metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[(1,10-phenanthroline- $\kappa^2 N, N'$)bis-(triphenylphosphane- κP)copper(I)] nonadecaoxidohexamolybdate(VI)

Fabienne Gschwind* and Martin Jansen

Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany

Correspondence e-mail: f.gschwind@fkf.mpg.de

Received 25 July 2012; accepted 20 August 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.026; wR factor = 0.063; data-to-parameter ratio = 16.2.

The title compound, $[Cu(C_{12}H_8N_2)(C_{18}H_{15}P)_2]_2[Mo_6O_{19}]$, was obtained by co-crystallization of the mixed-ligand copper complex cation (1,10-phenanthroline)bis(triphenylphosphane)copper(I), $[Cu(phen)(PPh_3)_2]^+$, with the Lindquist polyanion $[Mo_6O_{19}]^{2-}$. The asymmetric unit consists of half a Lindquist anion and one $[Cu(phen)(PPh_3)_2]^+$ cationic complex. In the cation, there are intramolecular π - π interactions [centroid–centroid distances = 3.617 (2) and 3.7272 (18) Å]. This inorganic–organic adduct is connected by C–H···O hydrogen bonds, forming a two dimensional network lying in the *ab* plane. These networks are connected by C–H··· π interactions into a three-dimensional structure.

Related literature

For general background to mixed-ligand copper complexes and Lindquist anions, see: Gruber & Jansen (2011). For details of the $[Mo_6O_{19}]^{2-}$ polyoxidoanion, see: Jaypal *et al.* (2010); Rheingold *et al.* (1993). For the synthesis of the (1,10-phenanthroline)bis(triphenylphosphane)copper(I) complex cation $[Cu(phen)(PPh_3)_2]^+$, see: McMillin *et al.* (1985). For the synthesis of polyoxidoanions and the Anderson-type heteropolyanion $[Al(OH)_6Mo_6O_{18}]$, see: Kemperer & Silavwe (2007). For examples of combinations of Lindquist anions with copper(I) complexes, see: Sha *et al.* (2009); Hou *et al.* (2011). For the synthesis of Cu²⁺ complexes, see: Shivaiah *et al.* (2007).

 $\gamma = 93.93 \ (3)^{\circ}$

Z = 1

V = 2273.7 (8) Å³

Mo $K\alpha$ radiation

 $0.3 \times 0.2 \times 0.1 \text{ mm}$

22882 measured reflections

9593 independent reflections

7714 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 1.40 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.024$

592 parameters

 $\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$

Experimental

Crystal data

 $[Cu(C_{12}H_8N_2)(C_{18}H_{15}P)_2]_2[Mo_6O_{19}]$ $M_r = 2416.23$ Triclinic, $P\overline{1}$ a = 11.287 (2) Å b = 13.572 (3) Å c = 16.307 (3) Å a = 109.03 (3)° $\beta = 102.98$ (3)°

Data collection

Stoe IPDS 2 diffractometer Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2009) $T_{\rm min} = 0.818, T_{\rm max} = 0.908$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.063$ S = 0.869593 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg8 is the centroid of the C33-C38 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C19 - H19 \cdots O3^{i} \\ C29 - H29 \cdots O7^{ii} \\ C30 - H30A \cdots O8^{iii} \\ C44 - H44 \cdots O2 \\ C49 - H49 \cdots Ce8^{iv} \end{array}$	0.93 0.93 0.93 0.93 0.93 0.93	2.60 2.55 2.41 2.51 2.97	3.446 (3) 3.443 (4) 3.257 (5) 3.206 (4) 3.782 (5)	152 161 152 132 147
0			()	

Symmetry codes: (i) x + 1, y, z; (ii) x + 1, y + 1, z; (iii) -x + 1, -y + 2, -z + 1; (iv) -x + 1, -y + 1, -z.

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

FG thanks the Swiss National Science Foundation for generous support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5234).

References

- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Gruber, F. & Jansen, M. (2011). *Z. Anorg. Allg. Chem.* **637**, 1676–1679.
- Gruber, F. & Jansen, M. (2011). Z. Anorg. Allg. Chem. 637, 1676–1679.
 Hou, G., Bi, L., Li, B., Wang, B. & Wu, L. (2011). CrystEngComm, 13, 3526–3535.
- Jaypal, M. R., Prasad, K. S. & Sreddhar, N. Y. (2010). Glob. J. Sci. Front. Res. 30, 28–31.
- Kemperer, W. G. & Silavwe, N. (2007). Inorg. Synth. 27, 74-85.
- McMillin, D. R., Kirchhoff, J. R., Robinson, W. R., Powell, D. R., McKenzie, A. T. & Chen, S. (1985). *Inorg. Chem.* 24, 3929–3933.
- Rheingold, A. L., White, C. B., Haggerty, B. S. & Maatta, E. A. (1993). Acta Cryst. C49, 756–758.
- Sha, J., Huang, L., Peng, J., Pang, H., Tian, A., Zhang, P., Chen, Y. & Zhu, M. (2009). Solid State Sci. 11, 417–421.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shivaiah, V., Chatterjee, T., Srinivasu, K. & Das, S. K. (2007). Eur. J. Inorg. Chem. pp. 231-234.
- Stoe & Cie (2009). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmBh, Damstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2012). E68, m1206-m1207 [doi:10.1107/S1600536812036367]

Bis[(1,10-phenanthroline- $\kappa^2 N, N'$)bis(triphenylphosphane- κP)copper(I)] nonadecaoxidohexamolybdate(VI)

Fabienne Gschwind and Martin Jansen

S1. Comment

Only very few examples of combinations between Lindquist anions with copper(I) complexes exist. Some examples are the MOF-like honeycomb compounds of (Sha *et al.*, 2009) and the charged directed assemblies of (Hou *et al.*, 2011) which form macrocycles and polymer chains. Another example is the Anderson-type heteropolyanion (Al(OH)₆Mo₆O₁₈) connected to a copper(I)phenanthroline complex which has been investigated by (Shivaiah *et al.*, 2007) and possesess large water-pipes formed by 28 cocrystallized water molecules.

The mixed-ligand copper complex (1,10-phenanthroline)bis(triphenylphosphanecopper(I), $[Cu(phen)(PPh_3)_2]^+$, was cocrystallized with the Lindquist polyanion $[Mo_6O_{19}]^{2-}$ to form the title compound (Fig. 1). The asymmetric unit consists of half a Lindquist anion, and one $[Cu(phen)(PPh_3)_2]^+$ cationic complex.

In the cation there are two intramolecular π - π contacts present: one involving ring N1/C2–C6 (*Cg*(2)) of the phenanthroline moiety and phenyl ring C15–C20 (*Cg*(5)) with a centroid–centroid distance of 3.7272 (18) Å; the other involves ring C5–C10 (*Cg*(4)) of the phenanthroline moiety and the same phenyl ring C15–C20 (*Cg*(5)) with a centroid-centroid distance of 3.617 (2) Å.

In the crystal, each $[Cu(phen)(PPh_3)_2]^+$ cation connects *via* C—H···O hydrogen bonds (Table 1 and Fig. 2) to neighbouring Linquist anions, $[Mo_6O_{19}]^2$, to form a two-dimensional hydrogen bonded network lying in the *ab* plane.

These networks are linked *via* C—H··· π interactions to form a densely packed three-dimensional structure (Table 1).

The polyoxoanion $[Mo_6O_{19}]^{2-}$ is built from six distorted MoO₆ octahedra sharing common edges and one common vertex at the central O atom, and has crystallographic *m*3*m* (Oh) symmetry (Jaypal *et al.*, 2010; Rheingold *et al.*, 1993). The commercially available complex (1,10-phenanthroline)bis(triphenylphosphanecopper(I), $[Cu(phen)(PPh_3)_2]^+$, was first characterized by McMillin *et al.*, ((1985). In our case the coordination geometry (distorted tetrahedral) and the average Cu—N [2.098 (2) Å] and Cu—P [2.2599 (4) Å] distances fit very well to the values for the free complexes [Cu —N 2.075 Å and Cu—P 2.258 Å]. This shows that the building blocks retain their original conformations (Gruber & Jansen, 2011).

S2. Experimental

The polyoxomolybdate $[NBu_4]_2[Mo_6O_{19}]$ was prepared following the synthetic procedure of tetrabutylammonium hexatungstate, replacing sodium tungstate with sodium molybdate (Kemperer & Silavwe, 2007). The title compound was prepared by mixing 0.24 g of (1,10- phenanthroline)bis(triphenylphosphanecopper(I) and the 0.2 g polymolybdate dissolved in a 1:1 mixture of acetonitrile (15 ml) and methanol (15 ml), and stirred over–night. The reaction-solution was overlayered with diethylether. Green crystals, suitable for X-ray diffraction analysis, grew after a few days at the interface of the solvents.

S3. Refinement

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å with $U_{iso}(H) = 1.2U_{eq}$ (parent C-atom).

Figure 1

A view of the molecular structure of the title compound, with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (a) -x + 1, -y + 1, -z + 1.

Figure 2

A view along the *x*-axis of the crystal packing of the title compound.

Bis[(1,10-phenanthroline- $\kappa^2 N, N'$)bis(triphenylphosphane- κP)copper(I)] nonadecaoxidohexamolybdate(VI)

Z = 1

F(000) = 1202

 $\theta = 1.3 - 26.7^{\circ}$

 $\mu = 1.40 \text{ mm}^{-1}$

T = 298 K

Block, green

 $R_{\rm int} = 0.024$

 $h = -14 \rightarrow 14$ $k = -17 \rightarrow 17$ $l = -19 \rightarrow 20$

 $0.3 \times 0.2 \times 0.1 \text{ mm}$

22882 measured reflections 9593 independent reflections 7714 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 26.7^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$

 $D_{\rm x} = 1.765 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 22955 reflections

Crystal data

 $[Cu(C_{12}H_8N_2)(C_{18}H_{15}P)_2]_2[Mo_6O_{19}]$ $M_r = 2416.23$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 11.287 (2) Å b = 13.572 (3) Å c = 16.307 (3) Å a = 109.03 (3)° $\beta = 102.98$ (3)° $\gamma = 93.93$ (3)° V = 2273.7 (8) Å³

Data collection

Stoe IPDS 2
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 6.67 pixels mm ⁻¹
ω and φ scans
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2009)
$T_{\min} = 0.818, \ T_{\max} = 0.908$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.026$	Hydrogen site location: inferred from
$wR(F^2) = 0.063$	neighbouring sites
S = 0.86	H-atom parameters constrained
9593 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0449P)^2]$
592 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.77376 (18)	0.75215 (17)	0.33346 (13)	0.0316 (4)
C2	0.7543 (2)	0.8190 (2)	0.40689 (18)	0.0395 (6)
H2	0.7061	0.8704	0.4011	0.047*

C3	0.8023 (3)	0.8165 (3)	0.49267 (18)	0.0475 (7)
H3	0.7852	0.8646	0.5424	0.057*
C4	0.8742 (3)	0.7429 (3)	0.50257 (19)	0.0496 (7)
H4	0.9069	0.7403	0.5594	0.060*
C5	0.8988 (2)	0.6712 (2)	0.42729 (18)	0.0392 (6)
C6	0.8446 (2)	0.6764 (2)	0.34301 (16)	0.0306 (5)
C7	0.9768 (3)	0.5924 (3)	0.4315 (2)	0.0490 (7)
H7	1.0152	0.5893	0.4872	0.059*
C8	0.9951 (2)	0.5240 (3)	0.3575 (2)	0.0478 (7)
H8	1.0459	0.4740	0.3627	0.057*
C9	0.9388 (2)	0.5253 (2)	0.27000 (19)	0.0371 (6)
C10	0.86382 (19)	0.60291 (19)	0.26322 (17)	0.0305 (5)
N2	0.81050 (17)	0.61224 (16)	0.18323 (13)	0.0310 (4)
C12	0.8292 (2)	0.5449 (2)	0.10935 (18)	0.0394 (6)
H12	0.7927	0.5507	0.0543	0.047*
C13	0.9012 (3)	0.4656 (2)	0.1106 (2)	0.0480 (7)
H13	0.9120	0.4195	0.0573	0.058*
C14	0.9558 (2)	0.4563 (2)	0.1909 (2)	0.0473 (7)
H14	1.0042	0.4038	0.1925	0.057*
C15	1.0301 (2)	0.85331 (19)	0.29914 (16)	0.0294 (5)
C16	1.0508 (2)	0.9196 (2)	0.38800 (18)	0.0382 (6)
H16	1.0101	0.9778	0.4020	0.046*
C17	1.1321 (3)	0.8991 (3)	0.45586 (18)	0.0459 (7)
H17	1.1453	0.9434	0.5153	0.055*
C18	1.1938 (2)	0.8131 (3)	0.4357 (2)	0.0463 (7)
H18	1.2478	0.7995	0.4815	0.056*
C19	1.1749 (2)	0.7481 (2)	0.3481 (2)	0.0430 (6)
H19	1.2173	0.6909	0.3344	0.052*
C20	1.0929 (2)	0.7674 (2)	0.28012 (17)	0.0351 (5)
H20	1.0796	0.7223	0.2210	0.042*
C21	0.9724 (2)	0.8439 (2)	0.11557 (17)	0.0358 (5)
C22	1.0965 (3)	0.8739 (3)	0.12552 (19)	0.0454 (7)
H22	1.1505	0.8999	0.1826	0.054*
C23	1.1404 (3)	0.8655 (3)	0.0515 (2)	0.0592 (8)
H23	1.2236	0.8861	0.0589	0.071*
C24	1.0614 (4)	0.8270 (3)	-0.0332(2)	0.0657 (10)
H24	1.0911	0.8218	-0.0830	0.079*
C25	0.9396 (4)	0.7963 (3)	-0.0442(2)	0.0625 (9)
H25	0.8862	0.7709	-0.1016	0.075*
C26	0.8947 (3)	0.8027 (3)	0.02979 (19)	0.0475 (7)
H26	0.8121	0.7791	0.0215	0.057*
C27	0.8914 (2)	1.0043 (2)	0.24709 (16)	0.0331 (5)
C28	0.9738 (3)	1.0803 (2)	0.2400 (2)	0.0453 (6)
H28	1.0402	1.0607	0.2168	0.054*
C33	0.4973 (2)	0.7708 (2)	0.03642 (16)	0.0320 (5)
C29	0.9572 (3)	1.1848 (2)	0.2673 (2)	0.0566 (8)
H29	1.0123	1.2349	0.2618	0.068*
C34	0.5743 (3)	0.8412 (2)	0.01921 (19)	0.0441 (6)

H34	0.6434	0.8814	0.0640	0.053*
C35	0.5489 (3)	0.8519 (3)	-0.0645(2)	0.0618 (9)
H35	0.6004	0.8998	-0.0755	0.074*
C30	0.8613 (3)	1.2152 (3)	0.3019 (2)	0.0606 (9)
H30A	0.8511	1.2858	0.3200	0.073*
C36	0.4480 (3)	0.7919 (3)	-0.1310 (2)	0.0676 (10)
H36	0.4318	0.7982	-0.1873	0.081*
C31	0.7794 (3)	1.1418 (3)	0.3103 (2)	0.0589 (9)
H31A	0.7145	1.1629	0.3349	0.071*
C32	0.7935 (3)	1.0358 (2)	0.28200 (19)	0.0442 (6)
H32	0.7369	0.9860	0.2866	0.053*
C37	0.3714 (3)	0.7229 (3)	-0.1144 (2)	0.0648 (10)
H37	0.3025	0.6828	-0.1594	0.078*
C38	0.3955 (3)	0.7122 (3)	-0.03103 (18)	0.0477 (7)
H38	0.3426	0.6649	-0.0204	0.057*
C39	0.4811 (2)	0.8713 (2)	0.21782 (16)	0.0307 (5)
C40	0.4625 (3)	0.9616 (2)	0.19788 (19)	0.0430 (6)
H40	0.4746	0.9656	0.1444	0.052*
C41	0.4265 (3)	1.0456 (2)	0.2562 (2)	0.0556 (8)
H41	0.4155	1.1060	0.2420	0.067*
C42	0.4066 (3)	1.0410 (3)	0.3349 (2)	0.0550 (8)
H42	0.3809	1.0973	0.3736	0.066*
C43	0.4250 (3)	0.9524 (3)	0.3559 (2)	0.0568 (8)
H43	0.4129	0.9492	0.4096	0.068*
C44	0.4614 (3)	0.8676 (2)	0.29817 (18)	0.0426 (6)
H44	0.4728	0.8078	0.3131	0.051*
C45	0.4334 (2)	0.6472 (2)	0.14044 (16)	0.0317 (5)
C46	0.3092 (2)	0.6507 (2)	0.1356 (2)	0.0431 (6)
H46	0.2764	0.7109	0.1327	0.052*
C47	0.2343 (3)	0.5654 (3)	0.1349 (2)	0.0532 (8)
H47	0.1514	0.5685	0.1316	0.064*
C48	0.2821 (3)	0.4760 (3)	0.1391 (2)	0.0565 (8)
H48	0.2317	0.4190	0.1394	0.068*
C49	0.4036 (3)	0.4711 (3)	0.1428 (3)	0.0678 (10)
H49	0.4357	0.4104	0.1449	0.081*
C50	0.4790 (3)	0.5563 (2)	0.1436 (2)	0.0525 (8)
H50	0.5616	0.5523	0.1463	0.063*
01	0.38560 (15)	0.66417 (14)	0.55476 (12)	0.0365 (4)
O2	0.48099 (18)	0.77098 (16)	0.45498 (14)	0.0468 (5)
O3	0.35276 (15)	0.56076 (15)	0.38050 (12)	0.0370 (4)
O4	0.53226 (16)	0.60361 (15)	0.67428 (11)	0.0366 (4)
05	0.25802 (14)	0.46973 (14)	0.47725 (12)	0.0352 (4)
O6	0.62731 (15)	0.69308 (14)	0.57680 (12)	0.0352 (4)
07	0.20889 (17)	0.35874 (17)	0.28887 (13)	0.0474 (5)
08	0.27708 (17)	0.57790 (17)	0.66223 (14)	0.0477 (5)
O10	0.59376 (15)	0.58943 (14)	0.40197 (12)	0.0361 (4)
Mo1	0.332353 (18)	0.417707 (18)	0.376775 (14)	0.03313 (6)
Mo2	0.488590 (19)	0.656614 (17)	0.473466 (15)	0.03361 (6)

Mo3	0.368576 (19)	0.544685 (18)	0.592333 (15)	0.03407 (6)
Cul	0.73671 (2)	0.75378 (2)	0.202353 (19)	0.02976 (7)
P1	0.90530 (5)	0.86401 (5)	0.21108 (4)	0.02878 (13)
P2	0.53840 (5)	0.75954 (5)	0.14762 (4)	0.02702 (12)
O9	0.5000	0.5000	0.5000	0.0240 (4)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0313 (10)	0.0342 (11)	0.0294 (10)	0.0039 (8)	0.0077 (8)	0.0118 (9)
C2	0.0360 (13)	0.0427 (16)	0.0377 (14)	0.0036 (11)	0.0126 (11)	0.0099 (12)
C3	0.0464 (15)	0.0571 (19)	0.0314 (13)	-0.0081 (14)	0.0135 (11)	0.0066 (13)
C4	0.0484 (16)	0.066 (2)	0.0330 (14)	-0.0054 (14)	0.0029 (12)	0.0240 (15)
C5	0.0351 (12)	0.0449 (16)	0.0383 (14)	-0.0057 (11)	0.0027 (10)	0.0224 (13)
C6	0.0249 (10)	0.0354 (13)	0.0345 (12)	0.0011 (9)	0.0050 (9)	0.0188 (11)
C7	0.0402 (14)	0.0559 (19)	0.0551 (18)	0.0020 (13)	-0.0038 (13)	0.0369 (16)
C8	0.0338 (13)	0.0505 (18)	0.069 (2)	0.0085 (12)	0.0044 (13)	0.0400 (17)
C9	0.0257 (11)	0.0339 (14)	0.0553 (16)	0.0032 (10)	0.0071 (10)	0.0230 (13)
C10	0.0230 (10)	0.0308 (13)	0.0409 (13)	0.0021 (9)	0.0058 (9)	0.0190 (11)
N2	0.0303 (10)	0.0294 (11)	0.0328 (10)	0.0066 (8)	0.0059 (8)	0.0115 (9)
C12	0.0384 (13)	0.0372 (15)	0.0368 (14)	0.0061 (11)	0.0071 (11)	0.0074 (12)
C13	0.0445 (15)	0.0383 (16)	0.0558 (18)	0.0094 (12)	0.0172 (13)	0.0060 (14)
C14	0.0347 (13)	0.0339 (15)	0.074 (2)	0.0113 (11)	0.0147 (13)	0.0190 (15)
C15	0.0231 (10)	0.0316 (13)	0.0339 (12)	0.0021 (9)	0.0070 (9)	0.0127 (11)
C16	0.0356 (12)	0.0372 (15)	0.0393 (14)	0.0118 (11)	0.0089 (11)	0.0094 (12)
C17	0.0436 (15)	0.0550 (19)	0.0315 (13)	0.0105 (13)	0.0037 (11)	0.0089 (13)
C18	0.0335 (13)	0.064 (2)	0.0471 (16)	0.0132 (12)	0.0036 (11)	0.0301 (15)
C19	0.0340 (13)	0.0459 (16)	0.0530 (17)	0.0149 (11)	0.0117 (12)	0.0204 (14)
C20	0.0316 (12)	0.0344 (14)	0.0368 (13)	0.0078 (10)	0.0087 (10)	0.0085 (11)
C21	0.0407 (13)	0.0346 (14)	0.0337 (13)	0.0088 (11)	0.0108 (10)	0.0128 (11)
C22	0.0414 (14)	0.0573 (19)	0.0399 (14)	0.0070 (13)	0.0126 (11)	0.0191 (14)
C23	0.0530 (17)	0.075 (2)	0.060 (2)	0.0114 (16)	0.0291 (15)	0.0281 (18)
C24	0.082 (2)	0.080 (3)	0.0453 (18)	0.017 (2)	0.0322 (17)	0.0247 (18)
C25	0.080 (2)	0.069 (2)	0.0313 (15)	0.0105 (18)	0.0099 (15)	0.0108 (16)
C26	0.0475 (15)	0.0504 (18)	0.0377 (14)	0.0052 (13)	0.0076 (12)	0.0093 (13)
C27	0.0358 (12)	0.0299 (13)	0.0304 (12)	0.0066 (10)	0.0017 (10)	0.0110 (11)
C28	0.0528 (16)	0.0360 (15)	0.0476 (16)	0.0035 (12)	0.0133 (13)	0.0161 (13)
C33	0.0321 (11)	0.0363 (14)	0.0312 (12)	0.0111 (10)	0.0099 (9)	0.0141 (11)
C29	0.078 (2)	0.0342 (16)	0.0512 (18)	-0.0013 (15)	0.0015 (16)	0.0190 (15)
C34	0.0427 (14)	0.0526 (18)	0.0419 (15)	0.0028 (12)	0.0075 (11)	0.0262 (14)
C35	0.064 (2)	0.081 (3)	0.0583 (19)	0.0035 (17)	0.0147 (16)	0.0494 (19)
C30	0.076 (2)	0.0313 (16)	0.058 (2)	0.0152 (15)	-0.0122 (17)	0.0125 (15)
C36	0.069 (2)	0.105 (3)	0.0437 (17)	0.019 (2)	0.0097 (15)	0.047 (2)
C31	0.0549 (18)	0.053 (2)	0.0558 (19)	0.0285 (16)	0.0021 (15)	0.0059 (16)
C32	0.0404 (14)	0.0419 (16)	0.0456 (15)	0.0120 (12)	0.0062 (12)	0.0117 (13)
C37	0.0557 (18)	0.096 (3)	0.0355 (15)	-0.0036 (18)	-0.0028 (13)	0.0262 (18)
C38	0.0447 (15)	0.060 (2)	0.0344 (14)	-0.0022 (13)	0.0054 (11)	0.0168 (14)
C39	0.0290 (11)	0.0315 (13)	0.0311 (12)	0.0033 (9)	0.0053 (9)	0.0123 (11)

C40	0.0542 (16)	0.0393 (16)	0.0455 (15)	0.0148 (12)	0.0218 (13)	0.0207 (13)
C41	0.072 (2)	0.0363 (17)	0.072 (2)	0.0204 (15)	0.0349 (17)	0.0246 (16)
C42	0.0656 (19)	0.0402 (17)	0.0587 (19)	0.0100 (14)	0.0318 (16)	0.0058 (15)
C43	0.077 (2)	0.053 (2)	0.0420 (16)	0.0074 (16)	0.0287 (15)	0.0110 (15)
C44	0.0550 (16)	0.0395 (16)	0.0379 (14)	0.0064 (12)	0.0153 (12)	0.0176 (13)
C45	0.0329 (11)	0.0312 (13)	0.0314 (12)	0.0030 (9)	0.0083 (9)	0.0119 (11)
C46	0.0391 (13)	0.0343 (15)	0.0542 (17)	0.0035 (11)	0.0169 (12)	0.0107 (13)
C47	0.0460 (16)	0.0453 (18)	0.0620 (19)	-0.0043 (13)	0.0279 (14)	0.0039 (15)
C48	0.071 (2)	0.0468 (19)	0.0502 (17)	-0.0146 (15)	0.0235 (15)	0.0147 (15)
C49	0.071 (2)	0.0416 (19)	0.099 (3)	0.0047 (16)	0.015 (2)	0.041 (2)
C50	0.0444 (15)	0.0394 (17)	0.078 (2)	0.0079 (12)	0.0130 (15)	0.0285 (16)
01	0.0363 (9)	0.0307 (9)	0.0466 (10)	0.0124 (7)	0.0155 (8)	0.0146 (8)
O2	0.0502 (11)	0.0387 (11)	0.0603 (12)	0.0110 (9)	0.0116 (9)	0.0302 (10)
03	0.0332 (9)	0.0413 (10)	0.0395 (9)	0.0089 (7)	0.0026 (7)	0.0220 (9)
O4	0.0388 (9)	0.0391 (10)	0.0303 (9)	0.0038 (8)	0.0095 (7)	0.0101 (8)
05	0.0237 (8)	0.0408 (10)	0.0424 (10)	0.0056 (7)	0.0087 (7)	0.0161 (8)
06	0.0347 (9)	0.0287 (9)	0.0401 (10)	0.0018 (7)	0.0059 (7)	0.0125 (8)
07	0.0355 (9)	0.0545 (13)	0.0433 (11)	-0.0015 (8)	-0.0040 (8)	0.0168 (10)
08	0.0446 (10)	0.0517 (13)	0.0515 (11)	0.0103 (9)	0.0255 (9)	0.0150 (10)
O10	0.0360 (9)	0.0391 (10)	0.0399 (10)	0.0061 (7)	0.0134 (7)	0.0202 (8)
Mo1	0.02695 (10)	0.03652 (13)	0.03166 (11)	0.00235 (8)	-0.00018 (8)	0.01217 (9)
Mo2	0.03471 (11)	0.02880 (12)	0.04289 (12)	0.00829 (8)	0.00839 (9)	0.02038 (10)
Mo3	0.03162 (11)	0.03736 (13)	0.03706 (12)	0.00855 (9)	0.01645 (9)	0.01242 (10)
Cu1	0.02732 (14)	0.03106 (16)	0.03130 (15)	0.00607 (11)	0.00420 (11)	0.01348 (13)
P1	0.0275 (3)	0.0278 (3)	0.0308 (3)	0.0047 (2)	0.0066 (2)	0.0107 (3)
P2	0.0253 (3)	0.0291 (3)	0.0286 (3)	0.0045 (2)	0.0053 (2)	0.0138 (3)
09	0.0214 (10)	0.0259 (12)	0.0260 (11)	0.0051 (8)	0.0051 (8)	0.0112 (9)

Geometric parameters (Å, °)

N1—C2	1.320 (3)	C35—C36	1.371 (5)
N1—C6	1.372 (3)	С35—Н35	0.9300
N1—Cu1	2.092 (2)	C30—C31	1.372 (5)
С2—С3	1.394 (4)	C30—H30A	0.9300
С2—Н2	0.9300	C36—C37	1.362 (5)
C3—C4	1.356 (5)	С36—Н36	0.9300
С3—Н3	0.9300	C31—C32	1.393 (4)
C4—C5	1.394 (4)	C31—H31A	0.9300
C4—H4	0.9300	С32—Н32	0.9300
С5—С6	1.399 (3)	C37—C38	1.382 (4)
С5—С7	1.440 (4)	С37—Н37	0.9300
C6—C10	1.430 (4)	C38—H38	0.9300
С7—С8	1.330 (5)	C39—C40	1.384 (4)
С7—Н7	0.9300	C39—C44	1.393 (4)
С8—С9	1.431 (4)	C39—P2	1.834 (3)
С8—Н8	0.9300	C40—C41	1.379 (4)
C9—C14	1.388 (4)	C40—H40	0.9300
C9—C10	1.412 (3)	C41—C42	1.373 (5)

C10—N2	1.358 (3)	C41—H41	0.9300
N2—C12	1.324 (3)	C42—C43	1.369 (5)
N2—Cu1	2.104 (2)	C42—H42	0.9300
C12—C13	1.395 (4)	C43—C44	1.382 (4)
С12—Н12	0.9300	C43—H43	0.9300
C13 - C14	1 366 (4)	C44—H44	0.9300
C13 H13	0.0300	C_{45} C_{50}	1.381(4)
	0.9300	C45 C46	1.301(4)
C14—H14	0.9300	C45 - C40	1.391(4)
C15—C16	1.390 (4)	C45—P2	1.821 (3)
C15—C20	1.391 (3)	C46—C47	1.382 (4)
CI5—PI	1.823 (2)	C46—H46	0.9300
C16—C17	1.387 (4)	C47—C48	1.377 (5)
C16—H16	0.9300	C47—H47	0.9300
C17—C18	1.385 (4)	C48—C49	1.366 (5)
C17—H17	0.9300	C48—H48	0.9300
C18—C19	1.371 (4)	C49—C50	1.383 (4)
C18—H18	0.9300	C49—H49	0.9300
C19—C20	1.385 (4)	С50—Н50	0.9300
С19—Н19	0.9300	O1—Mo3	1.9236 (18)
C20—H20	0.9300	O1—Mo2	1.9336 (18)
C21—C26	1.382 (4)	O2—Mo2	1.6791 (18)
C21—C22	1.389 (4)	O3—Mo1	1.9189 (18)
C21—P1	1.831 (3)	O3—Mo2	1.933 (2)
C_{22} — C_{23}	1.380 (4)	04—Mo1 ⁱ	1.8939 (18)
С22—Н22	0.9300	Q4—Mo3	1.9571 (19)
C23—C24	1.374 (5)	05—Mo3	1.9086 (19)
C23—H23	0.9300	05—Mol	1 9574 (18)
C_{24} C_{25} C_{24} C_{25}	1 363 (5)	06-Mo2	1.9238 (18)
C24 025	0.9300	$06-M01^{i}$	1.9293 (18)
C_{24} C_{25} C_{26}	1 301 (1)	07 Mol	1.6840 (10)
$C_{25} = C_{20}$	0.0300	$O^{\circ} Mo^{\circ}$	1.0049(19)
C25—H26	0.9300	$O_{10} M_{2}$	1.0311(19) 1.0174(10)
C20—H20	1,294 (4)	O10 - Mo2	1.91/4(19)
$C_2 / - C_{32}$	1.384 (4)	010—M03 ⁻	1.9238 (18)
$C_2/-C_{28}$	1.392 (4)		1.8939 (18)
C27—P1	1.830 (3)	Mol—O6 ¹	1.9293 (18)
C28—C29	1.381 (4)	Mo1	2.3248 (11)
C28—H28	0.9300	Mo2	2.3096 (5)
C33—C38	1.378 (4)	Mo3—O10 ⁱ	1.9238 (18)
C33—C34	1.385 (4)	Mo3—O9	2.3165 (7)
C33—P2	1.827 (2)	Cu1—P2	2.2327 (9)
C29—C30	1.359 (5)	Cu1—P1	2.2866 (10)
С29—Н29	0.9300	O9—Mo2 ⁱ	2.3096 (5)
C34—C35	1.388 (4)	O9—Mo3 ⁱ	2.3165 (7)
С34—Н34	0.9300	O9—Mo1 ⁱ	2.3248 (11)
C2—N1—C6	117.6 (2)	C41—C40—C39	120.9 (3)
C2—N1—Cu1	130.46 (18)	C41—C40—H40	119.5
C6—N1—Cu1	111.25 (16)	С39—С40—Н40	119.5

N1—C2—C3	123.5 (3)	C42—C41—C40	120.6 (3)
N1—C2—H2	118.3	C42—C41—H41	119.7
C3—C2—H2	118.3	C40—C41—H41	119.7
C4—C3—C2	119.1 (3)	C43—C42—C41	119.3 (3)
С4—С3—Н3	120.4	C43—C42—H42	120.4
C2—C3—H3	120.4	C41 - C42 - H42	120.4
$C_{2} = C_{3} = C_{4} = C_{5}$	119.7 (3)	C42 - C43 - C44	120.1 120.8(3)
$C_3 - C_4 - H_4$	120.1	C_{42} C_{43} H_{43}	119.6
$C_5 C_4 H_4$	120.1	C44 $C43$ $H43$	119.6
C_{4} C_{5} C_{6}	120.1 1180(3)	$C_{44} = C_{43} = 1143$	119.0 120.5(3)
$C_{4} = C_{5} = C_{7}$	110.0(3)	$C_{43} = C_{44} = C_{54}$	120.5 (5)
C4 - C3 - C7	125.0(5) 118.2(2)	$C_{43} = C_{44} = H_{44}$	119.0
$C_0 - C_3 - C_7$	118.5 (3)	C39—C44—H44	119.8
NI	122.0 (2)	$C_{50} = C_{45} = C_{46}$	118.3 (2)
NI-C6-C10	117.5 (2)	C50—C45—P2	119.1 (2)
C5—C6—C10	120.5 (2)	C46—C45—P2	122.5 (2)
C8—C7—C5	121.4 (3)	C47—C46—C45	120.5 (3)
С8—С7—Н7	119.3	C47—C46—H46	119.8
С5—С7—Н7	119.3	C45—C46—H46	119.8
C7—C8—C9	121.8 (3)	C48—C47—C46	120.2 (3)
С7—С8—Н8	119.1	C48—C47—H47	119.9
С9—С8—Н8	119.1	C46—C47—H47	119.9
C14—C9—C10	117.5 (2)	C49—C48—C47	119.9 (3)
C14—C9—C8	124.0 (3)	C49—C48—H48	120.1
C10—C9—C8	118.5 (3)	C47—C48—H48	120.1
N2—C10—C9	122.4 (2)	C48—C49—C50	120.2 (3)
N2—C10—C6	118.1 (2)	C48—C49—H49	119.9
C9—C10—C6	119.5 (2)	С50—С49—Н49	119.9
C12—N2—C10	118.2 (2)	C45—C50—C49	121.0 (3)
C12—N2—Cu1	129.71 (17)	С45—С50—Н50	119.5
C10—N2—Cu1	111.05 (16)	С49—С50—Н50	119.5
N_{2} - C12 - C13	122.8 (3)	$M_03 = 01 = M_02$	116 14 (9)
N2-C12-H12	118.6	Mo1 - O3 - Mo2	116 61 (8)
C13 - C12 - H12	118.6	$Mo1^{i}$ $O4$ $Mo3$	116.64 (9)
C_{14} C_{13} C_{12} C_{12}	110.0	Mo3Mo1	116.04(9)
$C_{14} C_{13} C_{12}$	120.3	$Mo2 = 06 = Mo1^{i}$	116.49 (0)
$C_{12} = C_{13} = H_{13}$	120.3	$M_02 = 010 M_03^{i}$	110.49(9)
$C_{12} = C_{13} = M_{13}$	120.3 110.9(2)	M02 - 010 - M03	110.02(9)
$C_{13} = C_{14} = C_{9}$	119.0 (5)	07 Mc1 Q2	103.93(9) 102.27(0)
С13—С14—Н14	120.1	0/-M01-03	105.57 (9)
C_{2} C_{14} H_{14}	120.1	04 - M01 - 03	88.49 (8)
C16-C15-C20	118.8 (2)	$0/-Mol-06^{\circ}$	103.46 (9)
C16—C15—P1	121.08 (19)	O4'—Mo1—O6'	87.56 (8)
C20—C15—P1	119.35 (19)	O3—Mo1—O6 ¹	153.05 (7)
C17—C16—C15	120.0 (2)	07—Mo1—O5	102.67 (9)
C17—C16—H16	120.0	O4 ¹ —Mo1—O5	153.37 (7)
C15—C16—H16	120.0	O3—Mo1—O5	86.14 (8)
C18—C17—C16	120.4 (3)	O6 ⁱ —Mo1—O5	85.56 (8)
C18—C17—H17	119.8	O7—Mo1—O9	178.81 (7)
С16—С17—Н17	119.8	O4 ⁱ —Mo1—O9	77.24 (6)

a a a			
C19—C18—C17	119.9 (2)	O3—Mo1—O9	76.61 (6)
C19—C18—H18	120.1	O6 ⁱ —Mo1—O9	76.52 (6)
C17—C18—H18	120.1	O5—Mo1—O9	76.15 (5)
C18—C19—C20	120.0 (3)	O2—Mo2—O10	103.27 (9)
C18—C19—H19	120.0	O2—Mo2—O6	102.58 (9)
C20—C19—H19	120.0	O10—Mo2—O6	87.67 (8)
C19—C20—C15	120.9 (2)	O2—Mo2—O3	103.70 (9)
C19—C20—H20	119.6	Q10—Mo2—Q3	86.88 (8)
C15—C20—H20	119.6	$06 - M_0 - 03$	153 71 (7)
$C_{26}^{}C_{21}^{}C_{22}^{}$	119.0 118.5(3)	$0^{2} - Mo^{2} - 0^{1}$	103.00(9)
$C_{20} C_{21} C_{22}$	110.5(5) 118.4(2)	$O_1 O_1 O_2 O_1$	103.00(9) 153.73(7)
$C_{20} = C_{21} = 11$	110.4(2)	$0.0 - M_0 2 - 0.1$	155.75(7)
	123.0(2)	00 - 102 - 01	80.97 (8)
$C_{23} = C_{22} = C_{21}$	120.7 (3)	03—M02—01	86.63 (8)
C23—C22—H22	119.7	O2—Mo2—O9	1/9.56 (8)
C21—C22—H22	119.7	O10—Mo2—O9	76.86 (6)
C24—C23—C22	120.1 (3)	O6—Mo2—O9	77.00 (6)
С24—С23—Н23	119.9	O3—Mo2—O9	76.72 (6)
С22—С23—Н23	119.9	O1—Mo2—O9	76.87 (6)
C25—C24—C23	120.0 (3)	O8—Mo3—O5	104.52 (9)
C25—C24—H24	120.0	O8—Mo3—O1	103.60 (9)
C23—C24—H24	120.0	O5—Mo3—O1	88.27 (8)
C24—C25—C26	120.4 (3)	O8—Mo3—O10 ⁱ	102.87 (9)
C24—C25—H25	119.8	O5—Mo3—O10 ⁱ	87.76 (8)
C26—C25—H25	119.8	$01 - M_0 - 010^i$	153 39 (7)
$C_{21} - C_{26} - C_{25}$	120.3 (3)	08 - Mo3 - 04	103.05(7) 101.95(9)
$C_{21} = C_{26} = H_{26}$	119.8	05 - Mo3 - 04	153,53(7)
C_{25} C_{26} H_{26}	119.8	01 Mo3 04	85.03 (8)
$C_{23}^{23} = C_{20}^{23} = \Pi_{20}^{23}$	119.0 119.7(2)	$O10^{i}$ Mo3 $O4$	85.00 (8)
$C_{32} = C_{27} = C_{28}$	110.7(3)	010 - 100 - 04	03.99 (0) 178 16 (7)
C_{32} C_{27} P_1	110.3(2)	05 - 103 - 09	170.10(7)
C28—C27—P1	123.0 (2)	03—M03—09	77.25 (5)
C29—C28—C27	120.2 (3)	01—Mo3—09	/6.88 (6)
С29—С28—Н28	119.9	010 Mo309	76.57 (6)
C27—C28—H28	119.9	O4—Mo3—O9	76.28 (6)
C38—C33—C34	118.7 (2)	N1—Cu1—N2	80.24 (8)
C38—C33—P2	123.6 (2)	N1—Cu1—P2	112.06 (6)
C34—C33—P2	117.71 (19)	N2—Cu1—P2	123.26 (6)
C30—C29—C28	120.8 (3)	N1—Cu1—P1	101.36 (7)
С30—С29—Н29	119.6	N2—Cu1—P1	99.82 (6)
С28—С29—Н29	119.6	P2—Cu1—P1	128.31 (3)
C33—C34—C35	120.3 (3)	C15—P1—C27	104.56 (12)
С33—С34—Н34	119.8	C15—P1—C21	103.74 (11)
С35—С34—Н34	119.8	C27—P1—C21	103.67 (12)
C36—C35—C34	120.1 (3)	C15—P1—Cu1	106.58 (8)
C36—C35—H35	120.0	C27 - P1 - Cu1	115 18 (9)
C34—C35—H35	120.0	C_{21} P1 C_{11}	121 40 (9)
C_{20} C_{30} C_{31}	120.0	C_{45} P2 C22	105 64 (12)
C_{2} C_{3} C_{3	120.1 (5)	$C_{45} = 12 - C_{55}$	103.04(12) 102.26(11)
C_{2} C_{3} C_{3	120.0	$C_{4J} = 12 = C_{3J}$	102.20(11) 102.70(11)
UJ1-UJU-UJUA	120.0	UJJ-F2-UJY	105./0(11)

C37—C36—C35	120.0 (3)	C45—P2—Cu1	114.30 (9)
С37—С36—Н36	120.0	C33—P2—Cu1	115.88 (8)
С35—С36—Н36	120.0	C39—P2—Cu1	113.58 (8)
C30—C31—C32	120.0 (3)	Mo2—O9—Mo2 ⁱ	180.0
C30—C31—H31A	120.0	Mo2-09-Mo3 ⁱ	89.91 (3)
С32—С31—Н31А	120.0	Mo2 ⁱ —O9—Mo3 ⁱ	90.09 (3)
C27—C32—C31	120.2 (3)	Mo2—O9—Mo3	90.09 (3)
С27—С32—Н32	119.9	Mo2 ⁱ —O9—Mo3	89.91 (3)
С31—С32—Н32	119.9	Mo3 ⁱ —O9—Mo3	180.0
C36—C37—C38	120.4 (3)	Mo2—O9—Mo1 ⁱ	89.98 (3)
С36—С37—Н37	119.8	Mo2 ⁱ —O9—Mo1 ⁱ	90.02 (3)
С38—С37—Н37	119.8	Mo3 ⁱ —O9—Mo1 ⁱ	90.16 (2)
C33—C38—C37	120.6 (3)	Mo3—O9—Mo1 ⁱ	89.84 (2)
С33—С38—Н38	119.7	Mo2—O9—Mo1	90.02 (3)
С37—С38—Н38	119.7	Mo2 ⁱ —O9—Mo1	89.98 (3)
C40—C39—C44	118.0 (2)	Mo3 ⁱ —O9—Mo1	89.84 (2)
C40—C39—P2	123.7 (2)	Mo3—O9—Mo1	90.16 (2)
C44—C39—P2	118.2 (2)	Mo1 ⁱ —O9—Mo1	180.0
C6—N1—C2—C3	0.3 (4)	C12—N2—Cu1—N1	-179.2 (2)
Cu1—N1—C2—C3	-169.11 (19)	C10—N2—Cu1—N1	-11.55 (15)
N1—C2—C3—C4	0.9 (4)	C12—N2—Cu1—P2	70.7 (2)
C2—C3—C4—C5	-0.1 (4)	C10—N2—Cu1—P2	-121.60 (14)
C3—C4—C5—C6	-1.8 (4)	C12—N2—Cu1—P1	-79.3 (2)
C3—C4—C5—C7	178.2 (3)	C10—N2—Cu1—P1	88.41 (15)
C2—N1—C6—C5	-2.3 (3)	C16—C15—P1—C27	32.1 (2)
Cu1—N1—C6—C5	169.06 (18)	C20-C15-P1-C27	-158.2 (2)
C2-N1-C6-C10	178.9 (2)	C16—C15—P1—C21	140.5 (2)
Cu1—N1—C6—C10	-9.7 (3)	C20-C15-P1-C21	-49.9 (2)
C4—C5—C6—N1	3.1 (4)	C16—C15—P1—Cu1	-90.3 (2)
C7—C5—C6—N1	-176.9 (2)	C20-C15-P1-Cu1	79.3 (2)
C4—C5—C6—C10	-178.2 (2)	C32—C27—P1—C15	-104.8 (2)
C7—C5—C6—C10	1.8 (4)	C28—C27—P1—C15	76.0 (2)
C4—C5—C7—C8	178.3 (3)	C32—C27—P1—C21	146.8 (2)
C6—C5—C7—C8	-1.7 (4)	C28—C27—P1—C21	-32.4 (2)
C5—C7—C8—C9	0.2 (4)	C32—C27—P1—Cu1	11.8 (2)
C7—C8—C9—C14	179.5 (3)	C28—C27—P1—Cu1	-167.43 (19)
C7—C8—C9—C10	1.2 (4)	C26—C21—P1—C15	152.6 (2)
C14—C9—C10—N2	-0.8 (3)	C22—C21—P1—C15	-31.3 (3)
C8—C9—C10—N2	177.6 (2)	C26—C21—P1—C27	-98.4 (2)
C14—C9—C10—C6	-179.4 (2)	C22—C21—P1—C27	77.7 (3)
C8—C9—C10—C6	-1.0 (3)	C26—C21—P1—Cu1	33.1 (3)
N1-C6-C10-N2	-0.3 (3)	C22—C21—P1—Cu1	-150.9 (2)
C5-C6-C10-N2	-179.1 (2)	N1—Cu1—P1—C15	27.33 (11)
N1-C6-C10-C9	178.3 (2)	N2—Cu1—P1—C15	-54.57 (10)
C5-C6-C10-C9	-0.5 (3)	P2—Cu1—P1—C15	157.64 (9)
C9—C10—N2—C12	0.8 (3)	N1—Cu1—P1—C27	-88.12 (11)
C6—C10—N2—C12	179.4 (2)	N2—Cu1—P1—C27	-170.03 (10)

C9-C10-N2-Cu1	-168.51 (18)	P2—Cu1—P1—C27	42.18 (9)
C6—C10—N2—Cu1	10.1 (2)	N1—Cu1—P1—C21	145.51 (11)
C10—N2—C12—C13	-0.2 (4)	N2—Cu1—P1—C21	63.60 (12)
Cu1—N2—C12—C13	166.7 (2)	P2—Cu1—P1—C21	-84.19 (11)
N2-C12-C13-C14	-0.2 (4)	C50—C45—P2—C33	110.7 (2)
C12—C13—C14—C9	0.2 (4)	C46—C45—P2—C33	-72.0(2)
C10-C9-C14-C13	0.4 (4)	C50—C45—P2—C39	-141.0(2)
C8—C9—C14—C13	-177.9 (3)	C46—C45—P2—C39	36.2 (2)
C20—C15—C16—C17	-0.5 (4)	C50—C45—P2—Cu1	-17.9(3)
P1-C15-C16-C17	169.2 (2)	C46—C45—P2—Cu1	159.4 (2)
C15—C16—C17—C18	0.4 (4)	C38—C33—P2—C45	7.8 (3)
C16—C17—C18—C19	0.3 (5)	C34-C33-P2-C45	-171.1(2)
C17 - C18 - C19 - C20	-11(4)	C_{38} C_{33} P_{2} C_{39}	-993(3)
C18 - C19 - C20 - C15	10(4)	C_{34} C_{33} P_{2} C_{39}	817(2)
C_{16} C_{15} C_{20} C_{19} C_{19}	-0.2(4)	C_{38} C_{33} P_{2} C_{11}	1355(2)
P1-C15-C20-C19	-1701(2)	C_{34} C_{33} P_{2} C_{11}	-434(2)
$C_{26} = C_{21} = C_{22} = C_{23}$	18(5)	C40-C39-P2-C45	-133.6(2)
$P_1 = C_{21} = C_{22} = C_{23}$	-1742(3)	C44 - C39 - P2 - C45	133.0(2)
C_{21} C_{22} C_{23} C_{24}	-0.2(5)	C40-C39-P2-C33	-239(2)
$C_{21} = C_{22} = C_{23} = C_{24} = C_{25}$	-0.4(6)	C44 - C39 - P2 - C33	159.7(2)
$C_{22} = C_{23} = C_{24} = C_{25} = C_{26}$	-0.7(6)	C40-C39-P2-Cu1	102.7(2)
$C_{23}^{23} = C_{24}^{24} = C_{25}^{23} = C_{26}^{20}$	-29(5)	C44 - C39 - P2 - Cu1	-737(2)
$P_1 = C_{21} = C_{20} = C_{25}$	2.9(3)	N1 Cu1 P2 C45	-60.99(11)
11 - 021 - 020 - 025	1/3.3(3)	N1 - Cu1 - 12 - C45 N2 - Cu1 - P2 - C45	31.70(12)
$C_{24} = C_{23} = C_{20} = C_{21}$	2.4(3)	$R_2 = Cu_1 = r_2 = C_{45}$	31.70(12) 172.70(0)
$C_{32} - C_{27} - C_{28} - C_{29}$	0.1(4)	11 - Cu1 - 12 - C43	172.79(9) 175.78(11)
$r_1 = c_2 / = c_{20} = c_{20} = c_{20}$	1/9.1(2)	N1 - Cu1 - F2 - C33	1/3.70(11)
$C_{27} = C_{28} = C_{29} = C_{30}$	0.3(3)	$N_2 = Cu1 = P_2 = C_{33}$	-91.35(12)
$C_{38} = C_{33} = C_{34} = C_{35}$	-0.1(5)	P1 - Cu1 - P2 - C33	49.36 (10)
$P_2 = C_{33} = C_{34} = C_{35}$	1/9.0(3)	N1 - Cu1 - P2 - C39	55.85 (11)
$C_{33} = C_{34} = C_{35} = C_{36}$	-0.7(5)	$N_2 = Cu1 = P_2 = C_{39}$	148.54 (11)
$C_{28} = C_{29} = C_{30} = C_{31}$	0.1 (5)	P1 = Cu1 = P2 = C39	-70.38(9)
$C_{34} = C_{35} = C_{36} = C_{37}$	1.1 (6)	$02-M02-09-M02^{1}$	-/(100)
$C_{29} = C_{30} = C_{31} = C_{32}$	-1.0(5)	$010 - Mo2 - 09 - Mo2^{4}$	100 (100)
$C_{28} = C_{27} = C_{32} = C_{31}$	-0.8(4)	$06-M02-09-M02^{1}$	9 (100)
P1 - C27 - C32 - C31	179.9 (2)	$O_3 - M_0 2 - O_9 - M_0 2^{1}$	-170(100)
C30—C31—C32—C27	1.4 (4)	01—Mo2—09—Mo2 ⁴	-81 (100)
C35—C36—C37—C38	-0.7 (6)	O2—Mo2—O9—Mo3 ¹	-106 (10)
C34—C33—C38—C37	0.5 (5)	O10—Mo2—O9—Mo3 ¹	1.23 (5)
P2—C33—C38—C37	-178.5 (3)	O6—Mo2—O9—Mo3 ¹	-89.40 (6)
C36—C37—C38—C33	-0.1 (6)	O3—Mo2—O9—Mo3 ¹	91.10 (6)
C44—C39—C40—C41	0.4 (4)	O1—Mo2—O9—Mo3 ¹	-179.29 (5)
P2—C39—C40—C41	-176.0(2)	O2—Mo2—O9—Mo3	74 (10)
C39—C40—C41—C42	-0.9(5)	O10—Mo2—O9—Mo3	-178.77 (5)
C40—C41—C42—C43	1.1 (5)	06—Mo2—O9—Mo3	90.60 (6)
C41—C42—C43—C44	-1.0 (5)	O3—Mo2—O9—Mo3	-88.90 (6)
C42—C43—C44—C39	0.6 (5)	O1—Mo2—O9—Mo3	0.71 (5)
C40—C39—C44—C43	-0.3 (4)	O2—Mo2—O9—Mo1 ⁱ	-16 (10)
P2-C39-C44-C43	176.3 (2)	O10-Mo2-O9-Mo1 ⁱ	91.39 (6)

C50-C45-C46-C47	0.7 (4)	06-Mo2-09-Mo1 ⁱ	0.76 (6)
P2-C45-C46-C47	-176.6 (2)	O3—Mo2—O9—Mo1 ⁱ	-178.74 (6)
C45—C46—C47—C48	0.0 (5)	O1-Mo2-O9-Mo1 ⁱ	-89.13 (6)
C46—C47—C48—C49	-0.8 (5)	O2—Mo2—O9—Mo1	164 (32)
C47—C48—C49—C50	0.8 (6)	O10-Mo2-O9-Mo1	-88.61 (6)
C46—C45—C50—C49	-0.6 (5)	O6—Mo2—O9—Mo1	-179.24 (6)
P2-C45-C50-C49	176.8 (3)	O3—Mo2—O9—Mo1	1.26 (6)
C48—C49—C50—C45	-0.1 (6)	O1—Mo2—O9—Mo1	90.87 (6)
Mo2—O3—Mo1—O7	-179.51 (10)	O8—Mo3—O9—Mo2	-106(2)
Mo2—O3—Mo1—O4 ⁱ	-75.53 (10)	O5—Mo3—O9—Mo2	90.49 (6)
Mo2—O3—Mo1—O6 ⁱ	6.1 (2)	O1—Mo3—O9—Mo2	-0.71(5)
Mo2—O3—Mo1—O5	78.37 (10)	O10 ⁱ —Mo3—O9—Mo2	-178.77 (5)
Mo2—O3—Mo1—O9	1.70 (8)	O4—Mo3—O9—Mo2	-89.67 (6)
Mo3—O5—Mo1—O7	-179.37 (10)	O8—Mo3—O9—Mo2 ⁱ	74 (2)
Mo3—O5—Mo1—O4 ⁱ	2.3 (2)	O5—Mo3—O9—Mo2 ⁱ	-89.51 (6)
Mo3—O5—Mo1—O3	-76.52 (10)	O1—Mo3—O9—Mo2 ⁱ	179.29 (5)
Mo3—O5—Mo1—O6 ⁱ	77.82 (10)	O10 ⁱ —Mo3—O9—Mo2 ⁱ	1.23 (5)
Mo3—O5—Mo1—O9	0.62 (7)	O4—Mo3—O9—Mo2 ⁱ	90.33 (6)
Mo3 ⁱ —O10—Mo2—O2	177.90 (10)	O8—Mo3—O9—Mo3 ⁱ	61 (100)
Mo3 ⁱ —O10—Mo2—O6	75.53 (10)	O5—Mo3—O9—Mo3 ⁱ	-102 (100)
Mo3 ⁱ —O10—Mo2—O3	-78.75 (10)	O1—Mo3—O9—Mo3 ⁱ	167 (100)
Mo3 ⁱ O10Mo2O1	-2.8(2)	O10 ⁱ —Mo3—O9—Mo3 ⁱ	-11 (100)
Mo3 ⁱ —O10—Mo2—O9	-1.66 (7)	O4—Mo3—O9—Mo3 ⁱ	78 (100)
Mo1 ⁱ —O6—Mo2—O2	178.84 (10)	O8—Mo3—O9—Mo1 ⁱ	-16(2)
Mo1 ⁱ —O6—Mo2—O10	-78.08 (10)	O5—Mo3—O9—Mo1 ⁱ	-179.53 (6)
Mo1 ⁱ —O6—Mo2—O3	0.1 (2)	O1—Mo3—O9—Mo1 ⁱ	89.27 (6)
Mo1 ⁱ —O6—Mo2—O1	76.19 (10)	O10 ⁱ —Mo3—O9—Mo1 ⁱ	-88.79 (6)
Mo1 ⁱ —O6—Mo2—O9	-1.03 (7)	O4—Mo3—O9—Mo1 ⁱ	0.30 (6)
Mo1-O3-Mo2-O2	178.42 (10)	O8—Mo3—O9—Mo1	164 (2)
Mo1-O3-Mo2-O10	75.52 (10)	O5—Mo3—O9—Mo1	0.47 (6)
Mo1-03-Mo2-06	-2.8 (2)	O1—Mo3—O9—Mo1	-90.73 (6)
Mo1-O3-Mo2-O1	-79.01 (10)	O10 ⁱ —Mo3—O9—Mo1	91.21 (6)
Mo1-03-Mo2-09	-1.71 (8)	O4—Mo3—O9—Mo1	-179.70 (6)
Mo3-O1-Mo2-O2	179.49 (10)	O7—Mo1—O9—Mo2	-90 (4)
Mo3-01-Mo2-010	0.2 (2)	O4 ⁱ —Mo1—O9—Mo2	90.22 (6)
Mo3-01-Mo2-06	-78.30 (10)	O3—Mo1—O9—Mo2	-1.27 (6)
Mo3—O1—Mo2—O3	76.19 (10)	O6 ⁱ —Mo1—O9—Mo2	-179.24 (5)
Mo3-01-Mo2-09	-0.95 (7)	O5—Mo1—O9—Mo2	-90.55 (6)
Mo1-05-Mo3-08	179.93 (10)	O7—Mo1—O9—Mo2 ⁱ	90 (4)
Mo1	76.32 (10)	$O4^{i}$ —Mo1—O9—Mo2 ⁱ	-89.78 (6)
Mo1-05-Mo3-010 ⁱ	-77.36 (10)	O3—Mo1—O9—Mo2 ⁱ	178.73 (6)
Mo1-05-Mo3-04	-1.0 (2)	O6 ⁱ Mo1O9Mo2 ⁱ	0.76 (5)
Mo1-05-Mo3-09	-0.62 (7)	O5-Mo1-O9-Mo2 ⁱ	89.45 (6)
Mo2—O1—Mo3—O8	179.12 (10)	O7—Mo1—O9—Mo3 ⁱ	180 (100)
Mo2-01-Mo3-05	-76.36 (10)	O4 ⁱ —Mo1—O9—Mo3 ⁱ	0.31 (6)
Mo2-01-Mo3-010 ⁱ	5.2 (2)	O3—Mo1—O9—Mo3 ⁱ	-91.18 (6)
Mo2-01-Mo3-04	77.79 (10)	O6 ⁱ —Mo1—O9—Mo3 ⁱ	90.85 (6)
Mo2-01-Mo3-09	0.95 (7)	O5-Mo1-O9-Mo3 ⁱ	179.54 (5)

$Mo1^{i} - O4 - Mo3 - O8$ $Mo1^{i} - O4 - Mo3 - O5$ $Mo1^{i} - O4 - Mo3 - O1$ $Mo1^{i} - O4 - Mo3 - O10^{i}$ $Mo1^{i} - O4 - Mo3 - O9$ $C2 - N1 - Cu1 - N2$ $C6 - N1 - Cu1 - N2$ $C2 - N1 - Cu1 - P2$ $C6 - N1 - Cu1 - P2$	179.05 (11) -0.1 (2) -77.89 (11) 76.73 (11) -0.42 (8) -178.7 (2) 11.37 (15) -56.6 (2) 133.43 (14)	$\begin{array}{l} 07 - Mo1 - 09 - Mo3 \\ 04^{i} - Mo1 - 09 - Mo3 \\ 03 - Mo1 - 09 - Mo3 \\ 06^{i} - Mo1 - 09 - Mo3 \\ 05 - Mo1 - 09 - Mo3 \\ 07 - Mo1 - 09 - Mo1^{i} \\ 04^{i} - Mo1 - 09 - Mo1^{i} \\ 03 - Mo1 - 09 - Mo1^{i} \\ 06^{i} - Mo1 - 09 - Mo1^{i} \\ \end{array}$	0 (4) -179.69 (6) 88.82 (6) -89.15 (6) -0.46 (5) 86 (100) -93 (100) 175 (100) -3 (100)
C6—N1—Cu1—P2 C2—N1—Cu1—P1 C6—N1—Cu1—P1	133.43 (14) 83.2 (2) -86.79 (16)	O6 ⁱ —Mo1—O9—Mo1 ⁱ O5—Mo1—O9—Mo1 ⁱ	-3 (100) 86 (100)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

Cg8 is the centroid of the C33–C38 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
С19—Н19…ОЗ ^{іі}	0.93	2.60	3.446 (3)	152
C29—H29…O7 ⁱⁱⁱ	0.93	2.55	3.443 (4)	161
C30—H30A···O8 ^{iv}	0.93	2.41	3.257 (5)	152
C44—H44…O2	0.93	2.51	3.206 (4)	132
C49—H49···· $Cg8^{v}$	0.93	2.97	3.782 (5)	147

Symmetry codes: (ii) *x*+1, *y*, *z*; (iii) *x*+1, *y*+1, *z*; (iv) -*x*+1, -*y*+2, -*z*+1; (v) -*x*+1, -*y*+1, -*z*.