Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,4-Dibromo-2,5-dibutoxybenzene

Chin Hoong Teh, ${ }^{\text {a }}$ Muhammad Mat Salleh, ${ }^{\text {b }}$
Mohamed Ibrahim Mohamed Tahir, ${ }^{\text {c }}$ Rusli Daik ${ }^{\text {a }}$ and Mohammad B. Kassim ${ }^{\text {a,d }}{ }^{\text {d }}$

${ }^{\text {a School }}$ of Chemical Sciences \& Food Technology, Faculty of Science \& Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, ${ }^{\mathbf{b}}$ Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, UKM 43500 Bangi, Selangor, Malaysia, ${ }^{\text {c Department of Chemistry, Faculty of }}$ Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, and ${ }^{\mathrm{d}}$ Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia Correspondence e-mail: mbkassim@ukm.my

Received 28 June 2012; accepted 23 July 2012

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \mathrm{~A}$ R factor $=0.030 ; w R$ factor $=0.081$; data-to-parameter ratio $=17.4$.

The asymmetric unit of the title compound, $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2}$, contains one half-molecule located on an inversion centre. The molecule is essentially planar, with a maximum deviation from the best plane of the non-H atoms of 0.054 (2) \AA for the O atoms. The butoxy group adopts a fully extended all-trans conformation. In the crystal, molecules are connected via C $\mathrm{Br} \cdots \mathrm{O}$ halogen bonds $[\mathrm{Br} \cdots \mathrm{O}=3.2393$ (19) \AA] into a twodimensional corrugated network in the $b c$ plane.

Related literature

For related structures, see: Choi et al. (2010); Fun et al. (2010); Li et al. (2008). For applications of dialkoxybenzenes, see: Brandon et al. (1997); Huang et al. (2007); Lightowler \& Hird (2005); Promarak \& Ruchirawat (2007). For the synthetic procedure, see: Lopez-Alvarado et al. (2002).

Experimental

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2}$
$M_{r}=380.10$

Monoclinic, $P 2_{1} / c$
$a=8.3685$ (4) A
$b=12.6395(5) \AA$
$c=7.1083$ (3) \AA
$\beta=96.461(5)^{\circ}$
$V=747.10(6) \AA^{3}$

Data collection

Oxford Diffraction Gemini diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
$T_{\text {min }}=0.647, T_{\text {max }}=0.935$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.081$
$S=1.07$
1442 reflections
$Z=2$
$\mathrm{Cu} \mathrm{K} \alpha$ radiation
$\mu=6.82 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.07 \times 0.06 \times 0.01 \mathrm{~mm}$

5426 measured reflections
1442 independent reflections 1303 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009) and publCIF (Westrip, 2010).

The authors thank Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia for research grants UKM-GUP-BTT-07-26-178 and UKM-FST-06-FRGS00952010. This work was also supported by a National Science Fellowship (NSF) for TCH.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2508).

References

Brandon, K. L., Bentley, P. G., Bradley, D. D. C. \& Dunmur, D. A. (1997). Synth. Met. 91, 305-306.
Choi, H. D., Seo, P. J., Son, B. W. \& Lee, U. (2010). Acta Cryst. E66, o1042.
Fun, H.-K., Goh, J. H., Rai, S., Isloor, A. M. \& Shetty, P. (2010). Acta Cryst. E66, o1871.
Huang, S.-P., Huang, G.-S. \& Chen, S.-A. (2007). Synth. Met. 157, 863-871.
Li, Y.-F., Xu, C., Cen, F.-F., Wang, Z.-Q. \& Zhang, Y.-Q. (2008). Acta Cryst. E64, o1930.
Lightowler, S. \& Hird, M. (2005). Chem. Mater. 17, 5538-5549.
Lopez-Alvarado, P., Avendano, C. \& Menendez, J. C. (2002). Synth. Commun. 32, 3233-3239
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England
Promarak, V. \& Ruchirawat, S. (2007). Tetrahedron, 63, 1602-1609.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, o2683 [doi:10.1107/S1600536812033338]

1,4-Dibromo-2,5-dibutoxybenzene

Chin Hoong Teh, Muhammad Mat Salleh, Mohamed Ibrahim Mohamed Tahir, Rusli Daik and Mohammad B. Kassim

S1. Comment

Dialkoxy-substituted benzenes such as the title compound (I) are very useful intermediates to synthesize soluble poly $(p$ phenylene) (Huang et al., 2007; Lightowler \& Hird, 2005), thiophene-phenylene co-oligomers (Promarak \& Ruchirawat, 2007) and poly(phenylene vinylene) (Brandon et al., 1997), which have wide range of applications in semiconductor and electronics industries.

The title compound is similar to its analog, 1,4-dibromo-2,5-bis(hexyloxy)-benzene (II) (Li et al., 2008). The alkyl chains are nearly coplanar with the benzene ring, with $\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$ torsion angles of $3.3(4)^{\circ}$, which is similar to II. However, the title compound is stabilized by intermolecular $\mathrm{Br} \cdots \mathrm{O}$ interactions [3.2393 (19) \AA], which has shorter distance, compared to $\mathrm{Br} \cdots \mathrm{Br}$ interactions ($3.410 \AA$) found in II. The intermolecular $\mathrm{Br} \cdots \mathrm{O}$ interaction is shorter than the sum of the Van der Waals radii of the relevant atoms (3.37 \AA) and those found in other compound [3.301 (4) \AA] (Fun et al. 2010).

In the crystal, nearly linear halogen bond $\mathrm{C} 1-\mathrm{Br} 1 \cdots \mathrm{O} 1(-x, 1 / 2+y, 1 / 2-z)\left[<\mathrm{C} 1-\mathrm{Br} \cdots \mathrm{O} 159.96(9)^{\circ}\right]$ link the molecules into a two-dimensional corrugated network along $b c$ plane (Figure 2).

S2. Experimental

The compound was prepared according to previously published work with a slight modification (Lopez-Alvarado et al., 2002). To 1,4-bis(butoxy)benzene ($5.00 \mathrm{~g}, 22.5 \mathrm{mmol}$) was added dropwise $\mathrm{Br}_{2}(7.55 \mathrm{~g}, 47.25 \mathrm{mmol})$ in glacial acetic acid. The mixture was stirred at room temperature for two hours followed by heating under reflux for another two hours. The mixture was left to cool to room temperature and water was then added to precipitate the product. The product was filtered, washed with excess water and 1.0 M sodium bicarbonate solution. Slow recrystallization of the product from methanol-ethyl acetate mixture afforded crystals suitable for single X-ray diffraction (yield: 82\%).

S3. Refinement

The hydrogen atom positions were calculated geometrically and refined in a riding model approximation with $\mathrm{C}-\mathrm{H}$ bond lengths in the range $0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic and CH_{2} group, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl group.

Figure 1
The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Symmetry code for atoms with the A label: $-x, 1-y, 1-z$.

Figure 2
Crystal packing of the title compound showing intermolecular halogen bonds $\mathrm{C} 1-\mathrm{Br} 1 \cdots \mathrm{O} 1[-x, 1 / 2+y, 1 / 2-z]$ resulting in the formation of two-dimensional network along $b c$ plane.

1,4-Dibromo-2,5-dibutoxybenzene

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2}$
$M_{r}=380.10$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2 ybc
$V=747.10(6) \AA^{3}$
$a=8.3685$ (4) \AA
$b=12.6395$ (5) \AA
$c=7.1083$ (3) \AA
$\beta=96.461(5)^{\circ}$

supporting information

$$
\begin{aligned}
\mu & =6.82 \mathrm{~mm}^{-1} \\
T & =150 \mathrm{~K}
\end{aligned}
$$

Data collection

Oxford Diffraction Gemini
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
$T_{\min }=0.647, T_{\text {max }}=0.935$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.081$
$S=1.07$
1442 reflections
83 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Plate, colourless

5426 measured reflections
1442 independent reflections
1303 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=71.6^{\circ}, \theta_{\text {min }}=5.3^{\circ}$
$h=-8 \rightarrow 10$
$k=-15 \rightarrow 15$
$l=-8 \rightarrow 6$

$$
0.07 \times 0.06 \times 0.01 \mathrm{~mm}
$$

> Secondary atom site location: difference Fourier \quad map
> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0507 P)^{2}+0.4756 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.73$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.38$ e \AA^{-3}

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier \& Glazer 1986) with a nominal stability of 0.1 K .
Cosier, J. \& Glazer, A.M., (1986)., J. Appl. Cryst. 105107.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Br1	$-0.15758(3)$	$1.17923(2)$	$0.20385(4)$	$0.01819(14)$
O1	$0.2931(2)$	$0.90585(15)$	$0.4561(3)$	$0.0186(4)$
C1	$-0.0674(3)$	$1.0747(2)$	$0.3762(4)$	$0.0165(6)$
C2	$0.0787(3)$	$1.0299(2)$	$0.3466(4)$	$0.0170(6)$
H2	0.1301	1.0506	0.2431	0.020^{*}
C3	$0.1490(3)$	$0.9538(2)$	$0.4722(4)$	$0.0160(5)$
C4	$0.3733(4)$	$0.9319(2)$	$0.2931(4)$	$0.0188(6)$
H4A	0.4017	1.0064	0.2949	0.023^{*}
H4B	0.3034	0.9175	0.1776	0.023^{*}
C5	$0.5229(3)$	$0.8644(2)$	$0.3018(4)$	$0.0199(6)$
H5A	0.4923	0.7904	0.2966	0.024^{*}

H5B	0.5883	0.8766	0.4213	0.024^{*}
C6	$0.6222(3)$	$0.8887(2)$	$0.1394(4)$	$0.0202(6)$
H6A	0.5590	0.8727	0.0198	0.024^{*}
H6B	0.6483	0.9635	0.1403	0.024^{*}
C7	$0.7771(4)$	$0.8243(2)$	$0.1556(5)$	$0.0249(7)$
H7A	0.8411	0.8413	0.2724	0.037^{*}
H7B	0.8363	0.8409	0.0513	0.037^{*}
H7C	0.7516	0.7503	0.1535	0.037^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br 1	$0.0183(2)$	$0.01468(19)$	$0.0219(2)$	$0.00149(10)$	$0.00335(13)$	$0.00358(10)$
O 1	$0.0161(10)$	$0.0183(9)$	$0.0223(10)$	$0.0030(8)$	$0.0061(8)$	$0.0029(8)$
C 1	$0.0200(15)$	$0.0114(12)$	$0.0174(13)$	$0.0022(10)$	$-0.0003(10)$	$0.0031(10)$
C 2	$0.0185(14)$	$0.0134(12)$	$0.0200(14)$	$-0.0002(10)$	$0.0063(11)$	$0.0002(10)$
C 3	$0.0149(13)$	$0.0127(12)$	$0.0202(14)$	$0.0005(10)$	$0.0012(10)$	$-0.0017(10)$
C 4	$0.0209(15)$	$0.0175(13)$	$0.0188(14)$	$-0.0002(11)$	$0.0062(11)$	$0.0010(11)$
C 5	$0.0193(14)$	$0.0162(13)$	$0.0243(15)$	$0.0012(11)$	$0.0036(11)$	$0.0024(11)$
C 6	$0.0161(14)$	$0.0181(13)$	$0.0269(15)$	$0.0005(11)$	$0.0049(11)$	$0.0008(11)$
C 7	$0.0216(16)$	$0.0241(16)$	$0.0305(18)$	$0.0036(12)$	$0.0085(13)$	$-0.0015(12)$

Geometric parameters ($\AA,{ }^{\circ}$)

Brl-C1	1.900 (3)	C5-C6	1.527 (4)
$\mathrm{O} 1-\mathrm{C} 3$	1.366 (3)	C5-H5A	0.9700
O1-C4	1.441 (3)	C5-H5B	0.9700
C1-C2	1.384 (4)	C6-C7	1.523 (4)
C1-C3 ${ }^{\text {i }}$	1.386 (4)	C6-H6A	0.9700
C2-C3	1.397 (4)	C6-H6B	0.9700
C2-H2	0.9300	C7-H7A	0.9600
$\mathrm{C} 4-\mathrm{C} 5$	1.511 (4)	C7-H7B	0.9600
C4-H4A	0.9700	C7-H7C	0.9600
C4-H4B	0.9700		
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 4$	117.5 (2)	C4-C5-H5A	109.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3{ }^{\text {i }}$	122.2 (3)	C6-C5-H5A	109.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	118.7 (2)	C4-C5-H5B	109.2
C3i- $\mathrm{C} 1-\mathrm{Br} 1$	119.1 (2)	C6-C5-H5B	109.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	120.0 (3)	H5A-C5-H5B	107.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.0	C7-C6-C5	111.5 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.0	C7-C6-H6A	109.3
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	117.8 (2)	C5-C6-H6A	109.3
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	124.3 (3)	C7-C6-H6B	109.3
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{C} 3-\mathrm{C} 2$	117.8 (3)	C5-C6-H6B	109.3
O1-C4-C5	107.3 (2)	H6A-C6-H6B	108.0
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	110.3	C6-C7-H7A	109.5
C5-C4-H4A	110.3	C6-C7-H7B	109.5

$\mathrm{O} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	110.3	$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	110.3	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.5	$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$112.0(2)$	$\mathrm{H} 7 \mathrm{~B}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5

Symmetry code: (i) $-x,-y+2,-z+1$.

