Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-[(*E*)-4-Benzyloxy-2-hydroxybenzylidene]benzohydrazide

P. R. Reshma,^a M. Sithambaresan^b* and M. R. Prathapachandra Kurup^a

^aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and ^bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka Correspondence e-mail: eesans@yahoo.com

Received 12 August 2012; accepted 20 August 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.082; data-to-parameter ratio = 7.0.

The title compound, $C_{21}H_{18}N_2O_3$, exists in the *E* conformation with respect to the azomethane C=N double bond. The central benzene ring is almost coplanar with one of the substituent benzene rings [dihedral angle = $1.74 (5)^{\circ}$] and is approximately orthogonal to the other benzene ring of the molecule [dihedral angle = $86.61 (7)^{\circ}$]. An intramolecular O-H···N hydrogen bond occurs. The crystal packing is dominated by N-H···O hydrogen bonds, which lead to an infinite chain running parallel to [010].

Related literature

For the biological activity of hydrazones, see: Patil *et al.* (2010); Zhang *et al.* (2010). For the synthesis of related compounds, see: Emmanuel *et al.* (2011); Mangalam & Kurup (2011). For related structures, see: Lin & Sang (2009); Mohd Lair *et al.* (2009).

Experimental

Crystal data

 $\begin{array}{l} C_{21}H_{18}N_2O_3\\ M_r = 346.37\\ \text{Monoclinic, } P2_1\\ a = 10.8053 \ (6) \ \text{\AA}\\ b = 4.8952 \ (2) \ \text{\AA}\\ c = 16.3601 \ (10) \ \text{\AA}\\ \beta = 95.813 \ (2)^\circ \end{array}$

$V = 860.90 (8) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$
T = 296 K
$0.35 \times 0.30 \times 0.25$ mm

organic compounds

Data collection

```
Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
T_{\min} = 0.969, T_{\max} = 0.978
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	
$wR(F^2) = 0.082$	
S = 1.12	
1705 reflections	
243 parameters	
3 restraints	

9033 measured reflections 1705 independent reflections 1593 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.12\ e\ {\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.14\ e\ {\rm \AA}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2'\cdots O3^{i}$ $O2-H2''\cdots N1$	0.85 (1)	2.09 (1)	2.903 (2)	160 (2)
	0.87 (2)	1.79 (2)	2.592 (2)	152 (3)

Symmetry code: (i) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2010); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for providing the single-crystal X-ray diffraction data. PRR thanks the Council of Scientific and Industrial Research, New Delhi, India, for a Junior Research Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2591).

References

Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Emmanuel, J., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, 03267.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Lin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, 01650.
- Mangalam, N. A. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 76, 22–28.
- Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190.
- Patil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem. 63, 688–699.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhang, Y. H., Zhang, L., Liu, L., Guo, J. X., Wu, D. L., Xu, G. C., Wang, X. H. & Jia, D. Z. (2010). *Inorg. Chim. Acta*, **363**, 289–293.

supporting information

Acta Cryst. (2012). E68, o2785 [doi:10.1107/S1600536812036306]

N'-[(E)-4-Benzyloxy-2-hydroxybenzylidene]benzohydrazide

P. R. Reshma, M. Sithambaresan and M. R. Prathapachandra Kurup

S1. Comment

Hydrazone compounds have received much attention due to their potential applications in biological chemistry (Patil *et al.*, 2010; Zhang *et al.*, 2010). As a continuous work on the hydrazone compounds, a new hydrazone compound, N'-{(*E*)-[4-(benzyloxy)-2-hydroxyphenyl]methylidene}benzohydrazide, was prepared and structurally characterized. The *ORTEP* view of the title compound is shown in Fig. 1.

The compound crystallizes in monoclinic space group P_{1} . The molecule adopts an *E* configuration with respect to C14=N1 bond (Lin & Sang 2009; Mohd Lair *et al.*, 2009) and it exists in amido form with C15=O3 bond length of 1.224 (3) Å which is very close to a formal C=O bond length [1.21 Å]. The aromatic ring C8—C13 is almost coplanar with the ring C16—C21 with dihedral angle of 1.74 (5)° whilst the ring C1—C6 is approximately orthogonal (86.61 (7)°) to the ring C16—C21.

While the intramolecular hydrogen bond O(2)—H(2'')…N(1) increases the rigidity of the molecule, intermolecular N(2) —H(2')…O(3) hydrogen bond (Table 1) links the adjacent molecules forming an infinite one-dimensional supramolecular chain running parallel to the [010] direction in the unit cell (Fig. 2). Benzohydrazone molecules within these chains also interact through very weak π … π interactions with a shortest centroid-centroid distance of 4.8950 (15) Å that not only augment the stronger N—H…O hydrogen bond but also interconnects the infinite chains forming three-dimensional network in the lattice. The parallel arrangement of the molecules along *b* axis is shown in Fig. 3.

S2. Experimental

The title compound was prepared by adapting a reported procedure (Emmanuel *et al.*, 2011; Mangalam & Kurup, 2011) by refluxing a mixture of methanolic solutions of benzhydrazide (0.136 g,1 mmol) and 4-benzyloxysalicylaldehyde (0.2282 g,1 mmol) for 4 h. The formed crystals were collected, washed with few drops of methanol and dried over P_4O_{10} *in vacuo*. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation from its methanolic solution.

S3. Refinement

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.97 Å. H atoms were assigned as U_{iso} =1.2Ueq. H atoms of O2—H2" and N2—H2' bonds were located from difference maps and restrained using *DFIX* instructions with O—H = 0.87 ± 0.02 Å and N—H = 0.85 ± 0.01 Å.

In the absence of significant anomalous scattering effects Friedel pairs have been merged.

Figure 1

ORTEP view of the unique part of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.

Figure 2

Graphical representation showing one-dimensional supramolecular hydrogen bonding network in the crystal structure of $C_{21}H_{18}N_2O_3$.

Figure 3

Packing diagram of the compound showing the parallel arrangement of the molecules along b axis.

N'-[(E)-4-Benzyloxy-2-hydroxybenzylidene]benzohydrazide

Crystal data

 $C_{21}H_{18}N_2O_3$ $M_r = 346.37$ Monoclinic, P2₁ Hall symbol: P 2yb a = 10.8053 (6) Å b = 4.8952 (2) Å c = 16.3601 (10) Å $\beta = 95.813$ (2)° V = 860.90 (8) Å³ Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.33 pixels mm⁻¹ ω and φ scan Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.969, T_{\max} = 0.978$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.082$ S = 1.121705 reflections 243 parameters 3 restraints F(000) = 364 $D_x = 1.336 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5951 reflections $\theta = 2.4-28.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.35 \times 0.30 \times 0.25 \text{ mm}$

9033 measured reflections 1705 independent reflections 1593 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -12 \rightarrow 12$ $k = -5 \rightarrow 5$ $l = -19 \rightarrow 19$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0492P)^{2} + 0.0573P] \qquad \Delta \rho_{max} = 0.12 \text{ e} \text{ Å}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.14 \text{ e} \text{ Å}^{-3}$ $(\Delta/\sigma)_{max} = 0.005$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic or e	quivalent isotrop	ic displacement	parameters	$(Å^2)$)
----------------------------------	------------------	-------------------	-----------------	------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.08187 (12)	0.6299 (3)	1.18699 (7)	0.0525 (4)	
O2	0.19313 (15)	0.4504 (4)	0.91841 (8)	0.0610 (4)	
O3	0.43474 (14)	0.3828 (3)	0.76116 (9)	0.0575 (4)	
N1	0.37436 (15)	0.7368 (4)	0.87075 (9)	0.0471 (4)	
N2	0.44743 (17)	0.8127 (3)	0.81016 (10)	0.0458 (4)	
C1	-0.1620 (2)	0.5457 (6)	1.27899 (13)	0.0681 (7)	
H1	-0.1984	0.6716	1.2413	0.082*	
C2	-0.2072 (2)	0.5169 (8)	1.35467 (15)	0.0812 (9)	
H2A	-0.2737	0.6235	1.3677	0.097*	
C3	-0.1550 (3)	0.3347 (7)	1.40967 (15)	0.0779 (8)	
H3	-0.1853	0.3174	1.4607	0.093*	
C4	-0.0583 (3)	0.1761 (8)	1.39081 (16)	0.0890 (9)	
H4	-0.0228	0.0501	1.4288	0.107*	
C5	-0.0126 (2)	0.2025 (7)	1.31467 (15)	0.0750 (7)	
H5	0.0528	0.0928	1.3015	0.090*	
C6	-0.06386 (17)	0.3899 (5)	1.25910 (11)	0.0500 (5)	
C7	-0.01383 (18)	0.4243 (5)	1.17735 (11)	0.0531 (5)	
H7A	0.0203	0.2531	1.1600	0.064*	
H7B	-0.0798	0.4808	1.1361	0.064*	
C8	0.14629 (15)	0.6828 (4)	1.12181 (10)	0.0424 (4)	
C9	0.13243 (17)	0.5416 (4)	1.04847 (11)	0.0464 (5)	
H9	0.0725	0.4054	1.0401	0.056*	
C10	0.20779 (17)	0.6026 (4)	0.98724 (10)	0.0431 (4)	
C11	0.29517 (17)	0.8163 (4)	0.99739 (10)	0.0421 (4)	
C12	0.30438 (17)	0.9593 (5)	1.07174 (11)	0.0501 (5)	
H12	0.3604	1.1034	1.0794	0.060*	
C13	0.23345 (17)	0.8937 (5)	1.13355 (11)	0.0493 (5)	
H13	0.2431	0.9886	1.1830	0.059*	
C14	0.37200 (17)	0.8897 (5)	0.93334 (11)	0.0470 (4)	
H14	0.4195	1.0484	0.9380	0.056*	
C15	0.47098 (17)	0.6182 (4)	0.75527 (11)	0.0427 (4)	
C16	0.54733 (16)	0.7030 (4)	0.68911 (11)	0.0433 (4)	

0.5333 (2) 0.4738 0.6065 (2)	0.5618 (5) 0.4244	0.61561 (12) 0.6077	0.0565 (6)
0.4738	0.4244	0.6077	0.068*
0.6065(2)		0.0077	0.000
0.0005(2)	0.6223 (6)	0.55402 (13)	0.0671 (6)
0.5957	0.5273	0.5046	0.080*
0.6950 (2)	0.8216 (6)	0.56521 (14)	0.0673 (7)
0.7449	0.8610	0.5236	0.081*
0.7105 (2)	0.9643 (6)	0.63802 (14)	0.0655 (6)
0.7709	1.0998	0.6455	0.079*
0.63653 (18)	0.9069 (5)	0.70001 (13)	0.0532 (5)
0.6466	1.0048	0.7489	0.064*
0.4593 (19)	0.9831 (9)	0.8048 (13)	0.047 (6)*
0.249 (2)	0.514 (7)	0.8883 (16)	0.100 (10)*
	0.6005 (2) 0.5957 0.6950 (2) 0.7449 0.7105 (2) 0.7709 0.63653 (18) 0.6466 0.4593 (19) 0.249 (2)	0.0000 (2) 0.0223 (0) 0.5957 0.5273 0.6950 (2) 0.8216 (6) 0.7449 0.8610 0.7105 (2) 0.9643 (6) 0.7709 1.0998 0.63653 (18) 0.9069 (5) 0.6466 1.0048 0.4593 (19) 0.9831 (9) 0.249 (2) 0.514 (7)	0.0000 (2)0.0022 (0)0.0022 (0)0.59570.52730.50460.6950 (2)0.8216 (6)0.56521 (14)0.74490.86100.52360.7105 (2)0.9643 (6)0.63802 (14)0.77091.09980.64550.63653 (18)0.9069 (5)0.70001 (13)0.64661.00480.74890.4593 (19)0.9831 (9)0.8048 (13)0.249 (2)0.514 (7)0.8883 (16)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0541 (7)	0.0627 (10)	0.0425 (6)	-0.0105 (7)	0.0144 (5)	-0.0043 (7)
O2	0.0859 (10)	0.0528 (10)	0.0474 (7)	-0.0177 (8)	0.0207 (7)	-0.0110 (7)
O3	0.0747 (9)	0.0345 (8)	0.0668 (9)	-0.0058 (7)	0.0238 (7)	0.0026 (7)
N1	0.0560 (9)	0.0423 (10)	0.0454 (8)	0.0030 (8)	0.0161 (7)	0.0061 (8)
N2	0.0602 (9)	0.0320 (9)	0.0478 (8)	0.0002 (7)	0.0184 (7)	0.0059 (7)
C1	0.0652 (12)	0.0807 (18)	0.0605 (12)	0.0120 (13)	0.0162 (10)	0.0076 (13)
C2	0.0728 (15)	0.103 (2)	0.0724 (15)	0.0086 (16)	0.0311 (12)	-0.0023 (17)
C3	0.0884 (17)	0.090 (2)	0.0604 (13)	-0.0181 (17)	0.0300 (12)	0.0016 (15)
C4	0.106 (2)	0.094 (2)	0.0688 (15)	0.0056 (19)	0.0186 (14)	0.0313 (17)
C5	0.0768 (15)	0.0803 (19)	0.0712 (14)	0.0118 (14)	0.0235 (12)	0.0150 (14)
C6	0.0466 (10)	0.0556 (12)	0.0488 (9)	-0.0096 (10)	0.0094 (8)	-0.0032 (10)
C7	0.0530 (10)	0.0581 (14)	0.0497 (10)	-0.0071 (11)	0.0115 (8)	-0.0053 (10)
C8	0.0418 (9)	0.0464 (12)	0.0396 (9)	0.0028 (8)	0.0060 (7)	0.0006 (9)
C9	0.0505 (10)	0.0439 (11)	0.0454 (10)	-0.0058 (9)	0.0078 (8)	0.0003 (9)
C10	0.0536 (10)	0.0382 (10)	0.0377 (8)	0.0020 (9)	0.0059 (7)	0.0002 (8)
C11	0.0447 (9)	0.0407 (11)	0.0414 (9)	0.0028 (8)	0.0061 (7)	0.0016 (8)
C12	0.0504 (10)	0.0492 (13)	0.0508 (10)	-0.0105 (10)	0.0055 (8)	-0.0052 (9)
C13	0.0542 (10)	0.0547 (12)	0.0391 (9)	-0.0051 (10)	0.0055 (7)	-0.0061 (10)
C14	0.0487 (9)	0.0425 (11)	0.0507 (10)	-0.0011 (9)	0.0091 (8)	0.0022 (10)
C15	0.0482 (10)	0.0349 (10)	0.0460 (9)	0.0024 (9)	0.0089 (7)	0.0057 (9)
C16	0.0482 (10)	0.0364 (10)	0.0465 (9)	0.0053 (8)	0.0097 (8)	0.0052 (8)
C17	0.0673 (12)	0.0523 (14)	0.0515 (11)	-0.0063 (11)	0.0139 (9)	-0.0026 (10)
C18	0.0844 (15)	0.0710 (17)	0.0487 (11)	-0.0028 (15)	0.0210 (10)	-0.0012 (12)
C19	0.0731 (14)	0.0721 (17)	0.0613 (13)	0.0023 (13)	0.0296 (11)	0.0135 (13)
C20	0.0601 (12)	0.0620 (16)	0.0779 (15)	-0.0129 (12)	0.0245 (10)	0.0058 (13)
C21	0.0565 (10)	0.0488 (12)	0.0558 (10)	-0.0040 (10)	0.0131 (8)	0.0003 (10)

Geometric parameters (Å, °)

01	1.356 (2)	C8—C9	1.380 (3)
O1—C7	1.440 (3)	C8—C13	1.397 (3)
O2—C10	1.346 (2)	C9—C10	1.386 (3)

O2—H2″	0.871 (18)	С9—Н9	0.9300
O3—C15	1.224 (3)	C10-C11	1.407 (3)
N1—C14	1.271 (2)	C11—C12	1.398 (3)
N1—N2	1.379 (2)	C11—C14	1.447 (2)
N2-C15	1.350 (3)	C12—C13	1.367 (3)
N2H2'	0.8500(11)	C12H12	0.9300
C_1 C_6	1,272(3)	C12 H12	0.9300
C1 = C0	1.372(3)	C14 U14	0.9300
	1.383 (3)		0.9300
CI—HI	0.9300	C15—C16	1.485 (2)
C2—C3	1.349 (4)	C16—C17	1.382 (3)
C2—H2A	0.9300	C16—C21	1.386 (3)
C3—C4	1.363 (4)	C17—C18	1.375 (3)
С3—Н3	0.9300	C17—H17	0.9300
C4—C5	1.392 (3)	C18—C19	1.365 (4)
C4—H4	0.9300	C18—H18	0.9300
C5—C6	1 369 (4)	$C_{19}-C_{20}$	1 376 (3)
C5 H5	0.9300	C10 H10	0.0300
C6_C7	1.502 (2)	C20 C21	1.392(2)
	1.302 (2)	C20—C21	1.362 (3)
	0.9/00	C20—H20	0.9300
С7—Н7В	0.9700	C21—H21	0.9300
C8—O1—C7	117.87 (14)	O2—C10—C9	117.22 (18)
C10—O2—H2''	104 (2)	O2—C10—C11	122.05 (16)
C14—N1—N2	118 70 (17)	C9-C10-C11	120 73 (17)
C15 - N2 - N1	116 64 (16)	C_{12} C_{11} C_{10}	117 55 (16)
C15 N2 H2'	125.7(15)	C_{12} C_{11} C_{14}	120.68 (18)
N1 N2 H2'	125.7(15) 116.2(15)	$C_{12} = C_{11} = C_{14}$	120.00(10)
NI - NZ - HZ	110.2(13)	C10 $C12$ $C12$ $C11$	121.77(17)
	120.5 (2)		121.99 (19)
С6—С1—Н1	119.8	C13—C12—H12	119.0
C2—C1—H1	119.8	C11—C12—H12	119.0
C3—C2—C1	120.2 (3)	C12—C13—C8	119.49 (17)
C3—C2—H2A	119.9	C12—C13—H13	120.3
C1—C2—H2A	119.9	C8—C13—H13	120.3
C2—C3—C4	120.3 (2)	N1-C14-C11	119.8 (2)
С2—С3—Н3	119.9	N1—C14—H14	120.1
С4—С3—Н3	119.9	C11—C14—H14	120.1
C_{3} C_{4} C_{5}	1200(3)	O_{3} C_{15} N_{2}	120.1 121.87(17)
$C_3 C_4 H_4$	120.0 (5)	$O_3 C_{15} C_{16}$	121.07(17) 121.75(18)
$C_5 = C_4 = 114$	120.0	$N_{2} = C_{15} = C_{16}$	121.75(18) 116.24(18)
С5—С4—Н4	120.0	$N_2 - C_{13} - C_{10}$	110.34 (18)
C6C4	120.0 (3)		119.04 (17)
С6—С5—Н5	120.0	C17 - C16 - C15	118.32 (18)
C4—C5—H5	120.0	C21—C16—C15	122.54 (18)
C5—C6—C1	119.1 (2)	C18—C17—C16	120.6 (2)
C5—C6—C7	120.6 (2)	C18—C17—H17	119.7
C1—C6—C7	120.4 (2)	С16—С17—Н17	119.7
O1—C7—C6	107.46 (16)	C19—C18—C17	120.2 (2)
O1—C7—H7A	110.2	C19—C18—H18	119.9
С6—С7—Н7А	110.2	C17—C18—H18	119.9

O1—C7—H7B	110.2	C18—C19—C20	120.06 (19)
С6—С7—Н7В	110.2	C18—C19—H19	120.0
H7A—C7—H7B	108.5	С20—С19—Н19	120.0
O1—C8—C9	124.68 (17)	C19—C20—C21	120.2 (2)
O1—C8—C13	115.18 (16)	С19—С20—Н20	119.9
C9—C8—C13	120.13 (16)	С21—С20—Н20	119.9
C8—C9—C10	120.04 (18)	C20—C21—C16	119.9 (2)
С8—С9—Н9	120.0	C20—C21—H21	120.1
С10—С9—Н9	120.0	C16—C21—H21	120.1
C14 N1 N2 C15	164 71 (18)	C10 C11 C12 C13	1 2 (3)
$C_{14} = N_{1} = N_{2} = C_{13}$	-0.1(4)	$C_{10} = C_{11} = C_{12} = C_{13}$	-170.66(10)
$C_0 - C_1 - C_2 - C_3$	-0.1(4)	$C_{14} = C_{12} = C_{13}$	-1/9.00(19) -1.0(2)
$C_1 = C_2 = C_3 = C_4$	-0.0(3)	C11 - C12 - C13 - C8	-1.9(3)
$C_2 = C_3 = C_4 = C_5$	0.3(5)	$C_{1} = C_{2} = C_{13} = C_{12}$	1/0.33(10)
$C_{3} - C_{4} - C_{5} - C_{6}$	-14(4)	$N_2 = N_1 = C_{14} = C_{14}$	0.2(3)
C4 - C5 - C6 - C7	-1.4(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	179.39(10) 170.80(18)
$C_{4} = C_{5} = C_{6} = C_{7}$	1/0.0(3)	C_{12} C_{11} C_{14} N_1	1/0.09(10) -10.0(2)
$C_2 = C_1 = C_0 = C_3$	1.0(4)	$\frac{1}{10} - \frac{1}{11} - \frac{1}{15} - \frac{1}{12}$	-10.0(3)
$C_2 - C_1 - C_0 - C_7$	-1/9.1(3)	N1 - N2 - C15 - C16	-3.0(3)
$C_{0} = C_{0} = C_{0} = C_{0}$	1/3.83(1/)	N1 - N2 - C13 - C16	1/8.07(13)
$C_{3} = C_{0} = C_{1} = O_{1}$	-90.4(3)	V_{3} C_{15} C_{16} C_{17}	28.2(3)
C1 = C0 = C7 = O1	89.8 (2)	$N_2 = C_{15} = C_{16} = C_{17}$	-134.05 (19)
$C_{1} = 01 = C_{2} = C_{1}^{2}$	-4.4(3)	03-015-016-021	-148.1(2)
C = 0 = -0 = -0 = 0	1/0.89 (1/)	$N_2 - C_{15} - C_{16} - C_{21}$	29.7(3)
01 - 03 - 09 - 010	-1/0.51(1/)	$C_{21} = C_{10} = C_{17} = C_{18}$	-0.1(3)
C13 - C8 - C9 - C10	2.1(3)	C15 - C16 - C17 - C18	-1/6.5(2)
$C_8 = C_9 = C_{10} = C_{11}$	1//.42(18)	C16-C1/-C18-C19	0.7(4)
	-2.9(3)	C17 - C18 - C19 - C20	-0.6(4)
02-010-011-012	-179.1(2)	C18—C19—C20—C21	-0.1(4)
C9—C10—C11—C12	1.2 (3)	C19 - C20 - C21 - C16	0.6 (4)
02—C10—C11—C14	1.8 (3)	C17—C16—C21—C20	-0.5(3)
C9—C10—C11—C14	-177.93 (18)	C15—C16—C21—C20	175.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2′···O3 ⁱ	0.85 (1)	2.09 (1)	2.903 (2)	160 (2)
O2—H2"…N1	0.87 (2)	1.79 (2)	2.592 (2)	152 (3)

Symmetry code: (i) x, y+1, z.