5—P1	60.2 (7)
C56—C51—C41	118.9 (5)	F1 ⁱⁱ —F5—F6 ⁱⁱ	97.1 (15)
C51—C52—C53	119.3 (5)	F4 ⁱⁱ —F5—F6 ⁱⁱ	90.2 (15)
C51—C52—H52A	120.3	P1—F5—F6 ⁱⁱ	57.2 (7)
C53—C52—H52A	120.3	F1 ⁱⁱ —F6—P1	72.1 (15)
C54—C53—C52	119.8 (5)	F1 ⁱⁱ —F6—F5 ⁱⁱ	107 (2)
C54—C53—C61	121.4 (4)	P1—F6—F5 ⁱⁱ	58.6 (7)
C52—C53—C61	118.8 (5)	F1 ⁱⁱ —F6—F3 ⁱⁱ	113 (3)

120.3 (5)	P1—F6—F3 ⁱⁱ	58.1 (8)
119.9	F5 ⁱⁱ —F6—F3 ⁱⁱ	84.0 (17)
119.9	F8—P2—F9	175.8 (7)
120.3 (5)	F8—P2—F12	89.7 (6)
119.8	F9—P2—F12	86.1 (7)
119.8	F8—P2—F10	87.3 (7)
119.7 (5)	F9—P2—F10	96.8 (8)
120.1	F12—P2—F10	175.4 (9)
120.1	F8—P2—F7	88.6 (6)
117.7 (5)	F9—P2—F7	92.0 (6)
126.2 (5)	F12—P2—F7	98.8 (6)
116.1 (4)	F10—P2—F7	84.6 (6)
103.0 (4)	F8—P2—F11	93.7 (6)
111.2	F9—P2—F11	85.9 (5)
111.2	F12—P2—F11	84.0 (5)
111.2	F10—P2—F11	92.8 (6)
111.2	F7—P2—F11	176.4 (6)
109.1		
	120.3 (5) 119.9 119.9 120.3 (5) 119.8 119.8 119.7 (5) 120.1 120.1 117.7 (5) 126.2 (5) 116.1 (4) 103.0 (4) 111.2 111.2 111.2 111.2 109.1	$120.3 (5)$ $P1-F6-F3^{ii}$ 119.9 $F5^{ii}-F6-F3^{ii}$ 119.9 $F8-P2-F9$ $120.3 (5)$ $F8-P2-F12$ 119.8 $F9-P2-F12$ 119.8 $F8-P2-F10$ $119.7 (5)$ $F9-P2-F10$ 120.1 $F12-P2-F10$ 120.1 $F8-P2-F7$ $117.7 (5)$ $F9-P2-F7$ $126.2 (5)$ $F12-P2-F7$ $116.1 (4)$ $F10-P2-F7$ $103.0 (4)$ $F8-P2-F11$ 111.2 $F12-P2-F11$ 111.2 $F10-P2-F11$ 111.2 $F10-P2-F11$ 111.2 $F10-P2-F11$ 111.2 $F10-P2-F11$ 111.2 $F10-P2-F11$ 111.2 $F10-P2-F11$

Symmetry codes: (i) -x+1, y, -z+1/2; (ii) -x+1, y, -z+3/2.