

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,3,5-Triphenyl-2H-tetrazol-3-ium iodide

Hoong-Kun Fun,^a*‡ Tze Shyang Chia,^a Gamal A. E. Mostafa,^b Mohamed M. Abunassif^b and Hatem A. Abdel-Aziz^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia Correspondence e-mail: hkfun@usm.my

Received 21 July 2012; accepted 26 July 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.013 Å; R factor = 0.075; wR factor = 0.172; data-to-parameter ratio = 19.0.

The asymmetric unit of the title molecular salt, $C_{19}H_{15}N_4^+$ ·I⁻, contains four 2,3,5-triphenyl-2*H*-tetrazol-3-ium cations and five iodide anions, with two of the latter lying on crystal-lographic inversion centres. In each cation, the tetrazole ring is essentially planar (r.m.s. deviations = 0.004–0.007 Å). The dihedral angles between the tetrazole ring and its three attached benzene rings in the four independent cations are: 12.9 (4), 67.0 (4), 48.1 (4); 20.8 (4), 51.1 (4), 62.3 (4); 11.4 (4), 52.3 (4), 47.3 (4) and 6.0 (4), 85.7 (4), 43.5 (4)°. A C–H···I hydrogen bond and C–H··· π interactions are observed in the crystal.

Related literature

For the biological activity of the triphenyltetrazolium ion, see: Mostafa (2007); Hassanien *et al.* (2003); Abbas *et al.* (2001). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data $C_{19}H_{15}N_4^+ \cdot I^-$

 $M_r = 426.25$

‡ Thomson Reuters ResearcherID: A-3561-2009.

Z = 16Mo $K\alpha$ radiation

 $\mu = 1.78 \text{ mm}^-$

 $0.37 \times 0.21 \times 0.06 \text{ mm}$

T = 100 K

Monoclinic, $P2_1/c$ a = 9.6541 (4) Å b = 30.9983 (14) Å c = 24.3469 (10) Å $\beta = 97.930$ (1)° V = 7216.4 (5) Å³

Data collection

Bruker APEX DUO CCD	71406 measured reflections
diffractometer	16492 independent reflections
Absorption correction: multi-scan	13800 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.048$
$T_{\rm min} = 0.556, \ T_{\rm max} = 0.907$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.075 & 868 \text{ parameters} \\ wR(F^2) &= 0.172 & H\text{-atom parameters constrained} \\ S &= 1.26 & \Delta\rho_{\text{max}} &= 5.04 \text{ e } \text{\AA}^{-3} \\ 16492 \text{ reflections} & \Delta\rho_{\text{min}} &= -2.28 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1C-C6C, C8C-C13C, C1A-C6A and C1D-C6D rings, respectively.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C19B-H19B13 C3A-H3AACg1 ⁱ C5A-H5AACg2 C16A-H16ACg3 ⁱⁱ C16D-H16DCg4 ⁱⁱⁱ	0.95 0.95 0.95 0.95 0.95	3.03 2.87 2.89 2.85 2.96	3.844 (8) 3.636 (8) 3.547 (9) 3.657 (9) 3.769 (10)	145 138 127 144 144
0			()	

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x - 1, y, z; (iii) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University, for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6907).

References

- Abbas, M. N., Mostafa, G. A. E. & Homoda, A. M. A. (2001). *Talanta*, **55**, 647–656.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Hassanien, M. M., Abou-El-Sherbini, Kh. S. & Mostafa, G. A. E. (2003). *Talanta*, **59**, 383–392.
- Mostafa, G. A. E. (2007). Talanta, 71, 1449–1454.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o2621 [doi:10.1107/S1600536812033661]

2,3,5-Triphenyl-2*H*-tetrazol-3-ium iodide

Hoong-Kun Fun, Tze Shyang Chia, Gamal A. E. Mostafa, Mohamed M. Abunassif and Hatem A. Abdel-Aziz

S1. Comment

2,3,5-Triphenyltetrazolium ion is used as indicator of bacterial dehydrogenase activity and as a reagent in colorimetric determination method for glucose dehydrogenase. It is also used as ion-pair reagent for determination of antimony in waste water (Mostafa, 2007; Hassanien *et al.*, 2003; Abbas *et al.*, 2001).

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit of the title compound, $C_{19}H_{15}N_{4}^+$, I⁻, contains four crystallographically independent 2,3,5-triphenyl-2*H*-tetrazol-3-ium cations, three fully occupied iodine anions (I1, I2 & I3) and two half-occupied iodine anions (I4 & I5). In the cation *A*, *B*, *C* and *D*, the tetrazole ring [N1–N4/C7] is essentially planar with *r.m.s.* deviations of 0.007, 0.007, 0.006 and 0.004 Å, respectively. The dihedral angles between the tetrazole ring and benzene rings [C1–C6, C8–C13 & C14–C19] are 12.9 (4), 67.0 (4) and 48.1 (4)° in cation *A*, 20.8 (4), 51.1 (4) and 62.3 (4)° in cation *B*, 11.4 (4), 52.3 (4) and 47.3 (4)° in cation *C* and 6.0 (4), 85.7 (4) and 43.5 (4)° in cation *D*.

In the crystal (Fig. 2), intermolecular C19B—H19B···I3 hydrogen bond and C—H·· π interactions are observed, involving Cg1, Cg2, Cg3 and Cg4 which are the centroids of C1C–C6C, C8C–C13C, C1A–C6A and C1D–C6D rings, respectively.

S2. Experimental

Upon the addition of triphenyltetrazolium chloride solution (50 ml, $1X10^{-2} M$) to a solution of potassium iodide (50 ml), a yellowish precipitate was formed. The precipitate was filtered off, washed with cold deionized water until no chloride ions were detected in the washing solution. The precipitate was dried under vacuum to give the title ion-pair complex. Orange plates were obtained by slow evaporation of an ethanol solution.

S3. Refinement

All H atoms were positioned geometrically [C—H = 0.95 Å] and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$. Ten outliers, ($\overline{1}$ 11 8), (1 16 3), (2 18 5), (0 1 22), (0 12 0), (0 5 22), ($\overline{1}$ 1 24), ($\overline{2}$ 7 7), (0 9 18) and (1 1 24) were omitted in the final refinement. The largest difference peak is 1.52 Å from atom I1.

Figure 1

The molecular structure of the title compound with 50% probability displacement ellipsoids.

Figure 2

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.

2,3,5-Triphenyl-2H-tetrazol-3-ium iodide

F(000) = 3360 $D_x = 1.569 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9972 reflections $\theta = 2.9-32.1^{\circ}$ $\mu = 1.78 \text{ mm}^{-1}$ T = 100 KPlate, orange $0.37 \times 0.21 \times 0.06 \text{ mm}$ Data collection

Bruker APEX DUO CCD	71406 measured reflections
diffractometer	16492 independent reflections
Radiation source: fine-focus sealed tube	13800 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.048$
φ and ω scans	$\theta_{max} = 27.5^{\circ}, \theta_{min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(<i>SADABS</i> ; Bruker, 2009)	$k = -40 \rightarrow 40$
$T_{\min} = 0.556, T_{\max} = 0.907$	$l = -31 \rightarrow 31$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.075$	Hydrogen site location: inferred from
$wR(F^2) = 0.172$	neighbouring sites
S = 1.26	H-atom parameters constrained
16492 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0155P)^2 + 127.6P]$
868 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 5.04$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -2.28$ e Å ⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$	
I1	0.93818 (5)	0.258521 (17)	0.25097 (2)	0.01657 (12)	
I2	0.57535 (5)	0.489539 (17)	0.22730 (2)	0.01779 (12)	
I3	0.52640 (5)	0.251333 (18)	0.47905 (2)	0.02025 (13)	
I4	1.0000	0.5000	0.5000	0.02196 (17)	
15	1.0000	0.5000	0.0000	0.0287 (2)	
N1A	0.8507 (6)	0.2267 (2)	0.0944 (3)	0.0170 (14)	
N2A	0.7386 (6)	0.2201 (2)	0.1187 (3)	0.0153 (13)	
N3A	0.6758 (6)	0.2575 (2)	0.1261 (3)	0.0154 (13)	
N4A	0.7434 (6)	0.2896 (2)	0.1059 (3)	0.0147 (13)	
C1A	1.0411 (8)	0.2688 (3)	0.0272 (3)	0.0207 (17)	
H1AA	1.0390	0.2381	0.0275	0.025*	
C2A	1.1314 (8)	0.2904 (3)	-0.0032 (3)	0.0236 (19)	
H2AA	1.1922	0.2747	-0.0233	0.028*	
C3A	1.1321 (8)	0.3348 (3)	-0.0039 (3)	0.0233 (19)	

H3AA	1.1925	0.3495	-0.0253	0.028*
C4A	1.0467 (9)	0.3586 (3)	0.0260 (3)	0.0216 (18)
H4AA	1.0494	0.3892	0.0253	0.026*
C5A	0.9562 (8)	0.3372 (3)	0.0572 (3)	0.0165 (16)
H5AA	0.8977	0.3533	0.0780	0.020*
C6A	0.9524 (8)	0.2926 (3)	0.0577 (3)	0.0148 (15)
C7A	0.8506 (7)	0.2698 (3)	0.0858 (3)	0.0148 (15)
C8A	0.6944 (8)	0.1775 (3)	0.1328 (3)	0.0172 (16)
C9A	0.5735 (10)	0.1609 (3)	0.1037 (3)	0.026 (2)
H9AA	0.5180	0.1773	0.0759	0.032*
C10A	0.5358 (12)	0.1190 (4)	0.1166 (4)	0.037 (3)
H10A	0.4523	0.1066	0.0978	0.044*
C11A	0.6195 (10)	0.0951 (3)	0.1565 (4)	0.027 (2)
H11A	0.5936	0.0665	0.1649	0.032*
C12A	0.7401 (10)	0.1130 (3)	0.1841 (4)	0.029 (2)
H12A	0.7968	0.0966	0.2115	0.034*
C13A	0.7799 (9)	0.1545 (3)	0.1723 (4)	0.0241 (18)
H13A	0.8637	0.1667	0.1909	0.029*
C14A	0.5483 (7)	0.2627 (3)	0.1496 (3)	0.0147 (15)
C15A	0.4442 (8)	0.2876 (3)	0.1199 (4)	0.0219 (18)
H15A	0.4576	0.3011	0.0860	0.026*
C16A	0.3204 (9)	0.2921 (3)	0.1418 (3)	0.0231 (18)
H16A	0.2477	0.3094	0.1229	0.028*
C17A	0.3004 (8)	0.2720 (3)	0.1905 (3)	0.0203 (17)
H17A	0.2132	0.2747	0.2042	0.024*
C18A	0.4077 (8)	0.2476 (3)	0.2201 (3)	0.0195 (17)
H18A	0.3943	0.2342	0.2541	0.023*
C19A	0.5340 (8)	0.2429 (3)	0.1994 (3)	0.0173 (16)
H19A	0.6084	0.2266	0.2189	0.021*
N1B	0.6359 (6)	0.2296 (2)	0.3374 (3)	0.0138 (13)
N2B	0.6802 (6)	0.2683 (2)	0.3522 (2)	0.0115 (12)
N3B	0.8016 (6)	0.2657 (2)	0.3865 (3)	0.0157 (13)
N4B	0.8386 (7)	0.2251 (2)	0.3944 (3)	0.0151 (13)
C1B	0.6439 (9)	0.1366 (3)	0.3153 (3)	0.0222 (18)
H1BA	0.5938	0.1535	0.2867	0.027*
C2B	0.6349 (10)	0.0917 (3)	0.3136 (4)	0.0254 (19)
H2BA	0.5765	0.0782	0.2839	0.030*
C3B	0.7092 (9)	0.0668 (3)	0.3539 (4)	0.0231 (18)
H3BA	0.7038	0.0363	0.3516	0.028*
C4B	0.7924 (9)	0.0864 (3)	0.3981 (4)	0.0244 (19)
H4BA	0.8420	0.0693	0.4267	0.029*
C5B	0.8022 (9)	0.1307 (3)	0.4001 (3)	0.0209 (17)
H5BA	0.8614	0.1440	0.4297	0.025*
C6B	0.7271 (8)	0.1562 (3)	0.3596 (3)	0.0122 (14)
C7B	0.7345 (7)	0.2032(3)	0.3648 (3)	0.0131(14)
C8B	0.6083 (8)	0.3072(3)	0.3318 (3)	0.0150(15)
C9B	0.6795 (9)	0.3391 (3)	0.3069 (3)	0.0201(17)
H9BA	0.7771	0.3369	0.3055	0.024*
	V • • • • 1	0.0000		··· · ·

C10B	0.6032 (10)	0.3740 (3)	0.2844 (4)	0.0248 (19)
H10B	0.6485	0.3964	0.2671	0.030*
C11B	0.4610 (10)	0.3766 (3)	0.2870 (4)	0.0250 (19)
H11B	0.4099	0.4009	0.2712	0.030*
C12B	0.3925 (9)	0.3448 (3)	0.3120 (4)	0.0246 (19)
H12B	0.2949	0.3471	0.3132	0.030*
C13B	0.4661 (8)	0.3090 (3)	0.3357 (3)	0.0176 (16)
H13B	0.4210	0.2870	0.3538	0.021*
C14B	0.8811 (8)	0.3016 (3)	0.4122 (3)	0.0164 (16)
C15B	1.0164 (9)	0.3075 (3)	0.3998 (4)	0.027 (2)
H15B	1.0562	0.2883	0.3760	0.032*
C16B	1.0896 (9)	0.3421 (4)	0.4234 (4)	0.032 (2)
H16B	1.1821	0.3472	0.4158	0.039*
C17B	1.0297 (9)	0.3702 (3)	0.4586 (3)	0.0241 (19)
H17B	1.0807	0.3946	0.4738	0.029*
C18B	0.8969 (9)	0.3625 (3)	0.4713 (3)	0.0210 (17)
H18B	0.8577	0.3812	0.4959	0.025*
C19B	0.8205 (8)	0.3274 (3)	0.4481 (3)	0.0197 (17)
H19B	0.7295	0.3215	0.4568	0.024*
NIC	0.8767 (7)	0.5227 (2)	0.1441 (3)	0.0156 (13)
N2C	0.8347 (7)	0.4841 (2)	0.1274 (3)	0.0158 (13)
N3C	0.7115 (7)	0.4867 (2)	0.0944 (3)	0.0140 (13)
N4C	0.6703 (7)	0.5273 (2)	0.0900 (3)	0.0165 (14)
CIC	0.8953 (9)	0.6160 (3)	0.1564(3)	0.0211(17)
HICA	0.9776	0.5996	0.1676	0.025*
C2C	0.8951 (10)	0.6600 (3)	0.1653 (4)	0.028 (2)
H2CA	0.9771	0.6739	0.1829	0.033*
C3C	0.7753 (10)	0.6838 (3)	0.1485 (4)	0.0243 (19)
НЗСА	0.7757	0.7142	0.1540	0.029*
C4C	0.6547 (10)	0.6635 (3)	0.1236 (4)	0.0247 (19)
H4CA	0.5726	0.6800	0.1126	0.030*
C5C	0.6532 (9)	0.6196 (3)	0.1146 (4)	0.0224 (18)
H5CA	0.5704	0.6058	0.0975	0.027*
C6C	0.7737 (8)	0.5955 (3)	0.1308 (3)	0.0157 (15)
C7C	0.7730 (8)	0.5489 (3)	0.1213 (3)	0.0146 (15)
C8C	0.9108 (9)	0.4455 (3)	0.1465 (3)	0.0155 (15)
C9C	0.8409 (10)	0.4135 (3)	0.1721 (3)	0.0215 (18)
H9CA	0.7437	0.4156	0.1744	0.026*
C10C	0.9187 (11)	0.3784 (3)	0.1941 (4)	0.027 (2)
H10C	0.8738	0.3554	0.2105	0.033*
C11C	1.0619 (10)	0.3766 (3)	0.1923 (4)	0.029 (2)
H11C	1.1147	0.3529	0.2086	0.035*
C12C	1.1282 (10)	0.4091 (3)	0.1668 (4)	0.028 (2)
H12C	1.2258	0.4073	0.1651	0.034*
C13C	1.0522 (9)	0.4445 (3)	0.1437 (3)	0.0201 (17)
H13C	1.0966	0.4673	0.1266	0.024*
C14C	0.6317 (8)	0.4508 (3)	0.0688 (3)	0.0161 (16)
C15C	0.4901 (9)	0.4498 (3)	0.0739 (4)	0.027 (2)
	× /	× /	~ /	

H15C	0.4465	0.4725	0.0914	0.033*
C16C	0.4160 (10)	0.4139 (4)	0.0520 (4)	0.032 (2)
H16C	0.3195	0.4114	0.0555	0.038*
C17C	0.4797 (9)	0.3819 (3)	0.0254 (3)	0.0245 (19)
H17C	0.4272	0.3576	0.0108	0.029*
C18C	0.6188 (9)	0.3850 (3)	0.0198 (3)	0.0227 (18)
H18C	0.6620	0.3627	0.0016	0.027*
C19C	0.6970 (9)	0.4203 (3)	0.0404 (3)	0.0193 (17)
H19C	0.7921	0.4234	0.0351	0.023*
N1D	0.6524 (6)	0.5202 (2)	0.3844 (3)	0.0157 (13)
N2D	0.7624 (6)	0.5296 (2)	0.3600 (3)	0.0161 (14)
N3D	0.8316 (6)	0.4933 (2)	0.3514 (3)	0.0142 (13)
N4D	0.7692 (6)	0.4598 (2)	0.3707 (3)	0.0141 (13)
C1D	0.4534 (8)	0.4737 (3)	0.4414 (3)	0.0205 (17)
H1DA	0.4416	0.5040	0.4367	0.025*
C2D	0.3652 (8)	0.4506 (3)	0.4708 (4)	0.0238 (19)
H2DA	0.2926	0.4649	0.4862	0.029*
C3D	0.3834 (8)	0.4068 (3)	0.4776 (3)	0.0222 (19)
H3DA	0.3241	0.3912	0.4986	0.027*
C4D	0.4863 (9)	0.3849 (3)	0.4545 (3)	0.0222 (18)
H4DA	0.4972	0.3546	0.4592	0.027*
C5D	0.5737 (8)	0.4080 (3)	0.4242 (3)	0.0186 (16)
H5DA	0.6433	0.3934	0.4072	0.022*
C6D	0.5585 (8)	0.4527 (3)	0.4188 (3)	0.0160 (16)
C7D	0.6582 (8)	0.4777 (3)	0.3911 (3)	0.0164 (16)
C8D	0.8017 (8)	0.5739 (3)	0.3502 (4)	0.0186 (17)
C9D	0.8910 (9)	0.5946 (3)	0.3897 (3)	0.0225 (18)
H9DA	0.9335	0.5801	0.4221	0.027*
C10D	0.9173 (11)	0.6380 (3)	0.3806 (4)	0.030(2)
H10D	0.9802	0.6534	0.4071	0.036*
C11D	0.8547 (9)	0.6591 (3)	0.3342 (4)	0.0262 (19)
H11D	0.8722	0.6889	0.3295	0.031*
C12D	0.7651 (9)	0.6369 (3)	0.2938 (4)	0.027 (2)
H12D	0.7231	0.6516	0.2614	0.033*
C13D	0.7376 (9)	0.5937 (3)	0.3007 (4)	0.0234 (18)
H13D	0.6782	0.5780	0.2734	0.028*
C14D	0.9600 (8)	0.4902 (3)	0.3280 (4)	0.0182 (16)
C15D	1.0620 (9)	0.4632 (3)	0.3549 (3)	0.0213 (18)
H15D	1.0481	0.4479	0.3876	0.026*
C16D	1.1867 (9)	0.4595 (3)	0.3318 (4)	0.027 (2)
H16D	1.2583	0.4410	0.3488	0.032*
C17D	1.2077 (9)	0.4822 (3)	0.2849 (4)	0.0240 (19)
H17D	1.2935	0.4796	0.2702	0.029*
C18D	1.1012 (8)	0.5089 (3)	0.2594 (3)	0.0211 (17)
H18D	1.1152	0.5245	0.2270	0.025*
C19D	0.9749 (8)	0.5131 (3)	0.2805 (4)	0.0206 (17)
H19D	0.9021	0.5310	0.2629	0.025*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
I1	0.0169 (2)	0.0156 (3)	0.0177 (2)	0.00108 (19)	0.00432 (18)	0.0040 (2)
I2	0.0174 (2)	0.0146 (3)	0.0220 (3)	0.0025 (2)	0.00503 (19)	0.0049 (2)
I3	0.0233 (3)	0.0208 (3)	0.0167 (2)	-0.0055 (2)	0.00297 (19)	0.0000 (2)
I4	0.0230 (4)	0.0236 (4)	0.0189 (4)	0.0050 (3)	0.0015 (3)	-0.0013 (3)
I5	0.0431 (5)	0.0245 (4)	0.0181 (4)	-0.0207 (4)	0.0031 (3)	-0.0041 (3)
N1A	0.012 (3)	0.023 (4)	0.016 (3)	0.000 (3)	0.005 (2)	0.004 (3)
N2A	0.012 (3)	0.017 (4)	0.018 (3)	0.000 (3)	0.006 (2)	0.002 (3)
N3A	0.015 (3)	0.012 (3)	0.019 (3)	-0.001 (3)	0.001 (2)	0.002 (3)
N4A	0.015 (3)	0.018 (4)	0.012 (3)	-0.001 (3)	0.006 (2)	0.004 (3)
C1A	0.019 (4)	0.025 (5)	0.018 (4)	0.001 (3)	0.004 (3)	0.000 (3)
C2A	0.017 (4)	0.038 (6)	0.019 (4)	-0.001 (4)	0.010 (3)	0.000 (4)
C3A	0.012 (3)	0.040 (6)	0.017 (4)	-0.005 (4)	0.002 (3)	0.006 (4)
C4A	0.024 (4)	0.023 (5)	0.016 (4)	-0.007 (3)	-0.004 (3)	0.007 (3)
C5A	0.016 (3)	0.023 (4)	0.010 (3)	-0.001 (3)	0.002 (3)	0.003 (3)
C6A	0.012 (3)	0.015 (4)	0.017 (4)	-0.002 (3)	0.001 (3)	0.003 (3)
C7A	0.012 (3)	0.019 (4)	0.014 (4)	0.000 (3)	0.005 (3)	0.003 (3)
C8A	0.024 (4)	0.016 (4)	0.014 (4)	0.000 (3)	0.010 (3)	0.000 (3)
C9A	0.041 (5)	0.027 (5)	0.011 (4)	-0.015 (4)	0.002 (3)	0.003 (3)
C10A	0.053 (6)	0.041 (6)	0.014 (4)	-0.024 (5)	-0.001 (4)	0.008 (4)
C11A	0.047 (5)	0.019 (4)	0.018 (4)	-0.011 (4)	0.015 (4)	-0.001 (3)
C12A	0.034 (5)	0.020 (5)	0.031 (5)	0.002 (4)	0.000 (4)	0.008 (4)
C13A	0.020 (4)	0.017 (4)	0.034 (5)	0.001 (3)	0.001 (3)	0.004 (4)
C14A	0.009 (3)	0.018 (4)	0.017 (4)	-0.002(3)	0.004 (3)	-0.005 (3)
C15A	0.019 (4)	0.024 (5)	0.022 (4)	0.005 (3)	0.004 (3)	-0.001 (4)
C16A	0.021 (4)	0.031 (5)	0.017 (4)	0.004 (4)	0.003 (3)	-0.001 (4)
C17A	0.015 (4)	0.023 (5)	0.023 (4)	-0.003(3)	0.006 (3)	-0.007 (4)
C18A	0.019 (4)	0.017 (4)	0.024 (4)	-0.009(3)	0.010 (3)	-0.002(3)
C19A	0.016 (3)	0.015 (4)	0.022 (4)	0.001 (3)	0.005 (3)	0.000 (3)
N1B	0.016 (3)	0.011 (3)	0.014 (3)	-0.001(3)	0.001 (2)	0.003 (3)
N2B	0.017 (3)	0.009 (3)	0.009 (3)	0.000 (2)	0.002 (2)	0.003 (2)
N3B	0.012 (3)	0.014 (3)	0.021 (3)	-0.001(3)	0.000 (2)	-0.001 (3)
N4B	0.016 (3)	0.013 (3)	0.017 (3)	0.000 (3)	0.005 (2)	0.004 (3)
C1B	0.026 (4)	0.020 (4)	0.019 (4)	-0.001 (4)	-0.003 (3)	0.006 (3)
C2B	0.034 (5)	0.015 (4)	0.027 (5)	-0.006 (4)	0.002 (4)	-0.003 (4)
C3B	0.030 (4)	0.016 (4)	0.026 (4)	0.000 (4)	0.014 (4)	-0.003 (4)
C4B	0.032 (5)	0.024 (5)	0.018 (4)	0.008 (4)	0.005 (3)	0.003 (4)
C5B	0.026 (4)	0.021 (4)	0.014 (4)	0.003 (3)	-0.003 (3)	0.006 (3)
C6B	0.015 (3)	0.015 (4)	0.008 (3)	0.000 (3)	0.006 (3)	0.002 (3)
C7B	0.012 (3)	0.013 (4)	0.015 (3)	0.000 (3)	0.002 (3)	0.004 (3)
C8B	0.020 (4)	0.010 (4)	0.013 (4)	0.004 (3)	-0.001 (3)	-0.004 (3)
C9B	0.023 (4)	0.016 (4)	0.022 (4)	0.002 (3)	0.005 (3)	0.001 (3)
C10B	0.038 (5)	0.012 (4)	0.025 (4)	0.004 (4)	0.009 (4)	0.005 (3)
C11B	0.039 (5)	0.013 (4)	0.023 (4)	0.010 (4)	0.002 (4)	0.002 (3)
C12B	0.019 (4)	0.026 (5)	0.028 (5)	0.007 (4)	-0.002(3)	-0.003 (4)
	× /	× /	× /	× /	× /	× /

C14B	0.013 (3)	0.016 (4)	0.019 (4)	-0.004(3)	0.001 (3)	-0.001(3)
C15B	0.024 (4)	0.033 (5)	0.027 (5)	-0.008(4)	0.011 (4)	-0.018(4)
C16B	0.021 (4)	0.046 (6)	0.031 (5)	-0.020 (4)	0.011 (4)	-0.015 (5)
C17B	0.027 (4)	0.026 (5)	0.018 (4)	-0.008 (4)	-0.005 (3)	-0.008(4)
C18B	0.024 (4)	0.025 (5)	0.014 (4)	-0.002 (4)	0.004 (3)	-0.006(3)
C19B	0.015 (4)	0.022 (4)	0.024 (4)	-0.003 (3)	0.006 (3)	-0.006(3)
N1C	0.018 (3)	0.012 (3)	0.017 (3)	0.000 (3)	0.003 (2)	0.001 (3)
N2C	0.016 (3)	0.011 (3)	0.021 (3)	0.000 (3)	0.001 (3)	0.001 (3)
N3C	0.020 (3)	0.012 (3)	0.010 (3)	0.000 (3)	0.001 (2)	0.001 (3)
N4C	0.019 (3)	0.013 (3)	0.017 (3)	0.003 (3)	0.000 (3)	0.001 (3)
C1C	0.022 (4)	0.021 (4)	0.020 (4)	0.003 (3)	0.007 (3)	0.001 (3)
C2C	0.032 (5)	0.022 (5)	0.031 (5)	-0.005(4)	0.008 (4)	-0.004(4)
C3C	0.041(5)	0.009(4)	0.027(5)	0.000 (4)	0.022 (4)	0.000 (3)
C4C	0.032 (5)	0.020 (5)	0.025 (4)	0.009 (4)	0.015 (4)	0.011 (4)
C5C	0.022 (4)	0.022 (5)	0.022 (4)	0.002 (3)	0.002 (3)	0.001 (4)
C6C	0.024(4)	0.013 (4)	0.012(3)	-0.001(3)	0.008(3)	0.003(3)
C7C	0.020(4)	0.018 (4)	0.007(3)	-0.002(3)	0.006 (3)	0.004(3)
C8C	0.029(4)	0.011 (4)	0.007(3)	0.003(3)	0.002(3)	0.005(3)
C9C	0.035(5)	0.018 (4)	0.013(4)	0.002 (4)	0.007(3)	-0.001(3)
C10C	0.050 (6)	0.018 (5)	0.017 (4)	0.010 (4)	0.012 (4)	0.006 (3)
CIIC	0.040 (5)	0.029(5)	0.017 (4)	0.017 (4)	0.001 (4)	0.004 (4)
C12C	0.032 (5)	0.026 (5)	0.026 (5)	0.010 (4)	0.001 (4)	-0.006(4)
C13C	0.027 (4)	0.021 (4)	0.011 (4)	0.001 (3)	-0.001(3)	0.000 (3)
C14C	0.020 (4)	0.017 (4)	0.010 (3)	-0.003 (3)	-0.001(3)	0.000 (3)
C15C	0.022 (4)	0.028 (5)	0.032 (5)	-0.004 (4)	0.004 (4)	-0.009(4)
C16C	0.024 (4)	0.041 (6)	0.030 (5)	-0.013 (4)	0.003 (4)	-0.009(4)
C17C	0.031 (4)	0.029 (5)	0.012 (4)	-0.013 (4)	-0.003 (3)	-0.004(3)
C18C	0.033 (5)	0.023 (5)	0.010 (4)	-0.004 (4)	-0.001 (3)	0.000 (3)
C19C	0.025 (4)	0.021 (4)	0.011 (4)	-0.002(3)	0.002 (3)	-0.002(3)
N1D	0.015 (3)	0.017 (4)	0.017 (3)	0.000 (3)	0.008 (2)	0.000 (3)
N2D	0.014 (3)	0.012 (3)	0.023 (3)	0.001 (3)	0.005 (3)	0.001 (3)
N3D	0.013 (3)	0.014 (3)	0.016 (3)	-0.001 (3)	0.005 (2)	0.003 (3)
N4D	0.015 (3)	0.016 (3)	0.012 (3)	0.000 (3)	0.003 (2)	0.001 (3)
C1D	0.017 (4)	0.020 (4)	0.025 (4)	0.000 (3)	0.005 (3)	0.004 (3)
C2D	0.011 (3)	0.040 (6)	0.022 (4)	-0.002(3)	0.008 (3)	0.000 (4)
C3D	0.019 (4)	0.035 (5)	0.013 (4)	-0.012 (4)	0.002 (3)	0.006 (4)
C4D	0.027 (4)	0.023 (5)	0.018 (4)	-0.009 (4)	0.008 (3)	0.000 (3)
C5D	0.023 (4)	0.019 (4)	0.015 (4)	0.001 (3)	0.004 (3)	0.001 (3)
C6D	0.017 (4)	0.019 (4)	0.013 (3)	-0.003 (3)	0.004 (3)	0.006 (3)
C7D	0.014 (3)	0.017 (4)	0.018 (4)	0.001 (3)	0.000 (3)	0.003 (3)
C8D	0.016 (4)	0.011 (4)	0.031 (4)	0.001 (3)	0.010 (3)	0.000 (3)
C9D	0.032 (4)	0.022 (5)	0.015 (4)	-0.005 (4)	0.008 (3)	0.004 (3)
C10D	0.041 (5)	0.026 (5)	0.023 (4)	-0.010 (4)	0.005 (4)	-0.003 (4)
C11D	0.031 (5)	0.016 (4)	0.036 (5)	0.001 (4)	0.020 (4)	0.004 (4)
C12D	0.028 (4)	0.020 (5)	0.036 (5)	0.007 (4)	0.011 (4)	0.008 (4)
C13D	0.026 (4)	0.024 (5)	0.022 (4)	0.002 (4)	0.007 (3)	-0.001 (4)
C14D	0.012 (3)	0.016 (4)	0.028 (4)	0.000 (3)	0.006 (3)	-0.001 (3)
C15D	0.022 (4)	0.023 (5)	0.019 (4)	0.008 (3)	0.006 (3)	0.004 (3)

supporting information

C16D	0.019 (4)	0.036 (6)	0.025 (4)	0.009 (4)	0.001 (3)	-0.006 (4)	
C17D	0.020 (4)	0.031 (5)	0.022 (4)	-0.004 (4)	0.006 (3)	-0.009 (4)	
C18D	0.022 (4)	0.022 (5)	0.020 (4)	-0.003 (3)	0.005 (3)	-0.004 (3)	
C19D	0.017 (4)	0.017 (4)	0.027 (4)	-0.001 (3)	0.004 (3)	-0.002 (4)	

Geometric parameters (Å, °)

N1A—N2A	1.318 (9)	N1C—N2C	1.310 (9)
N1A—C7A	1.353 (11)	N1C—C7C	1.348 (10)
N2A—N3A	1.333 (9)	N2C—N3C	1.342 (9)
N2A—C8A	1.442 (11)	N2C—C8C	1.448 (10)
N3A—N4A	1.322 (9)	N3C—N4C	1.320 (9)
N3A—C14A	1.437 (9)	N3C—C14C	1.447 (10)
N4A—C7A	1.350 (10)	N4C—C7C	1.343 (10)
C1A—C2A	1.392 (12)	C1C—C2C	1.382 (13)
C1A—C6A	1.416 (11)	C1C—C6C	1.403 (12)
C1A—H1AA	0.9500	C1C—H1CA	0.9500
C2A—C3A	1.375 (14)	C2C—C3C	1.386 (13)
C2A—H2AA	0.9500	C2C—H2CA	0.9500
C3A—C4A	1.384 (13)	C3C—C4C	1.388 (13)
СЗА—НЗАА	0.9500	СЗС—НЗСА	0.9500
C4A—C5A	1.402 (11)	C4C—C5C	1.379 (13)
C4A—H4AA	0.9500	C4C—H4CA	0.9500
C5A—C6A	1.382 (12)	C5C—C6C	1.394 (11)
С5А—Н5АА	0.9500	C5C—H5CA	0.9500
C6A—C7A	1.457 (10)	C6C—C7C	1.462 (11)
C8A—C13A	1.378 (12)	C8C—C13C	1.376 (11)
C8A—C9A	1.380 (12)	C8C—C9C	1.395 (12)
C9A-C10A	1.397 (13)	C9C—C10C	1.386 (12)
С9А—Н9АА	0.9500	С9С—Н9СА	0.9500
C10A—C11A	1.389 (14)	C10C—C11C	1.391 (13)
C10A—H10A	0.9500	C10C—H10C	0.9500
C11A—C12A	1.378 (13)	C11C—C12C	1.384 (14)
C11A—H11A	0.9500	C11C—H11C	0.9500
C12A—C13A	1.383 (13)	C12C—C13C	1.396 (12)
C12A—H12A	0.9500	C12C—H12C	0.9500
C13A—H13A	0.9500	C13C—H13C	0.9500
C14A—C19A	1.381 (11)	C14C—C19C	1.373 (12)
C14A—C15A	1.390 (11)	C14C—C15C	1.390 (11)
C15A—C16A	1.381 (11)	C15C—C16C	1.390 (13)
C15A—H15A	0.9500	C15C—H15C	0.9500
C16A—C17A	1.377 (12)	C16C—C17C	1.375 (14)
C16A—H16A	0.9500	C16C—H16C	0.9500
C17A—C18A	1.400 (12)	C17C—C18C	1.371 (12)
C17A—H17A	0.9500	C17C—H17C	0.9500
C18A—C19A	1.389 (11)	C18C—C19C	1.384 (12)
C18A—H18A	0.9500	C18C—H18C	0.9500
C19A—H19A	0.9500	C19C—H19C	0.9500

N1B—N2B	1.307 (9)	N1D—N2D	1.318 (9)
N1B—C7B	1.357 (9)	N1D—C7D	1.328 (11)
N2B—N3B	1.344 (8)	N2D—N3D	1.338 (9)
N2B—C8B	1.446 (10)	N2D—C8D	1.452 (10)
N3B—N4B	1.317 (9)	N3D—N4D	1.319 (9)
N3B—C14B	1.443 (10)	N3D—C14D	1.438 (9)
N4B—C7B	1.337 (10)	N4D—C7D	1.361 (10)
C1B—C6B	1.393 (11)	C1D—C6D	1.383 (11)
C1B—C2B	1.393 (12)	C1D—C2D	1.386 (11)
C1B—H1BA	0.9500	C1D—H1DA	0.9500
C2B—C3B	1.372 (13)	C2D—C3D	1.377 (14)
C2B—H2BA	0.9500	C2D—H2DA	0.9500
C3B—C4B	1.390 (13)	C3D—C4D	1.385 (13)
СЗВ—НЗВА	0.9500	C3D—H3DA	0.9500
C4B—C5B	1.379 (13)	C4D—C5D	1.393 (11)
C4B—H4BA	0.9500	C4D—H4DA	0.9500
C5B—C6B	1.388 (10)	C5D—C6D	1.396 (12)
C5B—H5BA	0.9500	C5D—H5DA	0.9500
C6B—C7B	1.463 (11)	C6D—C7D	1.470 (11)
C8B—C9B	1.389 (12)	C8D—C9D	1.362 (12)
C8B—C13B	1.390 (11)	C8D—C13D	1.417 (12)
C9B—C10B	1.379 (12)	C9D—C10D	1.393 (13)
С9В—Н9ВА	0.9500	C9D—H9DA	0.9500
C10B—C11B	1.385 (13)	C10D—C11D	1.370 (13)
C10B—H10B	0.9500	C10D—H10D	0.9500
C11B—C12B	1.376 (13)	C11D—C12D	1.399 (14)
C11B—H11B	0.9500	C11D—H11D	0.9500
C12B—C13B	1.398 (12)	C12D—C13D	1.378 (13)
C12B—H12B	0.9500	C12D—H12D	0.9500
C13B—H13B	0.9500	C13D—H13D	0.9500
C14B—C19B	1.374 (11)	C14D—C19D	1.382 (12)
C14B—C15B	1.392 (11)	C14D—C15D	1.387 (11)
C15B—C16B	1.366 (13)	C15D—C16D	1.402 (12)
C15B—H15B	0.9500	C15D—H15D	0.9500
C16B—C17B	1.401 (13)	C16D—C17D	1.378 (13)
C16B—H16B	0.9500	C16D—H16D	0.9500
C17B—C18B	1.379 (12)	C17D—C18D	1.398 (12)
C17B—H17B	0.9500	C17D—H17D	0.9500
C18B—C19B	1.390 (12)	C18D—C19D	1.392 (11)
C18B—H18B	0.9500	C18D—H18D	0.9500
C19B—H19B	0.9500	C19D—H19D	0.9500
N2A—N1A—C7A	103.9 (6)	N2C—N1C—C7C	104.0 (6)
N1A—N2A—N3A	110.0 (6)	N1C—N2C—N3C	110.0 (6)
N1A—N2A—C8A	122.5 (7)	N1C—N2C—C8C	122.3 (6)
N3A—N2A—C8A	127.4 (6)	N3C—N2C—C8C	127.6 (7)
N4A—N3A—N2A	110.3 (6)	N4C—N3C—N2C	109.8 (6)
N4A—N3A—C14A	124.0 (7)	N4C—N3C—C14C	124.2 (6)

N2A—N3A—C14A	125.6 (7)	N2C—N3C—C14C	126.0 (7)
N3A—N4A—C7A	103.7 (7)	N3C—N4C—C7C	103.8 (6)
C2A—C1A—C6A	119.6 (8)	C2C—C1C—C6C	119.9 (8)
C2A—C1A—H1AA	120.2	C2C—C1C—H1CA	120.1
C6A—C1A—H1AA	120.2	C6C—C1C—H1CA	120.1
C3A—C2A—C1A	119.6 (8)	C1C—C2C—C3C	119.9 (9)
СЗА—С2А—Н2АА	120.2	C1C—C2C—H2CA	120.0
C1A—C2A—H2AA	120.2	C3C—C2C—H2CA	120.0
C2A—C3A—C4A	121.5 (8)	C2C—C3C—C4C	120.2 (8)
С2А—С3А—НЗАА	119.3	C2C—C3C—H3CA	119.9
С4А—С3А—НЗАА	119.3	C4C—C3C—H3CA	119.9
C3A—C4A—C5A	119.6 (9)	C5C—C4C—C3C	120.5 (8)
СЗА—С4А—Н4АА	120.2	C5C—C4C—H4CA	119.8
С5А—С4А—Н4АА	120.2	C3C—C4C—H4CA	119.8
C6A—C5A—C4A	119.7 (8)	C4C—C5C—C6C	119.7 (8)
С6А—С5А—Н5АА	120.1	C4C—C5C—H5CA	120.2
С4А—С5А—Н5АА	120.1	C6C—C5C—H5CA	120.2
C5A—C6A—C1A	120.0 (7)	C5C—C6C—C1C	119.8 (8)
C5A—C6A—C7A	120.6 (7)	C5C—C6C—C7C	119.9 (7)
C1A—C6A—C7A	119.3 (7)	C1C—C6C—C7C	120.2 (7)
N4A—C7A—N1A	112.1 (7)	N4C—C7C—N1C	112.5 (7)
N4A—C7A—C6A	123.4 (7)	N4C—C7C—C6C	124.7 (7)
N1A—C7A—C6A	124.5 (7)	N1C—C7C—C6C	122.8 (7)
C13A—C8A—C9A	123.2 (8)	C13C—C8C—C9C	123.4 (8)
C13A—C8A—N2A	118.2 (7)	C13C—C8C—N2C	117.7 (7)
C9A—C8A—N2A	118.4 (7)	C9C—C8C—N2C	118.4 (7)
C8A—C9A—C10A	117.4 (9)	C10C—C9C—C8C	117.4 (8)
С8А—С9А—Н9АА	121.3	С10С—С9С—Н9СА	121.3
С10А—С9А—Н9АА	121.3	С8С—С9С—Н9СА	121.3
C11A—C10A—C9A	120.5 (9)	C9C—C10C—C11C	120.5 (9)
C11A—C10A—H10A	119.7	C9C—C10C—H10C	119.8
C9A—C10A—H10A	119.7	C11C—C10C—H10C	119.8
C12A—C11A—C10A	119.9 (9)	C12C—C11C—C10C	120.6 (8)
C12A—C11A—H11A	120.1	C12C—C11C—H11C	119.7
C10A—C11A—H11A	120.1	C10C—C11C—H11C	119.7
C11A—C12A—C13A	120.9 (9)	C11C—C12C—C13C	120.2 (9)
C11A—C12A—H12A	119.6	C11C—C12C—H12C	119.9
C13A—C12A—H12A	119.6	C13C—C12C—H12C	119.9
C8A—C13A—C12A	118.1 (8)	C8C—C13C—C12C	117.9 (8)
C8A—C13A—H13A	121.0	C8C—C13C—H13C	121.1
С12А—С13А—Н13А	121.0	C12C—C13C—H13C	121.1
C19A—C14A—C15A	123.5 (7)	C19C—C14C—C15C	123.8 (8)
C19A—C14A—N3A	119.7 (7)	C19C—C14C—N3C	119.5 (7)
C15A—C14A—N3A	116.9 (7)	C15C—C14C—N3C	116.7 (7)
C16A—C15A—C14A	117.2 (8)	C14C—C15C—C16C	116.3 (9)
C16A—C15A—H15A	121.4	C14C—C15C—H15C	121.8
C14A—C15A—H15A	121.4	C16C—C15C—H15C	121.8
C17A - C16A - C15A	121.2 (8)	C17C - C16C - C15C	121.2 (9)
			())

C17A—C16A—H16A	119.4	C17C—C16C—H16C	119.4
C15A—C16A—H16A	119.4	C15C—C16C—H16C	119.4
C16A—C17A—C18A	120.4 (8)	C18C—C17C—C16C	120.2 (8)
C16A—C17A—H17A	119.8	C18C—C17C—H17C	119.9
C18A—C17A—H17A	119.8	C16C—C17C—H17C	119.9
C19A—C18A—C17A	119.7 (8)	C17C—C18C—C19C	120.8 (9)
C19A—C18A—H18A	120.2	C17C—C18C—H18C	119.6
C17A—C18A—H18A	120.2	C19C—C18C—H18C	119.6
C14A - C19A - C18A	118.0(7)	C14C - C19C - C18C	117.4 (8)
C14A - C19A - H19A	121.0	C14C—C19C—H19C	121.3
C18A - C19A - H19A	121.0	C18C - C19C - H19C	121.3
N2B—N1B—C7B	103.7 (6)	N2D-N1D-C7D	104.6 (6)
N1B-N2B-N3B	110.0 (6)	N1D N2D N3D	109.6 (6)
N1B-N2B-C8B	123.2 (6)	N1D N2D C8D	121.8 (6)
N3B_N2B_C8B	125.2 (6)	N3D N2D C8D	121.0(0) 128.3(6)
N4B_N3B_N2B	120.7(0)	N4D N3D N2D	120.3(0) 1101(6)
NAB N3B C14B	123.8 (6)	NAD N3D C14D	1233(7)
N2B N3B C14B	125.8(0) 126.2(7)	N2D $N3D$ $C14D$	125.5(7) 126.5(7)
N2P N/P C7P	120.2(7) 103.7(6)	N2D N4D C7D	120.3(7) 103.3(6)
$C_{AB} = C_{AB} = C_{AB}$	103.7(0) 110.2(8)	C_{C}	103.3(0) 110.8(2)
C6B $C1B$ $H1BA$	119.2 (6)	C6D = C1D = H1DA	119.0 (0)
C_{0D} C_{1D} H_{1DA}	120.4	$C_{0}D = C_{1}D = H_{1}DA$	120.1
C_{2B} C_{2B} C_{1B} C_{1B}	120.4	C_{2D} C_{2D} C_{1D} C_{1D}	120.1
$C_{3}D = C_{2}D = U_{3}D_{4}$	121.0 (8)	C_{2D} C_{2D} U_{2D}	119.7 (8)
C_{3B} C_{2B} H_{2BA}	119.5	$C_{2}D = C_{2}D = H_{2}DA$	120.1
C1B - C2B - H2BA	119.5	C1D - C2D - H2DA	120.1
C_{2B} C_{3B} C_{4B}	119.9 (8)	C_{2D} C_{3D} C_{4D}	121.4 (8)
CAD C2D H2DA	120.1	C4D C3D H3DA	119.5
C4B - C3B - H3BA	120.1	C4D - C3D - H3DA	119.3
$C_{2}B - C_{4}B - C_{3}B$	119.5 (8)	C3D = C4D = U4D A	119.0 (9)
C3B—C4B—H4BA	120.3	C3D—C4D—H4DA	120.5
C3B—C4B—H4BA	120.3	CSD—C4D—H4DA	120.5
C4B—C5B—C6B	121.1 (8)	C4D—C5D—C6D	119.7 (8)
С4В—С5В—Н5ВА	119.5	C4D—C5D—H5DA	120.1
С6В—С5В—Н5ВА	119.5	C6D—C5D—H5DA	120.1
C5B—C6B—C1B	119.3 (8)	C1D—C6D—C5D	120.3 (7)
С5В—С6В—С7В	119.5 (7)	C1D—C6D—C7D	119.7 (8)
C1B—C6B—C7B	121.2 (7)	C5D—C6D—C7D	120.0 (7)
N4B—C7B—N1B	112.6 (7)	N1D—C7D—N4D	112.4 (7)
N4B—C7B—C6B	125.0 (7)	N1D—C7D—C6D	124.2 (7)
N1B—C7B—C6B	122.3 (7)	N4D—C7D—C6D	123.4 (7)
C9B—C8B—C13B	123.6 (8)	C9D—C8D—C13D	123.8 (8)
C9B—C8B—N2B	120.0 (7)	C9D—C8D—N2D	118.9 (8)
C13B—C8B—N2B	116.2 (7)	C13D—C8D—N2D	117.3 (7)
C10B—C9B—C8B	117.5 (8)	C8D—C9D—C10D	117.1 (8)
C10B—C9B—H9BA	121.2	C8D—C9D—H9DA	121.5
C8B—C9B—H9BA	121.2	C10D—C9D—H9DA	121.5
C9B—C10B—C11B	120.5 (8)	C11D—C10D—C9D	121.5 (9)
C9B-C10B-H10B	119.8	C11D-C10D-H10D	119.3

C11B—C10B—H10B	119.8	C9D-C10D-H10D	119.3
C12B—C11B—C10B	121.1 (8)	C10D-C11D-C12D	120.4 (9)
C12B—C11B—H11B	119.4	C10D—C11D—H11D	119.8
C10B—C11B—H11B	119.4	C12D—C11D—H11D	119.8
C11B—C12B—C13B	120.3 (8)	C13D—C12D—C11D	120.1 (9)
C11B—C12B—H12B	119.9	C13D—C12D—H12D	119.9
C13B—C12B—H12B	119.9	C11D—C12D—H12D	119.9
C8B—C13B—C12B	117.0 (8)	C12D—C13D—C8D	117.2 (8)
C8B—C13B—H13B	121.5	C12D—C13D—H13D	121.4
C12B—C13B—H13B	121.5	C8D—C13D—H13D	121.4
C19B—C14B—C15B	123.7 (8)	C19D—C14D—C15D	123.9 (7)
C19B—C14B—N3B	118.5 (7)	C19D - C14D - N3D	119.5 (7)
C15B-C14B-N3B	117.8 (7)	C15D-C14D-N3D	116.6 (7)
C16B—C15B—C14B	117.4 (8)	C14D—C15D—C16D	116.9 (8)
C16B—C15B—H15B	121.3	C14D—C15D—H15D	121.6
C14B— $C15B$ — $H15B$	121.3	C16D - C15D - H15D	121.6
C15B— $C16B$ — $C17B$	120.7 (8)	C17D - C16D - C15D	121.6 (8)
C15B— $C16B$ — $H16B$	119 7	C17D $C16D$ $H16D$	119.2
C17B— $C16B$ — $H16B$	119.7	C15D - C16D - H16D	119.2
C18B - C17B - C16B	120.3 (8)	C_{16D} C_{17D} C_{18D}	119.2
C18B— $C17B$ — $H17B$	119.8	C_{16D} C_{17D} C_{10D} H_{17D}	120.4
C16B - C17B - H17B	119.8	C_{18D} C_{17D} H_{17D}	120.4
C17B $C18B$ $C19B$	120.1 (8)	$C_{19}D - C_{18}D - C_{17}D$	120.4
C17B $C18B$ $H18B$	120.1 (0)	$C_{19D} = C_{18D} = C_{17D}$	121.3 (0)
C_{10} C	120.0	C17D $C18D$ $H18D$	119.5
C_{14}^{14} C_{10}^{10} C_{18}^{18}	120.0 117.8(7)	C14D $C19D$ $C18D$	117.3 117.2(8)
C14D - C19D - C18D	117.0(7)	C14D = C19D = C18D	121 4
$C_{14}D - C_{19}D - H_{19}D$	121.1	$C_{14}D = C_{19}D = H_{19}D$	121.4
С18Б—С19Б—п19В	121.1	С18Д—С19Д—Н19Д	121.4
C7A—N1A—N2A—N3A	-1.8 (8)	C7C—N1C—N2C—N3C	1.6 (8)
C7A—N1A—N2A—C8A	176.8 (7)	C7C—N1C—N2C—C8C	-174.8 (7)
N1A—N2A—N3A—N4A	1.3 (8)	N1C—N2C—N3C—N4C	-1.1 (8)
C8A—N2A—N3A—N4A	-177.3 (7)	C8C—N2C—N3C—N4C	175.0 (7)
N1A—N2A—N3A—C14A	177.8 (7)	N1C—N2C—N3C—C14C	-179.1 (7)
C8A—N2A—N3A—C14A	-0.7 (12)	C8C—N2C—N3C—C14C	-3.0(12)
N2A—N3A—N4A—C7A	-0.1 (8)	N2C—N3C—N4C—C7C	0.1 (8)
C14A—N3A—N4A—C7A	-176.7 (7)	C14C—N3C—N4C—C7C	178.1 (7)
C6A—C1A—C2A—C3A	-0.9 (12)	C6C—C1C—C2C—C3C	-0.5(13)
C1A—C2A—C3A—C4A	1.3 (13)	C1C—C2C—C3C—C4C	1.1 (13)
C2A—C3A—C4A—C5A	-0.7 (12)	C2C—C3C—C4C—C5C	-0.8(13)
C3A—C4A—C5A—C6A	-0.4 (11)	C3C—C4C—C5C—C6C	0.1 (13)
C4A—C5A—C6A—C1A	0.8 (11)	C4C—C5C—C6C—C1C	0.4 (12)
C4A—C5A—C6A—C7A	-174.5 (7)	C4C—C5C—C6C—C7C	-179.8 (7)
C2A—C1A—C6A—C5A	-0.2 (12)	C2C—C1C—C6C—C5C	-0.2 (12)
C2A—C1A—C6A—C7A	175.2 (7)	C2C—C1C—C6C—C7C	-179.9 (8)
N3A - N4A - C7A - N1A	-1.1(8)	N3C-N4C-C7C-N1C	0.9 (8)
N3A—N4A—C7A—C6A	178.1 (7)	N3C—N4C—C7C—C6C	-178.3(7)
N2A—N1A—C7A—N4A	1.8 (9)	N2C-N1C-C7C-N4C	-1.5(8)
	(-)		(0)

N2A—N1A—C7A—C6A	-177.4 (7)	N2C—N1C—C7C—C6C	177.7 (7)
C5A—C6A—C7A—N4A	9.7 (12)	C5C—C6C—C7C—N4C	10.8 (12)
C1A—C6A—C7A—N4A	-165.7 (7)	C1C—C6C—C7C—N4C	-169.4 (7)
C5A—C6A—C7A—N1A	-171.3(7)	C5C—C6C—C7C—N1C	-168.3 (7)
C1A—C6A—C7A—N1A	13.3 (12)	C1C—C6C—C7C—N1C	11.5 (11)
N1A—N2A—C8A—C13A	65.3 (10)	N1C—N2C—C8C—C13C	-49.9 (10)
N3A—N2A—C8A—C13A	-116.3 (9)	N3C—N2C—C8C—C13C	134.4 (8)
N1A—N2A—C8A—C9A	-110.5 (9)	N1C—N2C—C8C—C9C	123.0 (8)
N3A—N2A—C8A—C9A	67.9 (11)	N3C—N2C—C8C—C9C	-52.6 (11)
C13A—C8A—C9A—C10A	1.8 (14)	C13C—C8C—C9C—C10C	-2.3(12)
N2A—C8A—C9A—C10A	177.4 (8)	N2C-C8C-C9C-C10C	-174.8(7)
C8A—C9A—C10A—C11A	-1.2(15)	C8C—C9C—C10C—C11C	2.6 (13)
C9A—C10A—C11A—C12A	0.5 (15)	C9C—C10C—C11C—C12C	-2.3(14)
C10A—C11A—C12A—C13A	-0.3(15)	C10C—C11C—C12C—C13C	1.4 (14)
C9A—C8A—C13A—C12A	-1.7(13)	C9C—C8C—C13C—C12C	1.5 (12)
N2A—C8A—C13A—C12A	-177.3(8)	N2C—C8C—C13C—C12C	174.0 (7)
C11A—C12A—C13A—C8A	0.9 (14)	C11C—C12C—C13C—C8C	-1.0(13)
N4A—N3A—C14A—C19A	-133.8(8)	N4C—N3C—C14C—C19C	133.0 (8)
N2A—N3A—C14A—C19A	50.1 (11)	N2C—N3C—C14C—C19C	-49.3 (11)
N4A—N3A—C14A—C15A	46.7 (10)	N4C—N3C—C14C—C15C	-45.9 (11)
N2A—N3A—C14A—C15A	-129.5 (8)	N2C—N3C—C14C—C15C	131.8 (8)
C19A—C14A—C15A—C16A	-0.7 (13)	C19C—C14C—C15C—C16C	4.9 (14)
N3A—C14A—C15A—C16A	178.9 (8)	N3C—C14C—C15C—C16C	-176.3 (8)
C14A—C15A—C16A—C17A	-1.1 (13)	C14C—C15C—C16C—C17C	-1.9 (15)
C15A—C16A—C17A—C18A	2.2 (14)	C15C—C16C—C17C—C18C	-0.2(15)
C16A—C17A—C18A—C19A	-1.4 (13)	C16C—C17C—C18C—C19C	-0.4(13)
C15A—C14A—C19A—C18A	1.4 (12)	C15C—C14C—C19C—C18C	-5.5 (13)
N3A—C14A—C19A—C18A	-178.2 (7)	N3C-C14C-C19C-C18C	175.7 (7)
C17A—C18A—C19A—C14A	-0.4 (12)	C17C—C18C—C19C—C14C	3.1 (12)
C7B—N1B—N2B—N3B	0.8 (8)	C7D—N1D—N2D—N3D	1.1 (8)
C7B—N1B—N2B—C8B	178.6 (7)	C7D—N1D—N2D—C8D	-173.9 (7)
N1B—N2B—N3B—N4B	0.3 (8)	N1D—N2D—N3D—N4D	-0.9 (8)
C8B—N2B—N3B—N4B	-177.4 (7)	C8D—N2D—N3D—N4D	173.7 (7)
N1B—N2B—N3B—C14B	-178.9 (7)	N1D—N2D—N3D—C14D	-177.3 (7)
C8B—N2B—N3B—C14B	3.5 (12)	C8D—N2D—N3D—C14D	-2.6(12)
N2B—N3B—N4B—C7B	-1.3 (8)	N2D—N3D—N4D—C7D	0.3 (8)
C14B—N3B—N4B—C7B	177.9 (7)	C14D—N3D—N4D—C7D	176.8 (7)
C6B—C1B—C2B—C3B	-1.6 (14)	C6D—C1D—C2D—C3D	0.3 (12)
C1B—C2B—C3B—C4B	1.6 (14)	C1D—C2D—C3D—C4D	-1.6(13)
C2B—C3B—C4B—C5B	-1.8 (13)	C2D-C3D-C4D-C5D	0.6 (12)
C3B—C4B—C5B—C6B	2.0 (13)	C3D—C4D—C5D—C6D	1.6 (12)
C4B-C5B-C6B-C1B	-2.0(12)	C2D-C1D-C6D-C5D	1.8 (12)
C4B—C5B—C6B—C7B	176.7 (8)	C2D-C1D-C6D-C7D	-175.5 (7)
C2B—C1B—C6B—C5B	1.8 (12)	C4DC5DC6DC1D	-2.8 (12)
C2B—C1B—C6B—C7B	-177.0 (8)	C4DC5DC6DC7D	174.6 (7)
N3B—N4B—C7B—N1B	1.8 (9)	N2D—N1D—C7D—N4D	-1.0 (9)
N3B—N4B—C7B—C6B	179.4 (7)	N2D—N1D—C7D—C6D	177.6 (7)
N2B—N1B—C7B—N4B	-1.7 (8)	N3D—N4D—C7D—N1D	0.4 (8)

N2B—N1B—C7B—C6B	-179.3 (7)	N3D—N4D—C7D—C6D	-178.2 (7)
C5B—C6B—C7B—N4B	22.8 (12)	C1D—C6D—C7D—N1D	-2.3 (12)
C1B—C6B—C7B—N4B	-158.5 (8)	C5D—C6D—C7D—N1D	-179.7 (7)
C5B—C6B—C7B—N1B	-159.9 (7)	C1D—C6D—C7D—N4D	176.1 (7)
C1B—C6B—C7B—N1B	18.9 (11)	C5D—C6D—C7D—N4D	-1.3 (12)
N1B—N2B—C8B—C9B	-125.6 (8)	N1D—N2D—C8D—C9D	90.2 (9)
N3B—N2B—C8B—C9B	51.8 (11)	N3D—N2D—C8D—C9D	-83.9 (11)
N1B-N2B-C8B-C13B	50.8 (10)	N1D-N2D-C8D-C13D	-86.3 (10)
N3B—N2B—C8B—C13B	-131.8 (8)	N3D—N2D—C8D—C13D	99.6 (9)
C13B—C8B—C9B—C10B	-1.0 (12)	C13D—C8D—C9D—C10D	1.2 (13)
N2B-C8B-C9B-C10B	175.1 (7)	N2D-C8D-C9D-C10D	-175.1 (8)
C8B—C9B—C10B—C11B	0.1 (13)	C8D-C9D-C10D-C11D	0.9 (14)
C9B-C10B-C11B-C12B	0.2 (14)	C9D-C10D-C11D-C12D	-2.0 (14)
C10B—C11B—C12B—C13B	0.3 (14)	C10D-C11D-C12D-C13D	1.0 (13)
C9B—C8B—C13B—C12B	1.5 (12)	C11D—C12D—C13D—C8D	1.0 (13)
N2B-C8B-C13B-C12B	-174.8 (7)	C9D-C8D-C13D-C12D	-2.1 (13)
C11B—C12B—C13B—C8B	-1.1 (12)	N2D-C8D-C13D-C12D	174.2 (7)
N4B—N3B—C14B—C19B	-116.9 (9)	N4D-N3D-C14D-C19D	137.6 (8)
N2B—N3B—C14B—C19B	62.2 (11)	N2D-N3D-C14D-C19D	-46.4 (11)
N4B—N3B—C14B—C15B	61.9 (11)	N4D-N3D-C14D-C15D	-41.5 (11)
N2B—N3B—C14B—C15B	-119.0 (9)	N2D-N3D-C14D-C15D	134.4 (8)
C19B—C14B—C15B—C16B	-2.7 (15)	C19D—C14D—C15D—C16D	0.0 (13)
N3B-C14B-C15B-C16B	178.6 (9)	N3D-C14D-C15D-C16D	179.1 (8)
C14B—C15B—C16B—C17B	0.2 (16)	C14D-C15D-C16D-C17D	1.0 (14)
C15B—C16B—C17B—C18B	1.8 (16)	C15D-C16D-C17D-C18D	-1.1 (14)
C16B—C17B—C18B—C19B	-1.5 (14)	C16D-C17D-C18D-C19D	0.2 (13)
C15B—C14B—C19B—C18B	3.1 (14)	C15D-C14D-C19D-C18D	-0.8 (13)
N3B-C14B-C19B-C18B	-178.3 (7)	N3D-C14D-C19D-C18D	-179.9 (7)
C17B—C18B—C19B—C14B	-0.9 (13)	C17D—C18D—C19D—C14D	0.7 (13)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1C-C6C, C8C-C13C, C1A-C6A and C1D-C6D rings, respectively.

<i>D</i> … <i>A D</i> —H… <i>A</i>
3.844 (8) 145
3.636 (8) 138
3.547 (9) 127
3.657 (9) 144
3.769 (10) 144

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) *x*-1, *y*, *z*; (iii) *x*+1, *y*, *z*.