metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Trichlorido[4-methoxy-2,6-bis(2pyrimidin-2-yl- κN)phenyl- κC^{1}]platinum(IV) acetonitrile monosolvate

Yang Wu,^a Dahai Xie,^a Dengqing Zhang,^a Xianying Li^b and Wusong Jin^a*

College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, People's Republic of China, and ^bSchool of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, People's Republic of China

Correspondence e-mail: wsjin@dhu.edu.cn

Received 8 June 2012; accepted 21 August 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.010 Å; R factor = 0.033; wR factor = 0.085; data-to-parameter ratio = 14.9.

In the title complex, $[Pt(C_{15}H_{11}N_4O)Cl_3] \cdot CH_3CN$, the Pt^{IV} ion adopts a distorted octahedral coordination geometry defined by a tridentate cyclometalated NCN ligand and three Cl atoms. In the crystal, individual molecules are aggregated into a three-dimensional network by $C-H \cdot \cdot \cdot Cl$ hydrogenbonding interactions and $\pi-\pi$ stacking interactions between the tridentate ligands, the shortest ring centroid–centroid distance being 3.613 Å.

Related literature

For general background to the chemistry of the tridentate NCN ligand and its complexes, see: Williams (2009); Wang *et al.* (2010); Chen *et al.* (2009); Lu *et al.* (2009). For the synthesis of related ligand, see: Avitia *et al.* (2011); Wakioka *et al.* (2010). For Pt^{II} complexes with tridentate NCN ligands, see: Kozhevnikov *et al.* (2008); Tam *et al.* (2011). For Pt–Cl bond lengths in other Pt^{IV} complexes, see: Bagchi *et al.* (2007); Bokach *et al.* (2012). For details of the preparation, see: Cardenas & Echavarren (1999).

 $\gamma = 70.619 \ (2)^{\circ}$

Z = 2

 $V = 986.09 (16) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.21 \times 0.16 \times 0.13 \text{ mm}$

5788 measured reflections

3666 independent reflections

3442 reflections with $I > 2\sigma(I)$

 $\mu = 7.54 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.026$

Experimental

Crystal data

[Pt($C_{15}H_{11}N_4O$) Cl_3]· C_2H_3N $M_r = 605.77$ Triclinic, $P\overline{1}$ a = 8.5739 (8) Å b = 10.3371 (10) Å c = 12.6610 (12) Å $\alpha = 68.955$ (2)° $\beta = 80.033$ (2)°

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) T_{min} = 0.346, T_{max} = 1.000

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	246 parameters
$wR(F^2) = 0.085$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 1.63 \text{ e } \text{\AA}^{-3}$
3666 reflections	$\Delta \rho_{\rm min} = -1.61 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Pt1-C5	1.944 (5)	Pt1-Cl3	2.3018 (16)
Pt1-N3	2.038 (4)	Pt1-Cl2	2.3528 (15)
Pt1-N1	2.046 (4)	Pt1-Cl1	2.4160 (15)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C14-H14\cdots Cl1^{i}$ $C4-H4\cdots Cl2^{ii}$ $C12-H12\cdots Cl3^{iii}$	0.93 0.93 0.93	2.61 2.84 2.78	3.330 (6) 3.680 (6) 3.509 (6)	135 151 136
Symmetry codes: (i) r = 1 v z	-x+1, -y-	+2, -z+1; (ii) $-x + 2, -y +$	1, -z + 2; (iii)

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was sponsored by the Shanghai Pujiang Program (10PJ1400100).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2041).

References

- Avitia, B., MacIntosh, E., Muhia, S. & Kelson, E. (2011). Tetrahedron Lett. 52, 1631–1634.
- Bagchi, V., Das, P. & Bandyopadhyay, D. (2007). Acta Cryst. E63, m1940.
- Bokach, N. A., Kukushkin, V. Y., Izotova, Y. A., Usenko, N. I. & Haukka, M. (2012). Acta Cryst. E68, m547–m548.
- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cardenas, D. J. & Echavarren, A. M. (1999). Organometallics, 18, 3337-3341.

- Chen, Y., Li, K., Lu, W., Chui, S. S., Ma, C. & Che, C. (2009). Angew. Chem. Int. Ed. 48, 9909–9913.
- Kozhevnikov, V. N., Donnio, B. & Bruce, D. W. (2008). *Angew. Chem. Int. Ed.* **47**, 6286–6289.
- Lu, W., Chen, Y., Roy, V. A. L., Chui, S. S. & Che, C. (2009). Angew. Chem. Int. Ed. 48, 7621–7625.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tam, A. Y.-Y., Tsang, D. P.-K., Chan, M.-Y., Zhu, N. & Yam, V. W.-W. (2011). Chem. Commun. 47, 3383–3385.
- Wakioka, M., Ikegami, M. & Ozawa, F. (2010). Macromolecules, 43, 6980– 6985.
- Wang, Z., Turner, E., Mahoney, V., Madakuni, S., Groy, T. & Li, A. (2010). *Inorg. Chem.* 49, 11276–11286.
- Williams, J. A. G. (2009). Chem. Soc. Rev. 38, 1783-1801.

supporting information

Acta Cryst. (2012). E68, m1210-m1211 [doi:10.1107/S1600536812036410]

Trichlorido[4-methoxy-2,6-bis(2-pyrimidin-2-yl- κN)phenyl- κC^1]platinum(IV) acetonitrile monosolvate

Yang Wu, Dahai Xie, Dengqing Zhang, Xianying Li and Wusong Jin

S1. Comment

Square planar Pt^{II} complexes with tridentate cyclometalating NCN ligands [*e.g.*, *m*-di(2-pyridinyl)benzene (dpb) derivatives (Wang *et al.*, 2010)] have attracted a great attention due to their potential application in wide ranges such as chemosensors, luminescent materials, as well as photovoltaic cells (Williams 2009; Chen *et al.*, 2009; Lu *et al.*, 2009). Recently, some Pt^{II} complex with novel tridentate NCN ligands have been reported (Tam *et al.*, 2011; Kozhevnikov *et al.*, 2008). In this point of view, we develop a novel tridentate NCN ligand (Avitia *et al.*, 2011; Wakioka *et al.*, 2010), 1,3-di(2'-pyrimidyl)-5-methoxybenzene. Interestingly, in an attempt to prepare square Pt^{II} complex by the reaction of K₂PtCl₄ with newly synthesized ligand, the neutral Pt^{IV} complex, [Pt(C₁₅H₁₁N₄O)Cl₃].CH₃CN, was unexpected obtained as a byproduct along with the Pt^{II} complex, [Pt(C₁₅H₁₁N₄O)Cl].

The asymmetric unit of the title compound, contains a neutral Pt^{IV} complex and one acetonitrile molecule (Fig. 1). The central platinum(IV) atom is coordinated by two nitrogen atoms and one carbon atom from tridentate ligand, and three chlorine atoms forming a distorted octahedral geometry. The angles C5—Pt1—Cl3, N3—Pt1—Cl3, N1—Pt1—Cl3, C5 —Pt1—Cl2, Cl3—Pt1—Cl1, N3—Pt1—Cl2, N1—Pt1—Cl2 and Cl2—Pt1—Cl1 (88.14 (13)—92.288 (13)°, Table 1) are very close to the ideal 90°, the deviation from 90° of the angles C5—Pt1—N3 (80.3 (2)°) and C5—Pt1—N1 (80.7 (2)°) are owing to the formation of five-membered chelating rings. The bond lengths of Pt–N1, Pt–C5, Pt–N3, and Pt–Cl1 (Table 1) are similar to the literature reported Pt(II)dpbCl complexes (Wang *et al.*, 2010). The bond lengths of Pt–Cl2 and Pt–Cl3 (Table 1) resemble those in other Pt^{IV} complexes, which have been published (Bagchi *et al.*, 2007; Bokach *et al.*, 2012). The title complex packed as head-to-tail dimers in the crystal, each molecular unit of the dimer related to the other by a center of inversion. They are further connected into three-dimension crystal structure *via* C—H…Cl hydrogenbonding interactions and π – π stacking interactions between tridentate ligands, the shortest ring centroid-centroid distance is 3.613 Å (Table 2).

S2. Experimental

A mixture of 1,3-di(2'-pyrimidyl)-5-methoxybenzene 200 mg (0.756 mmol) and K₂PtCl₄ 314 mg (0.756 mmol) in CH₃CN/H₂O (ν/ν , 1/1, 60 ml) was stirred under reflux for 24 h in an argon atmosphere (Cardenas & Echavarren,, 1999). The resulted red solution was evaporated and the residue was extracted with CH₂Cl₂. The title complex was separated by flash column chromatography (SiO₂, CH₂Cl₂ as eluent) from the mixture. The single-crystal was obtained by slow evaporation of an acetonitrile solution of the title complex.

S3. Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H = 0.96 (methyl) Å [U iso (H) = 1.5U eq (C)], and C—H = 0.93 (aromatic) Å [U iso (H) = 1.2U eq (C)].

Perspective view of the title compound with displacement ellipsoids at the 30% probability level.

Figure 2

A view of the unit-cell contents of the title complex.

Trichlorido[4-methoxy-2,6-bis(2-pyrimidin-2-yl- κN)phenyl- κC^1]platinum(IV) acetonitrile monosolvate

Crystal data	
$[Pt(C_{15}H_{11}N_4O)Cl_3]\cdot C_2H_3N$	$\gamma = 70.619 \ (2)^{\circ}$
$M_r = 605.77$	$V = 986.09 (16) Å^3$
Triclinic, $P\overline{1}$	Z = 2
Hall symbol: -P 1	F(000) = 576
a = 8.5739 (8) Å	$D_{\rm x} = 2.040 {\rm ~Mg} {\rm ~m}^{-3}$
b = 10.3371 (10) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 12.6610 (12) Å	Cell parameters from 3770 reflections
$\alpha = 68.955 \ (2)^{\circ}$	$\theta = 4.6 - 56.4^{\circ}$
$\beta = 80.033 \ (2)^{\circ}$	$\mu = 7.54 \text{ mm}^{-1}$

T = 293 KPrismatic, red

Data collection

Bruker SMART CCD area-detector diffractometer	5788 measured reflections 3666 independent reflections
Radiation source: fine-focus sealed tube	3442 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
phi and ω scans	$\theta_{\rm max} = 25.5^{\circ}, \theta_{\rm min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 10$
(SADABS; Bruker, 2000)	$k = -12 \rightarrow 11$
$T_{\min} = 0.346, \ T_{\max} = 1.000$	$l = -15 \rightarrow 9$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier

 $0.21\times0.16\times0.13~mm$

Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.085$	neighbouring sites
S = 1.04	H-atom parameters constrained
3666 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0539P)^2]$
246 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.63 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.61 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pt1	0.69455 (2)	0.665972 (19)	0.713419 (15)	0.03224 (10)	
C11	0.6637 (2)	0.92214 (17)	0.62623 (15)	0.0597 (5)	
Cl2	0.52290 (17)	0.70939 (16)	0.87099 (12)	0.0391 (3)	
C13	0.8607 (2)	0.6190 (2)	0.55999 (15)	0.0585 (4)	
N1	0.9051 (5)	0.6081 (5)	0.7956 (4)	0.0329 (9)	
N2	1.1004 (5)	0.4043 (5)	0.9078 (4)	0.0388 (10)	
N3	0.5022 (5)	0.6499 (5)	0.6493 (4)	0.0371 (10)	
N4	0.3832 (6)	0.4766 (6)	0.6415 (4)	0.0440 (11)	
N5	0.0658 (16)	0.0090 (12)	0.7024 (13)	0.160 (5)	
01	0.7849 (6)	0.0280 (4)	0.9438 (4)	0.0601 (13)	
C1	0.9599 (6)	0.4644 (6)	0.8559 (4)	0.0356 (11)	
C2	0.9942 (6)	0.6958 (6)	0.7895 (4)	0.0374 (12)	
H2	0.9576	0.7943	0.7494	0.045*	
C3	1.1408 (7)	0.6384 (7)	0.8433 (5)	0.0443 (14)	

H3	1.2042	0.6970	0.8410	0.053*
C4	1.1898 (7)	0.4928 (7)	0.9001 (5)	0.0453 (14)
H4	1.2896	0.4530	0.9351	0.054*
C5	0.7221 (7)	0.4595 (5)	0.7844 (5)	0.0355 (12)
C6	0.8542 (6)	0.3786 (6)	0.8534 (5)	0.0368 (11)
C7	0.8712 (7)	0.2321 (6)	0.9065 (5)	0.0444 (13)
H7	0.9557	0.1741	0.9551	0.053*
C8	0.7599 (8)	0.1731 (6)	0.8860 (5)	0.0451 (13)
C9	0.6325 (7)	0.2562 (6)	0.8115 (5)	0.0442 (13)
H9	0.5622	0.2138	0.7965	0.053*
C10	0.6146 (7)	0.4025 (6)	0.7612 (5)	0.0381 (12)
C11	0.4924 (6)	0.5123 (6)	0.6806 (5)	0.0360 (11)
C12	0.2798 (7)	0.5850 (7)	0.5684 (5)	0.0483 (14)
H12	0.2031	0.5635	0.5387	0.058*
C13	0.2806 (8)	0.7262 (8)	0.5348 (5)	0.0498 (15)
H13	0.2053	0.7991	0.4846	0.060*
C14	0.3954 (7)	0.7570 (6)	0.5772 (5)	0.0422 (13)
H14	0.3991	0.8519	0.5560	0.051*
C15	0.7049 (9)	-0.0469 (6)	0.9062 (7)	0.0591 (17)
H15A	0.5871	-0.0096	0.9179	0.089*
H15B	0.7401	-0.1485	0.9485	0.089*
H15C	0.7336	-0.0331	0.8270	0.089*
C16	0.2570 (14)	0.1329 (11)	0.7295 (10)	0.100 (3)
H16A	0.2050	0.2357	0.7068	0.150*
H16B	0.3587	0.1123	0.6845	0.150*
H16C	0.2800	0.0975	0.8081	0.150*
C17	0.1486 (13)	0.0629 (10)	0.7132 (9)	0.092 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.03207 (14)	0.03471 (14)	0.03470 (14)	-0.01178 (9)	-0.01267 (9)	-0.01011 (9)
C11	0.0748 (11)	0.0444 (8)	0.0617 (10)	-0.0267 (8)	-0.0317 (8)	0.0017 (7)
Cl2	0.0331 (6)	0.0485 (8)	0.0416 (7)	-0.0113 (6)	-0.0103 (5)	-0.0183 (6)
C13	0.0460 (8)	0.0979 (13)	0.0518 (9)	-0.0305 (9)	0.0021 (7)	-0.0415 (9)
N1	0.033 (2)	0.038 (2)	0.032 (2)	-0.0095 (18)	-0.0098 (17)	-0.0137 (18)
N2	0.033 (2)	0.048 (3)	0.038 (2)	-0.008 (2)	-0.0151 (18)	-0.015 (2)
N3	0.035 (2)	0.040 (2)	0.041 (2)	-0.0109 (19)	-0.0124 (19)	-0.012 (2)
N4	0.037 (2)	0.054 (3)	0.049 (3)	-0.011 (2)	-0.014 (2)	-0.024 (2)
N5	0.174 (11)	0.130 (9)	0.227 (14)	-0.102 (9)	0.068 (10)	-0.101 (9)
01	0.077 (3)	0.035 (2)	0.078 (3)	-0.019 (2)	-0.037 (3)	-0.012 (2)
C1	0.035 (3)	0.042 (3)	0.036 (3)	-0.008 (2)	-0.010 (2)	-0.020 (2)
C2	0.036 (3)	0.042 (3)	0.040 (3)	-0.016 (2)	-0.005 (2)	-0.014 (2)
C3	0.040 (3)	0.066 (4)	0.044 (3)	-0.026 (3)	-0.006 (2)	-0.027 (3)
C4	0.031 (3)	0.064 (4)	0.045 (3)	-0.009 (3)	-0.010 (2)	-0.025 (3)
C5	0.038 (3)	0.027 (2)	0.043 (3)	-0.008 (2)	-0.012 (2)	-0.011 (2)
C6	0.034 (3)	0.037 (3)	0.043 (3)	-0.006 (2)	-0.015 (2)	-0.015 (2)
C7	0.048 (3)	0.040 (3)	0.048 (3)	-0.008 (3)	-0.024 (3)	-0.014 (2)

supporting information

C8	0.050 (3)	0.032 (3)	0.056 (4)	-0.009 (2)	-0.011 (3)	-0.017 (2)
C9	0.046 (3)	0.039 (3)	0.057 (4)	-0.017 (2)	-0.018 (3)	-0.016 (3)
C10	0.037 (3)	0.041 (3)	0.042 (3)	-0.012 (2)	-0.013 (2)	-0.014 (2)
C11	0.033 (3)	0.040 (3)	0.040 (3)	-0.012 (2)	-0.010 (2)	-0.014 (2)
C12	0.036 (3)	0.069 (4)	0.052 (4)	-0.021 (3)	-0.010 (3)	-0.026 (3)
C13	0.042 (3)	0.061 (4)	0.048 (3)	-0.011 (3)	-0.021 (3)	-0.014 (3)
C14	0.043 (3)	0.043 (3)	0.042 (3)	-0.013 (2)	-0.019 (2)	-0.008(2)
C15	0.071 (4)	0.032 (3)	0.083 (5)	-0.014 (3)	-0.025 (4)	-0.022 (3)
C16	0.088 (6)	0.098 (7)	0.120 (8)	-0.039 (5)	-0.007 (6)	-0.033 (6)
C17	0.100(7)	0.063 (5)	0.118 (8)	-0.041 (5)	0.021 (6)	-0.032 (5)

Geometric parameters (Å, °)

Pt1—C5	1.944 (5)	C4—H4	0.9300
Pt1—N3	2.038 (4)	C5—C10	1.364 (8)
Pt1—N1	2.046 (4)	C5—C6	1.391 (7)
Pt1—Cl3	2.3018 (16)	C6—C7	1.387 (8)
Pt1—Cl2	2.3528 (15)	C7—C8	1.391 (8)
Pt1—Cl1	2.4160 (15)	С7—Н7	0.9300
N1—C2	1.342 (7)	C8—C9	1.405 (8)
N1—C1	1.363 (7)	C9—C10	1.380 (8)
N2—C1	1.324 (6)	С9—Н9	0.9300
N2—C4	1.345 (8)	C10—C11	1.475 (7)
N3—C14	1.337 (7)	C12—C13	1.368 (9)
N3—C11	1.360 (7)	C12—H12	0.9300
N4—C11	1.334 (7)	C13—C14	1.368 (8)
N4—C12	1.334 (8)	С13—Н13	0.9300
N5-C17	1.088 (14)	C14—H14	0.9300
O1—C8	1.373 (7)	C15—H15A	0.9600
O1—C15	1.422 (8)	C15—H15B	0.9600
C1—C6	1.474 (7)	C15—H15C	0.9600
C2—C3	1.381 (8)	C16—C17	1.431 (14)
С2—Н2	0.9300	C16—H16A	0.9600
C3—C4	1.366 (9)	C16—H16B	0.9600
С3—Н3	0.9300	С16—Н16С	0.9600
C5—Pt1—N3	80.3 (2)	C7—C6—C1	129.5 (5)
C5—Pt1—N1	80.7 (2)	C5—C6—C1	113.2 (5)
N3—Pt1—N1	160.70 (19)	C6—C7—C8	119.1 (5)
C5—Pt1—Cl3	89.32 (18)	С6—С7—Н7	120.5
N3—Pt1—Cl3	88.69 (14)	С8—С7—Н7	120.5
N1—Pt1—Cl3	88.14 (13)	O1—C8—C7	114.8 (5)
C5—Pt1—Cl2	89.57 (17)	01—C8—C9	122.9 (5)
N3—Pt1—Cl2	90.54 (14)	С7—С8—С9	122.3 (5)
N1—Pt1—Cl2	92.28 (13)	C10—C9—C8	118.0 (5)
Cl3—Pt1—Cl2	178.74 (5)	С10—С9—Н9	121.0
C5—Pt1—Cl1	179.24 (16)	С8—С9—Н9	121.0
N3—Pt1—Cl1	100.49 (13)	C5—C10—C9	118.9 (5)

N1—Pt1—Cl1	98.58 (13)	C5—C10—C11	112.4 (5)
Cl3—Pt1—Cl1	90.63 (7)	C9—C10—C11	128.6 (5)
Cl2—Pt1—Cl1	90.48 (6)	N4—C11—N3	123.5 (5)
C2—N1—C1	119.4 (4)	N4—C11—C10	121.6 (5)
C2—N1—Pt1	126.1 (4)	N3—C11—C10	114.8 (5)
C1—N1—Pt1	114.4 (3)	N4—C12—C13	123.4 (5)
C1—N2—C4	116.8 (5)	N4—C12—H12	118.3
C14—N3—C11	119.1 (5)	C13—C12—H12	118.3
C14—N3—Pt1	126.8 (4)	C12—C13—C14	118.1 (6)
C11—N3—Pt1	114.0 (3)	C12—C13—H13	120.9
C11—N4—C12	116.2 (5)	C14—C13—H13	120.9
C8—O1—C15	117.5 (5)	N3—C14—C13	119.6 (6)
N2—C1—N1	123.3 (5)	N3—C14—H14	120.2
N2—C1—C6	122.2 (5)	C13—C14—H14	120.2
N1—C1—C6	114.4 (4)	O1—C15—H15A	109.5
N1—C2—C3	119.4 (5)	O1—C15—H15B	109.5
N1—C2—H2	120.3	H15A—C15—H15B	109.5
С3—С2—Н2	120.3	O1—C15—H15C	109.5
C4—C3—C2	118.0 (5)	H15A—C15—H15C	109.5
С4—С3—Н3	121.0	H15B—C15—H15C	109.5
C2—C3—H3	121.0	C17—C16—H16A	109.5
N2—C4—C3	123.1 (5)	C17—C16—H16B	109.5
N2—C4—H4	118.5	H16A—C16—H16B	109.5
C3—C4—H4	118.5	C17—C16—H16C	109.5
C10—C5—C6	124.2 (5)	H16A—C16—H16C	109.5
C10—C5—Pt1	118.4 (4)	H16B—C16—H16C	109.5
C6C5Pt1	117.3 (4)	N5—C17—C16	179.0 (14)
C7—C6—C5	117.3 (5)		× ,
C5—Pt1—N1—C2	176.2 (5)	Cl2—Pt1—C5—C6	-90.5 (4)
N3—Pt1—N1—C2	167.2 (5)	Cl1—Pt1—C5—C6	4 (14)
Cl3—Pt1—N1—C2	86.5 (4)	C10—C5—C6—C7	-3.6 (9)
Cl2—Pt1—N1—C2	-94.6 (4)	Pt1C5C6C7	178.3 (4)
Cl1—Pt1—N1—C2	-3.8 (4)	C10-C5-C6-C1	174.7 (5)
C5—Pt1—N1—C1	0.1 (4)	Pt1C5C6C1	-3.4 (7)
N3—Pt1—N1—C1	-8.9 (7)	N2-C1-C6-C7	4.6 (9)
Cl3—Pt1—N1—C1	-89.6 (4)	N1-C1-C6-C7	-178.6 (6)
Cl2—Pt1—N1—C1	89.2 (4)	N2-C1-C6-C5	-173.4 (5)
Cl1—Pt1—N1—C1	-179.9 (3)	N1-C1-C6-C5	3.4 (7)
C5-Pt1-N3-C14	-178.9 (5)	C5—C6—C7—C8	1.8 (9)
N1—Pt1—N3—C14	-169.9 (5)	C1—C6—C7—C8	-176.2 (6)
Cl3—Pt1—N3—C14	-89.3 (5)	C15—O1—C8—C7	-164.5 (6)
Cl2—Pt1—N3—C14	91.7 (5)	C15—O1—C8—C9	15.3 (10)
Cl1—Pt1—N3—C14	1.1 (5)	C6—C7—C8—O1	-178.9 (6)
C5—Pt1—N3—C11	-2.8 (4)	C6—C7—C8—C9	1.2 (10)
N1—Pt1—N3—C11	6.2 (8)	O1—C8—C9—C10	177.5 (6)
Cl3—Pt1—N3—C11	86.8 (4)	C7—C8—C9—C10	-2.7 (9)
Cl2—Pt1—N3—C11	-92.3 (4)	C6—C5—C10—C9	2.2 (9)
	× /		~ /

Cl1—Pt1—N3—C11	177.2 (4)	Pt1C5C10C9	-179.8 (4)
C4—N2—C1—N1	0.8 (8)	C6-C5-C10-C11	-176.8 (5)
C4—N2—C1—C6	177.2 (5)	Pt1-C5-C10-C11	1.3 (7)
C2-N1-C1-N2	-1.5 (8)	C8-C9-C10-C5	1.0 (9)
Pt1—N1—C1—N2	174.9 (4)	C8—C9—C10—C11	179.8 (6)
C2—N1—C1—C6	-178.2 (5)	C12—N4—C11—N3	-0.3 (8)
Pt1—N1—C1—C6	-1.9 (6)	C12—N4—C11—C10	-179.5 (5)
C1—N1—C2—C3	0.7 (8)	C14—N3—C11—N4	1.4 (8)
Pt1—N1—C2—C3	-175.2 (4)	Pt1-N3-C11-N4	-175.0 (4)
N1-C2-C3-C4	0.7 (8)	C14—N3—C11—C10	-179.4 (5)
C1—N2—C4—C3	0.7 (8)	Pt1-N3-C11-C10	4.2 (6)
C2-C3-C4-N2	-1.5 (9)	C5-C10-C11-N4	175.7 (5)
N3—Pt1—C5—C10	0.7 (5)	C9—C10—C11—N4	-3.2 (9)
N1—Pt1—C5—C10	-176.3 (5)	C5-C10-C11-N3	-3.6 (7)
Cl3—Pt1—C5—C10	-88.0 (5)	C9—C10—C11—N3	177.5 (6)
Cl2—Pt1—C5—C10	91.4 (5)	C11—N4—C12—C13	-0.9 (9)
Cl1—Pt1—C5—C10	-175 (25)	N4-C12-C13-C14	1.1 (10)
N3—Pt1—C5—C6	178.9 (5)	C11—N3—C14—C13	-1.2 (9)
N1—Pt1—C5—C6	1.9 (4)	Pt1-N3-C14-C13	174.7 (5)
Cl3—Pt1—C5—C6	90.1 (4)	C12-C13-C14-N3	0.0 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C14—H14····Cl1 ⁱ	0.93	2.61	3.330 (6)	135
C4—H4····Cl2 ⁱⁱ	0.93	2.84	3.680 (6)	151
C12—H12…Cl3 ⁱⁱⁱ	0.93	2.78	3.509 (6)	136

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*+2; (iii) *x*-1, *y*, *z*.