organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Oxo-3-(piperidin-1-yl)propanenitrile

Hoong-Kun Fun,^a*‡Ching Kheng Quah,^a§Hatem A. Abdel-Aziz^b and Hazem A. Ghabbour^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia Correspondence e-mail: hkfun@usm.my

Received 24 July 2012; accepted 8 August 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.053; wR factor = 0.128; data-to-parameter ratio = 12.9.

In the title compound, $C_8H_{12}N_2O$, the piperidine ring exhibits a chair conformation and its least-squares plane (all atoms) makes a dihedral angle of $32.88 (12)^{\circ}$ with the propanenitrile unit (r.m.s. deviation = 0.001 Å). In the crystal, molecules are linked by $C-H\cdots O$ hydrogen bonds, forming chains along [001].

Related literature

For ring conformations, see: Cremer & Pople (1975). For background to piperidine derivatives, see: Andrews et al. (2008); Abdel-Aziz & Mekawey (2009); Abdel-Aziz et al. (2009, 2011). For the synthesis, see: Whitehead & Traverso (1955).

Experimental

Crystal data

 $C_8H_{12}N_2O$ $M_r = 152.20$ Monoclinic, $P2_1/c$ a = 9.7106 (2) Å b = 8.9468 (2) Å c = 9.8487 (2) Å $\beta = 101.425 (1)^{\circ}$

V = 838.69 (3) Å³ Z = 4Cu Ka radiation $\mu = 0.66 \text{ mm}^-$ T = 296 K $0.70\,\times\,0.62\,\times\,0.39$ mm

Data collection

```
Bruker SMART APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2009)
  T_{\min} = 0.656, T_{\max} = 0.783
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	101 parameters
$wR(F^2) = 0.128$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
1300 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

5110 measured reflections

 $R_{\rm int} = 0.030$

1300 independent reflections

1222 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7 - H7A \cdots O1^{i}$	0.97	2.23	3.1922 (17)	170
symmetry code: (i) x,	$-y + \frac{1}{2}, z - \frac{1}{2}.$			

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/ 811160).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6912).

References

- Abdel-Aziz, H. A., Abdel-Wahab, B. F., El-Sharief, M. A. M. Sh. & Abdulla, M. M. (2009). Monatsh. Chem. 140, 431-437.
- Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985-4997
- Abdel-Aziz, H. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, 02172
- Andrews, D. M., Stokes, E. S. E., Carr, G. R., Matusiak, Z. S., Roberts, C. A., Waring, M. J., Brady, M. C., Chresta, C. M. & East, S. J. (2008). Bioorg. Med. Chem. Lett. 18, 2580-2854.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Whitehead, C. W. & Traverso, J. J. (1955). J. Am. Chem. Soc. 20, 5867-5872.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

[§] Thomson Reuters ResearcherID: A-5525-2009.

supporting information

Acta Cryst. (2012). E68, o2726 [doi:10.1107/S1600536812035015]

3-Oxo-3-(piperidin-1-yl)propanenitrile

Hoong-Kun Fun, Ching Kheng Quah, Hatem A. Abdel-Aziz and Hazem A. Ghabbour

S1. Comment

Piperidines are an important class of heterocycles found in numerous natural products and medicinal structures (Andrews *et al.*, 2008). In continuation of our interest in the chemistry of piperidines (Abdel-Aziz & Mekawey, 2009; Abdel-Aziz *et al.*, 2009, 2011), we report here the crystal structure of the title compound.

In the title molecule, Fig. 1, the piperidin-1-yl ring (N1/C1-C5) exhibits a chair conformation, puckering parameters (Cremer & Pople, 1975) Q = 0.5455 (18) Å; $\Theta = 1.84 (19)^{\circ}$ and $\varphi = 113 (6)$ Å, and its least square plane makes a dihedral angle of 32.88 (12)° with the propanenitrile unit (N2/C6-C8, *r.m.s.* deviation = 0.001 Å).

In the crystal (Fig.2), molecules are linked via C7-H7A···O1 hydrogen bonds (Table 1), forming chains along [001].

S2. Experimental

The title compound was prepared by the reaction of ethyl cyanoacetate with piperidine according to the reported method (Whitehead *et al.*, 1955). Colourless blocks were obtained by slowly evaporating an ethanol solution at room temperature.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with C-H = 0.97 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.

Figure 2

The crystal structure of the title compound, viewed along the *a* axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

3-Oxo-3-(piperidin-1-yl)propanenitrile

Crystal data	
$C_8H_{12}N_2O$	V = 838.69 (3) Å ³
$M_r = 152.20$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 328
Hall symbol: -P 2ybc	$D_{\rm x} = 1.205 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.7106 (2) Å	Cu K α radiation, $\lambda = 1.54178$ Å
b = 8.9468 (2) Å	Cell parameters from 2826 reflections
c = 9.8487 (2) Å	$\theta = 4.6 - 70.9^{\circ}$
$\beta = 101.425 \ (1)^{\circ}$	$\mu = 0.66 \mathrm{~mm^{-1}}$

T = 296 KBlock, colourless

Data collection

Bruker SMART APEXII CCD diffractometer	5110 measured reflections 1300 independent reflections
Radiation source: fine-focus sealed tube	1222 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.030$
φ and ω scans	$\theta_{\text{max}} = 63.0^{\circ}, \ \theta_{\text{min}} = 4.7^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Bruker, 2009)	$k = -7 \rightarrow 10$
$T_{\min} = 0.656, T_{\max} = 0.783$	$l = -11 \rightarrow 11$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained

 $0.70 \times 0.62 \times 0.39 \text{ mm}$

 $wR(F^2) = 0.128$ $w = 1/[\sigma^2(F_0^2) + (0.0759P)^2 + 0.0948P]$ S = 1.12where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ 1300 reflections $\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$ 101 parameters $\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints Extinction correction: SHELXTL (Sheldrick, Primary atom site location: structure-invariant 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ direct methods Secondary atom site location: difference Fourier Extinction coefficient: 0.82 (4) map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

X	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	
0.24331 (12)	0.06319 (12)	0.22467 (11)	0.0473 (4)	
0.08305 (19)	0.56540 (17)	0.19855 (19)	0.0850 (6)	
0.24717 (12)	0.26280 (12)	0.36568 (9)	0.0599 (5)	
0.19317 (15)	-0.01701 (16)	0.09524 (15)	0.0514 (5)	
0.1452	0.0519	0.0257	0.062*	
0.1266	-0.0934	0.1097	0.062*	
0.31440 (19)	-0.08861 (19)	0.04488 (17)	0.0637 (5)	
0.3752	-0.0113	0.0205	0.076*	
0.2787	-0.1468	-0.0377	0.076*	
0.39850 (19)	-0.1892 (2)	0.15449 (19)	0.0683 (6)	
0.3414	-0.2738	0.1705	0.082*	
0.4801	-0.2269	0.1224	0.082*	
	x 0.24331 (12) 0.08305 (19) 0.24717 (12) 0.19317 (15) 0.1452 0.1266 0.31440 (19) 0.3752 0.2787 0.39850 (19) 0.3414 0.4801	xy $0.24331 (12)$ $0.06319 (12)$ $0.08305 (19)$ $0.56540 (17)$ $0.24717 (12)$ $0.26280 (12)$ $0.19317 (15)$ $-0.01701 (16)$ 0.1452 0.0519 0.1266 -0.0934 $0.31440 (19)$ $-0.08861 (19)$ 0.3752 -0.0113 0.2787 -0.1468 $0.39850 (19)$ $-0.1892 (2)$ 0.3414 -0.2738 0.4801 -0.2269	xyz $0.24331 (12)$ $0.06319 (12)$ $0.22467 (11)$ $0.08305 (19)$ $0.56540 (17)$ $0.19855 (19)$ $0.24717 (12)$ $0.26280 (12)$ $0.36568 (9)$ $0.19317 (15)$ $-0.01701 (16)$ $0.09524 (15)$ 0.1452 0.0519 0.0257 0.1266 -0.0934 0.1097 $0.31440 (19)$ $-0.08861 (19)$ $0.04488 (17)$ 0.3752 -0.0113 0.0205 0.2787 -0.1468 -0.0377 $0.39850 (19)$ $-0.1892 (2)$ $0.15449 (19)$ 0.3414 -0.2738 0.1705 0.4801 -0.2269 0.1224	xyz U_{iso}^*/U_{eq} 0.24331 (12)0.06319 (12)0.22467 (11)0.0473 (4)0.08305 (19)0.56540 (17)0.19855 (19)0.0850 (6)0.24717 (12)0.26280 (12)0.36568 (9)0.0599 (5)0.19317 (15)-0.01701 (16)0.09524 (15)0.0514 (5)0.14520.05190.02570.062*0.1266-0.09340.10970.062*0.31440 (19)-0.08861 (19)0.04488 (17)0.0637 (5)0.3752-0.01130.02050.076*0.2787-0.1468-0.03770.076*0.39850 (19)-0.1892 (2)0.15449 (19)0.0683 (6)0.3414-0.27380.17050.082*0.4801-0.22690.12240.082*

C4	0.44535 (18)	-0.10440 (19)	0.28805 (19)	0.0673 (6)
H4A	0.4908	-0.1729	0.3594	0.081*
H4B	0.5136	-0.0293	0.2751	0.081*
C5	0.32379 (19)	-0.0296 (2)	0.33513 (16)	0.0635 (5)
H5A	0.2627	-0.1051	0.3621	0.076*
H5B	0.3590	0.0322	0.4155	0.076*
C6	0.20841 (13)	0.20271 (15)	0.25256 (12)	0.0425 (5)
C7	0.11643 (16)	0.28844 (15)	0.13497 (14)	0.0491 (5)
H7A	0.1588	0.2852	0.0537	0.059*
H7B	0.0250	0.2410	0.1116	0.059*
C8	0.09924 (16)	0.44374 (17)	0.17336 (16)	0.0558 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0568 (7)	0.0441 (7)	0.0387 (7)	0.0043 (5)	0.0038 (5)	0.0000 (4)
N2	0.0915 (12)	0.0557 (10)	0.1066 (14)	0.0150 (8)	0.0165 (9)	-0.0146 (8)
01	0.0771 (8)	0.0609 (8)	0.0407 (7)	-0.0035 (5)	0.0090 (5)	-0.0114 (4)
C1	0.0560 (8)	0.0436 (8)	0.0495 (8)	0.0026 (6)	-0.0017 (6)	-0.0064 (6)
C2	0.0770 (11)	0.0552 (10)	0.0575 (9)	0.0141 (7)	0.0097 (8)	-0.0108 (7)
C3	0.0657 (10)	0.0527 (10)	0.0837 (13)	0.0142 (7)	0.0077 (8)	-0.0032 (8)
C4	0.0628 (10)	0.0564 (10)	0.0736 (11)	0.0085 (7)	-0.0083 (8)	0.0097 (7)
C5	0.0808 (11)	0.0605 (10)	0.0448 (9)	0.0074 (7)	0.0018 (7)	0.0103 (6)
C6	0.0476 (7)	0.0455 (8)	0.0364 (7)	-0.0053 (5)	0.0133 (5)	-0.0027 (5)
C7	0.0615 (9)	0.0436 (9)	0.0428 (8)	0.0051 (6)	0.0115 (6)	-0.0030 (5)
C8	0.0597 (9)	0.0496 (10)	0.0600 (9)	0.0057 (6)	0.0167 (7)	-0.0037 (6)

Geometric parameters (Å, °)

N1—C6	1.3361 (18)	С3—НЗА	0.9700
N1—C1	1.4597 (16)	С3—Н3В	0.9700
N1—C5	1.4650 (17)	C4—C5	1.508 (3)
N2—C8	1.134 (2)	C4—H4A	0.9700
O1—C6	1.2271 (16)	C4—H4B	0.9700
C1—C2	1.508 (2)	С5—Н5А	0.9700
C1—H1A	0.9700	С5—Н5В	0.9700
C1—H1B	0.9700	C6—C7	1.5224 (18)
C2—C3	1.514 (2)	С7—С8	1.458 (2)
C2—H2A	0.9700	C7—H7A	0.9700
C2—H2B	0.9700	С7—Н7В	0.9700
C3—C4	1.508 (2)		
C6—N1—C1	125.76 (11)	С5—С4—Н4А	109.2
C6—N1—C5	119.75 (11)	C3—C4—H4A	109.2
C1—N1—C5	113.99 (12)	C5—C4—H4B	109.2
N1—C1—C2	110.43 (11)	C3—C4—H4B	109.2
N1—C1—H1A	109.6	H4A—C4—H4B	107.9
C2—C1—H1A	109.6	N1C5C4	110.98 (13)

N1—C1—H1B	109.6	N1—C5—H5A	109.4
C2—C1—H1B	109.6	C4—C5—H5A	109.4
H1A—C1—H1B	108.1	N1—C5—H5B	109.4
C1—C2—C3	111.34 (14)	C4—C5—H5B	109.4
C1—C2—H2A	109.4	H5A—C5—H5B	108.0
С3—С2—Н2А	109.4	O1—C6—N1	123.45 (12)
C1—C2—H2B	109.4	O1—C6—C7	119.88 (12)
C3—C2—H2B	109.4	N1—C6—C7	116.67 (11)
H2A—C2—H2B	108.0	C8—C7—C6	111.28 (11)
C4—C3—C2	110.49 (13)	С8—С7—Н7А	109.4
С4—С3—НЗА	109.6	С6—С7—Н7А	109.4
С2—С3—НЗА	109.6	С8—С7—Н7В	109.4
С4—С3—Н3В	109.6	С6—С7—Н7В	109.4
С2—С3—Н3В	109.6	H7A—C7—H7B	108.0
НЗА—СЗ—НЗВ	108.1	N2—C8—C7	177.51 (18)
C5—C4—C3	111.85 (14)		
C6—N1—C1—C2	131.80 (14)	C3—C4—C5—N1	-53.1 (2)
C5—N1—C1—C2	-56.33 (17)	C1—N1—C6—O1	175.87 (13)
N1—C1—C2—C3	55.29 (18)	C5—N1—C6—O1	4.4 (2)
C1—C2—C3—C4	-54.4 (2)	C1—N1—C6—C7	-4.54 (19)
C2—C3—C4—C5	53.3 (2)	C5—N1—C6—C7	-175.99 (12)
C6—N1—C5—C4	-132.36 (14)	01	6.13 (18)
C1—N1—C5—C4	55.23 (18)	N1—C6—C7—C8	-173.48 (11)
	· /		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C7—H7A···O1 ⁱ	0.97	2.23	3.1922 (17)	170

Symmetry code: (i) x, -y+1/2, z-1/2.