

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*Z*)-2-Benzylidenebenzo[*d*]thiazolo-[3,2-*a*]imidazol-3(2*H*)-one

Hoong-Kun Fun,^a*‡Ching Kheng Quah,^a§Hatem A. Abdel-Aziz^b and Hazem A. Ghabbour^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia Correspondence e-mail: hkfun@usm.my

Received 24 July 2012; accepted 8 August 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.127; data-to-parameter ratio = 12.5.

The molecule of the title compound, $C_{16}H_{10}N_2OS$, is approximately planar, the dihedral angle between the 1,3benzothiazolo[3,2-*a*]imidazol-3(2*H*)-one and the benzylidene moieties being 4.10 (8)°. A weak intramolecular $C-H\cdots S$ interaction generates an *S*(6) ring. No intermolecular hydrogen bonds are observed in the crystal structure.

Related literature

For background to and the biological activity of thiazolo[3,2-*a*]benzimidazoles, see: Al-Rashood & Abdel-Aziz (2010); Chimirri *et al.* (1988), For a related structure, references to our previous work in this area and references to further synthetic details, see: Fun *et al.* (2012).

Experimental

Crystal data C₁₆H₁₀N₂OS

 $M_r = 278.32$

organic compounds

Z = 8

Cu $K\alpha$ radiation

 $0.77 \times 0.65 \times 0.04~\text{mm}$

 $\mu = 2.20 \text{ mm}^{-1}$

T = 296 K

Orthorhombic, *Pbca* a = 12.1721 (5) Å b = 7.7697 (3) Å c = 27.2200 (8) Å V = 2574.29 (16) Å³

Data collection

8750 measured reflections
2270 independent reflections
1912 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.051$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	181 parameters
$wR(F^2) = 0.127$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
2270 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C12-H12A\cdots$ S1	0.93	2.56	3.262 (3)	132

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/ 811160).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6910).

References

- Al-Rashood, K. A. & Abdel-Aziz, H. A. (2010). *Molecules*, 15, 3775–3815. Bruker (2009). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chimirri, A., Grasso, S., Romeo, G. & Zappala, M. (1988). Heterocycles, 27, 1975–2003.
- Fun, H.-K., Chantrapromma, S. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, 01393–01394.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

[§] Thomson Reuters ResearcherID: A-5525-2009

supporting information

Acta Cryst. (2012). E68, o2705 [doi:10.1107/S1600536812035003]

(Z)-2-Benzylidenebenzo[d]thiazolo[3,2-a]imidazol-3(2H)-one

Hoong-Kun Fun, Ching Kheng Quah, Hatem A. Abdel-Aziz and Hazem A. Ghabbour

S1. Comment

Thiazolo[3,2-*a*]benzimidazoles show a variety of interesting biological activity such as antibacterial, antifungal, antiinflammatory, antiulcer, antiviral, anthelmintic and anticancer activity (Al-Rashood & Abdel-Aziz, 2010; Chimirri *et al.*, 1988). As part on our ongoing studies in this area (Fun *et al.*, 2012), we now describe the crystal structure of the title compound.

In the title molecule, Fig. 1, the benzo[*d*]thiazolo[3,2-*a*]imidazol- 3(2H)-one moiety is roughly planar with an *r.m.s.* deviation 0.062 Å for the thirteen non H-atoms (C1–C9/N1/N2/O1/S1) and the benzilidene moiety is also nearly planar with an *r.m.s.* deviation 0.005Å for the seven non H-atoms (C10–C16). The dihedral between the two mean planes is 4.10 (8)°. An intramolecular C12—H12A…S1 weak interaction (Fig. 1 and Table 1) generates an S(6) ring, which helps to establish the planarity of the molecule. The bond distances are comparable to those in a related structure (Fun *et al.*, 2012). There are no significant intermolecular hydrogen bond observed in the crystal structure of this compound.

S2. Experimental

The one-pot synthesis of the title compound carried out by a cyclocondensation of 2-mercaptobenzimidazole, chloroacetic acid, benzaldehyde, acetic anhydride and glacial acetic acid in the presence of sodium acetate to afford the title compound (Fun *et al.*, 2012). Yellow plates were obtained by slowly evaporating an EtOH/DMF solution at room temperature.

S3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and CH atoms, and the $U_{iso}(H)$ values were constrained to be $1.2U_{eq}$ of the carrier atoms.

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dashed line.

(Z)-2-Benzylidenebenzo[d]thiazolo[3,2-a]imidazol- 3(2H)-one

Crystal data

C₁₆H₁₀N₂OS $M_r = 278.32$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 12.1721 (5) Å b = 7.7697 (3) Å c = 27.2200 (8) Å V = 2574.29 (16) Å³ Z = 8

Data collection

Bruker SMART APEXII CCD	8750 measured reflections
Padiation source: fine feature scaled tube	1012 reflections with $L > 2\sigma(I)$
Radiation source. The locus seared tube	1912 Teffections with $I > 20(I)$
Graphite monochromator	$R_{\rm int} = 0.051$
φ and ω scans	$\theta_{\rm max} = 67.4^\circ, \ \theta_{\rm min} = 3.3^\circ$
Absorption correction: multi-scan	$h = -13 \rightarrow 14$
(SADABS; Bruker, 2009)	$k = -8 \rightarrow 6$
$T_{\min} = 0.282, \ T_{\max} = 0.917$	$l = -32 \rightarrow 28$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0558P)^2 + 0.7634P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta ho_{ m max} = 0.45 \ { m e} \ { m \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 1152

 $\theta = 3.3-69.8^{\circ}$ $\mu = 2.20 \text{ mm}^{-1}$

Plate, yellow

 $0.77 \times 0.65 \times 0.04 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.436 {\rm Mg} {\rm m}^{-3}$

Cu K α radiation, $\lambda = 1.54178$ Å

Cell parameters from 1434 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

F 1		1. /	1	• • •		• 1 /	• , •	1. 1			18	21
Fractional	atomic	coordinates	and	isofronic	or e	pauivalent	isofronic	displaceme	pnt	narameters	IA^{i}	-1
1 i actionat	aronne	coordinates		isonopie	01 0	quivalent	isonopie	anspraceme		parameters	(**	/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.78126 (4)	0.01576 (8)	0.554734 (19)	0.0518 (2)	
01	1.04329 (12)	-0.1399 (2)	0.62205 (6)	0.0608 (5)	
N1	0.89265 (13)	0.0307 (2)	0.63592 (6)	0.0441 (4)	
N2	0.72939 (15)	0.1641 (3)	0.64488 (7)	0.0556 (5)	
C1	0.95869 (16)	-0.0762 (3)	0.60802 (7)	0.0450 (5)	

C2	0.90610 (16)	-0.0989 (3)	0.55886 (7)	0.0440 (5)
C3	0.79414 (17)	0.0814 (3)	0.61580 (8)	0.0470 (5)
C4	0.78928 (17)	0.1704 (3)	0.68946 (8)	0.0488 (5)
C5	0.75984 (19)	0.2391 (3)	0.73449 (9)	0.0580 (6)
H5A	0.6924	0.2931	0.7389	0.070*
C6	0.8340 (2)	0.2249 (3)	0.77273 (8)	0.0591 (6)
H6A	0.8156	0.2700	0.8033	0.071*
C7	0.9350 (2)	0.1456 (3)	0.76682 (8)	0.0569 (6)
H7A	0.9826	0.1387	0.7935	0.068*
C8	0.96661 (18)	0.0763 (3)	0.72232 (8)	0.0506 (5)
H8A	1.0349	0.0248	0.7180	0.061*
C9	0.89105 (17)	0.0880(3)	0.68454 (7)	0.0439 (5)
C10	0.95483 (17)	-0.1957 (3)	0.52492 (8)	0.0472 (5)
H10A	1.0213	-0.2430	0.5350	0.057*
C11	0.92361 (16)	-0.2417 (3)	0.47492 (8)	0.0460 (5)
C12	0.82753 (19)	-0.1866 (4)	0.45178 (9)	0.0592 (6)
H12A	0.7789	-0.1147	0.4683	0.071*
C13	0.8045 (2)	-0.2387 (4)	0.40425 (10)	0.0714 (7)
H13A	0.7401	-0.2021	0.3892	0.086*
C14	0.8757 (2)	-0.3439 (4)	0.37915 (9)	0.0659 (7)
H14A	0.8594	-0.3784	0.3472	0.079*
C15	0.9707 (2)	-0.3979 (4)	0.40123 (9)	0.0655 (7)
H15A	1.0197	-0.4677	0.3842	0.079*
C16	0.99336 (19)	-0.3485 (3)	0.44864 (8)	0.0554 (6)
H16A	1.0574	-0.3879	0.4635	0.066*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0486 (4)	0.0588 (4)	0.0480 (3)	0.0084 (2)	-0.0101 (2)	-0.0030 (2)
01	0.0484 (8)	0.0820 (12)	0.0522 (9)	0.0157 (8)	-0.0082 (7)	-0.0057 (8)
N1	0.0437 (9)	0.0443 (10)	0.0442 (9)	0.0009 (7)	-0.0052 (7)	-0.0007 (7)
N2	0.0549 (10)	0.0609 (13)	0.0509 (10)	0.0135 (9)	-0.0049 (8)	-0.0033 (9)
C1	0.0437 (11)	0.0476 (12)	0.0438 (11)	-0.0019 (9)	-0.0018 (9)	0.0002 (9)
C2	0.0416 (10)	0.0465 (13)	0.0438 (11)	-0.0023 (9)	-0.0034 (8)	0.0035 (9)
C3	0.0484 (11)	0.0451 (12)	0.0474 (11)	0.0040 (9)	-0.0060 (9)	0.0031 (9)
C4	0.0530 (12)	0.0463 (13)	0.0471 (11)	0.0022 (9)	-0.0013 (9)	0.0029 (9)
C5	0.0586 (13)	0.0613 (15)	0.0542 (13)	0.0076 (11)	0.0057 (11)	-0.0022 (11)
C6	0.0708 (14)	0.0632 (16)	0.0432 (12)	-0.0013 (12)	0.0060 (10)	-0.0032 (11)
C7	0.0656 (14)	0.0616 (15)	0.0437 (12)	-0.0062 (11)	-0.0053 (10)	-0.0001 (11)
C8	0.0499 (11)	0.0527 (14)	0.0492 (11)	-0.0013 (10)	-0.0059 (9)	0.0003 (10)
C9	0.0497 (11)	0.0409 (12)	0.0413 (10)	-0.0030 (9)	0.0006 (8)	0.0001 (9)
C10	0.0449 (10)	0.0520 (13)	0.0446 (11)	0.0002 (9)	-0.0022 (9)	0.0036 (10)
C11	0.0473 (10)	0.0461 (12)	0.0446 (11)	-0.0049 (9)	-0.0009 (9)	0.0016 (9)
C12	0.0542 (12)	0.0716 (17)	0.0519 (12)	0.0081 (11)	-0.0052 (10)	-0.0082 (12)
C13	0.0661 (15)	0.090 (2)	0.0578 (15)	0.0089 (14)	-0.0158 (12)	-0.0099 (14)
C14	0.0783 (16)	0.0715 (18)	0.0478 (12)	-0.0034 (13)	-0.0079 (12)	-0.0104 (12)
C15	0.0772 (16)	0.0656 (17)	0.0538 (13)	0.0069 (13)	0.0063 (12)	-0.0083 (12)

C16	0.0544 (13)	0.0606 (15) 0.05	511 (13) 0.0049 (11)	-0.0014 (10) 0.0002 (11)
Geome	tric parameters (A	ĥ, °)		
S1-C	3	1.746 (2)	C7—H7A	0.9300
S1—C	2	1.765 (2)	C8—C9	1.383 (3)
01—C	1	1.205 (2)	C8—H8A	0.9300
N1—C	3	1.376 (3)	C10—C11	1.457 (3)
N1—C	1	1.383 (3)	C10—H10A	0.9300
N1—C	9	1.396 (3)	C11—C16	1.386 (3)
N2—C	3	1.289 (3)	C11—C12	1.396 (3)
N2—C	4	1.417 (3)	C12—C13	1.384 (3)
C1—C	2	1.494 (3)	C12—H12A	0.9300
С2—С	10	1.331 (3)	C13—C14	1.373 (4)
C4—C	5	1.384 (3)	C13—H13A	0.9300
C4—C	9	1.401 (3)	C14—C15	1.369 (4)
С5—С	6	1.382 (3)	C14—H14A	0.9300
С5—Н	5A	0.9300	C15—C16	1.374 (3)
С6—С	7	1.384 (3)	C15—H15A	0.9300
С6—Н	6A	0.9300	C16—H16A	0.9300
С7—С	8	1.380 (3)		
C3—S	1—C2	90.54 (10)	C7—C8—H8A	121.9
C3—N	1—C1	117.37 (17)	C9—C8—H8A	121.9
C3—N	1—С9	105.91 (17)	C8—C9—N1	132.4 (2)
C1—N	1—С9	136.04 (18)	C8—C9—C4	123.2 (2)
C3—N	2—C4	103.21 (17)	N1C9C4	104.39 (17)
O1—C	1—N1	124.72 (19)	C2-C10-C11	132.1 (2)
O1—C	1—C2	127.0 (2)	C2—C10—H10A	113.9
N1—C	1—C2	108.28 (17)	C11—C10—H10A	113.9
C10-0	C2—C1	119.84 (19)	C16—C11—C12	117.6 (2)
C10—0	C2—S1	128.66 (16)	C16—C11—C10	117.96 (19)
C1C	2—S1	111.49 (15)	C12—C11—C10	124.4 (2)
N2—C	3—N1	115.54 (19)	C13—C12—C11	120.1 (2)
N2—C	3—S1	132.50 (16)	C13—C12—H12A	119.9
N1—C	3—S1	111.95 (15)	C11—C12—H12A	119.9
С5—С	4—С9	119.3 (2)	C14—C13—C12	120.7 (2)
С5—С	4—N2	129.7 (2)	C14—C13—H13A	119.6
С9—С	4—N2	110.95 (18)	C12—C13—H13A	119.6
С6—С	5—C4	117.8 (2)	C15—C14—C13	119.8 (2)
С6—С	5—H5A	121.1	C15—C14—H14A	120.1
С4—С	5—H5A	121.1	C13—C14—H14A	120.1
С5—С	6—C7	121.9 (2)	C14—C15—C16	119.8 (2)
С5—С	6—H6A	119.1	C14—C15—H15A	120.1
С7—С	6—H6A	119.1	C16—C15—H15A	120.1
С8—С	7—С6	121.6 (2)	C15—C16—C11	121.9 (2)
С8—С	7—H7A	119.2	C15—C16—H16A	119.0
С6—С	7—H7A	119.2	C11—C16—H16A	119.0

supporting information

С7—С8—С9	116.2 (2)		
C3—N1—C1—O1	-174.8 (2)	C6—C7—C8—C9	-1.2 (4)
C9—N1—C1—O1	-5.8 (4)	C7—C8—C9—N1	-178.4 (2)
C3—N1—C1—C2	4.5 (3)	C7—C8—C9—C4	2.4 (3)
C9—N1—C1—C2	173.5 (2)	C3—N1—C9—C8	-179.5 (2)
O1—C1—C2—C10	-1.4 (4)	C1—N1—C9—C8	10.7 (4)
N1-C1-C2-C10	179.30 (19)	C3—N1—C9—C4	-0.1 (2)
O1—C1—C2—S1	179.0 (2)	C1—N1—C9—C4	-169.9 (2)
N1—C1—C2—S1	-0.3 (2)	C5—C4—C9—C8	-2.3 (3)
C3—S1—C2—C10	177.7 (2)	N2-C4-C9-C8	179.4 (2)
C3—S1—C2—C1	-2.71 (16)	C5—C4—C9—N1	178.3 (2)
C4—N2—C3—N1	-0.2 (3)	N2-C4-C9-N1	0.0 (2)
C4—N2—C3—S1	178.6 (2)	C1-C2-C10-C11	179.5 (2)
C1—N1—C3—N2	172.3 (2)	S1-C2-C10-C11	-1.0 (4)
C9—N1—C3—N2	0.2 (3)	C2-C10-C11-C16	-179.5 (2)
C1—N1—C3—S1	-6.8 (3)	C2-C10-C11-C12	-0.1 (4)
C9—N1—C3—S1	-178.84 (14)	C16—C11—C12—C13	0.1 (4)
C2—S1—C3—N2	-173.7 (3)	C10-C11-C12-C13	-179.3 (2)
C2—S1—C3—N1	5.20 (17)	C11—C12—C13—C14	-0.4 (5)
C3—N2—C4—C5	-178.0 (3)	C12-C13-C14-C15	-0.1 (5)
C3—N2—C4—C9	0.1 (3)	C13—C14—C15—C16	1.0 (4)
C9—C4—C5—C6	0.9 (4)	C14—C15—C16—C11	-1.3 (4)
N2-C4-C5-C6	178.8 (2)	C12-C11-C16-C15	0.8 (4)
C4—C5—C6—C7	0.2 (4)	C10-C11-C16-C15	-179.7 (2)
C5—C6—C7—C8	0.0 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C12—H12A…S1	0.93	2.56	3.262 (3)	132